Academic literature on the topic 'Explosion de gaz'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Explosion de gaz.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Explosion de gaz"

1

Andriamanalina, Drouot, and Alain Merlen. "Explosion violente anisotrope dans un gaz stratifié." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy 324, no. 5 (March 1997): 307–13. http://dx.doi.org/10.1016/s1251-8069(99)80039-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bouhours, G., B. Tesson, S. De Bourmont, G. Lorimier, and J. C. Granry. "Explosion peropératoire de gaz intestinaux : à propos d’un cas." Annales Françaises d'Anesthésie et de Réanimation 22, no. 4 (April 2003): 366–68. http://dx.doi.org/10.1016/s0750-7658(03)00062-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prunet, Bertrand, Olivier Stibbe, Guillaume Burlaton, Benoit Frattini, Olivier Yavari, Anne-Lise Marmoser, and Michel Bignand. "Explosion due au gaz le 12 janvier 2019 rue de Trévise a Paris." Médecine de Catastrophe - Urgences Collectives 4, no. 2 (June 2020): 93–95. http://dx.doi.org/10.1016/j.pxur.2020.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kashevarova, Galina, and Andrey Pepelyaev. "Numerical Simulation of Domestic Gas Deflagration Explosion and Verification of Computational Techniques." Advanced Materials Research 742 (August 2013): 3–7. http://dx.doi.org/10.4028/www.scientific.net/amr.742.3.

Full text
Abstract:
Accidents caused by domestic gas explosions occur regularly enough. Gas explosion accidents indoors are defined as deflagration explosions. The formation of an explosive cloud depends on many factors inside the building. To understand why the buildings in one case withstand an explosion but collapse in another case, more precise design models and methods of their realization are needed. We used numerical modeling to calculate the blast load intensity and find out the impact of the actual environment parameters. For the model verification we referred to the full-scale experiment on the deflagration of domestic gas in enclosed space.
APA, Harvard, Vancouver, ISO, and other styles
5

Jing, Guoxun, Yue Sun, Chuang Liu, and Shaoshuai Guo. "Investigation of the suppression effect of inert dust on the pressure characteristics of gas coal dust explosion." Thermal Science, no. 00 (2024): 95. http://dx.doi.org/10.2298/tsci231209095j.

Full text
Abstract:
The suppression effect of inert powder on gas-induced suspension coal dust explosions was investigated using a semi-closed pipeline experimental platform. The shock wave overpressure propagation characteristics of gas explosions with different concentrations of mixed dust (calcium carbonate and coal dust) were measured and analyzed. The suppression mechanism of inert powder on the explosion process was also discussed. The results indicate that when the coal dust concentration is 200g/m?, the peak overpressure of the explosion decreases gradually with increasing inert powder concentration, and the peak overpressure ratio in the pipeline shows a decreasing-increasing trend; the acceleration of the explosion pressure reduces with increasing mixed dust concentration, and when high concentration of mixed dust is involved in the explosion, the acceleration of the explosion pressure is lower than that when only coal dust is involved; The inhibitory effect of calcium carbonate on dust explosion increased linearly with its concentration when the ratio of inert dust to coal dust was 1:2.; Inert powder mainly suppresses the explosive power by physical heat absorption and reducing heat exchange efficiency. The experimental results established the theoretical basis for inert dust suppressing coal dust participation in explosions, and have reference significance for formulating mine explosion suppression measures.
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Kwanwoo, and Chankyu Kang. "Expansion of Next-Generation Sustainable Clean Hydrogen Energy in South Korea: Domino Explosion Risk Analysis and Preventive Measures Due to Hydrogen Leakage from Hydrogen Re-Fueling Stations Using Monte Carlo Simulation." Sustainability 16, no. 9 (April 24, 2024): 3583. http://dx.doi.org/10.3390/su16093583.

Full text
Abstract:
Hydrogen, an advanced energy source, is growing quickly in its infrastructure and technological development. Urban areas are constructing convergence-type hydrogen refilling stations utilizing existing gas stations to ensure economic viability. However, it is essential to conduct a risk analysis as hydrogen has a broad range for combustion and possesses significant explosive capabilities, potentially leading to a domino explosion in the most severe circumstances. This study employed quantitative risk assessment to evaluate the range of damage effects of single and domino explosions. The PHAST program was utilized to generate quantitative data on the impacts of fires and explosions in the event of a single explosion, with notable effects from explosions. Monte Carlo simulations were utilized to forecast a domino explosion, aiming to predict uncertain events by reflecting the outcome of a single explosion. Monte Carlo simulations indicate a 69% chance of a domino explosion happening at a hydrogen refueling station if multi-layer safety devices fail, resulting in damage estimated to be three times greater than a single explosion.
APA, Harvard, Vancouver, ISO, and other styles
7

KOMAROV, A. A., and E. V. BAZHINA. "The impact of gas-dynamic flows accompanying emergency explosions on buildings and structures." Prirodoobustrojstvo, no. 1 (2022): 84–92. http://dx.doi.org/10.26897/1997-6011-2022-1-84-92.

Full text
Abstract:
In the article, using the example of a real explosive object, the methodology for determining the maximum dynamic load that forms during an emergency explosion is considered. The article shows that when determining the load from an emergency explosion, it should be considered that a deflagration explosion of a gas-air mixture occurs. It should be accepted that only a certain part of the combustible substance is involved in the explosion, which is determined as a result of solving the diffusion problem. Detonation explosion should be excluded from sources of explosive danger. A detonation explosion at enterprises using hydrocarbons can occur with a powerful ignition source, such as lightning, a voltaic arc, or a TNT stick. These sources of mixture initiation must be excluded by engineering or organizational measures. It is shown that during a deflagration explosion, which is characterized by a smooth increase in explosive pressure, an explosive wave flows around buildings. Therefore, a significant increase in explosive loads on the facades of buildings, which is associated with the effect of reflection of a compression wave, will not occur. In addition, a smooth increase in explosive pressure leads to a significant decrease in the dynamic coefficient. These features of the development of an explosive accident must be taken into account when assessing the potential danger of an emergency explosion. The article describes a design scheme that allows calculating the dynamic load that is formed during a deflagration emergency explosion. The calculation method is based on linearized equations of motion of a continuous medium. The possibility of using linearized equations of motion is associated with the smallness of the apparent flame velocity realized during deflagration explosions of hydrocarbons. An additional advantage of using the acoustic approximation is the ability to calculate vibration or acoustic loads. A calculation scheme is presented that allows replacing the dynamic load with an equivalent static one, which is necessary when designing in an explosion-proof version of buildings located on the territory of explosive objects.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Dong, Shijie Dai, and Hongwei Zheng. "Investigation of the explosion characteristics of ethylene-air premixed gas in flameproof enclosures by using numerical simulations." Thermal Science, no. 00 (2022): 189. http://dx.doi.org/10.2298/tsci220905189l.

Full text
Abstract:
Flameproof enclosures are widely installed as safety equipment at dangerous industrial sites to reduce ignition risks. However, electrical components typically installed in such flameproof enclosures for the production process can cause ignition and compromise the safety of the enclosures. Thus, in such cases, the explosive characteristics of the flameproof enclosures is severely affected. Accidental gas explosions in industrial sites rarely occur under standard operating conditions. Premixed gas explosions in flameproof shells are complex processes. A 560 mm ? 400 mm ? 280 mm flameproof enclosure commonly used in industrial sites was used to investigate the phenomenon. The explosion characteristics of ethylene-air premixed gas in the flameproof enclosure was simulated using Fluent software to investigate the influences of ignition source location, ignition source energy, ambient temperature, and obstacles on the maximum explosion pressure, maximum explosion pressure rise rate, and maximum explosion index of the flameproof enclosure. The results revealed that the surface area of heat exchange considerably influences the maximum explosion pressure of the flameproof enclosure. The larger the ignition energy is, the larger the maximum explosion pressure value, the maximum rate of explosion pressure rise, and the maximum explosion index of the flameproof enclosure are. With the increase in the ambient temperature, the maximum explosion pressure decreased, whereas the maximum rate of explosion pressure rise and the maximum explosion index exhibited limited change. The results of this study provide theoretical guidance for the design and suppression of flameproof enclosures.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yan, Lin Chen, Xuting Wang, Yaqi Zhao, Zhen Zhao, Chen Zhang, and Jinghan Xu. "Study on Overpressure Explosion of Oil and Gas Pipelines and Risk Prevention & Control Measures." Journal of Physics: Conference Series 2520, no. 1 (June 1, 2023): 012028. http://dx.doi.org/10.1088/1742-6596/2520/1/012028.

Full text
Abstract:
Abstract In view of the flammable and explosive characteristics of oil and gas pipeline transportation medium, once it leaks, production safety accidents are easy to occur. This study uses explosions with severe consequences caused by natural gas pipeline leakage as an example. The risk factors and accident modes of oil and gas storage and transportation pipelines are analyzed; the explosion load is calculated by a scaling explosion prediction model with the TNO multi-energy method; the relationship between overpressure load and combustible gas cloud radius is studied. The methane-air explosion volume fraction of 9.5% is taken as another example, with which the overpressure attenuation law of explosion wave is obtained. Based on the above research, safety risk prevention and control measures are proposed. The research results can provide technical support for daily management and risk prevention and control of oil and gas storage and transportation pipelines.
APA, Harvard, Vancouver, ISO, and other styles
10

Burton, Mike, Catherine Hayer, Craig Miller, and Bruce Christenson. "Insights into the 9 December 2019 eruption of Whakaari/White Island from analysis of TROPOMI SO2 imagery." Science Advances 7, no. 25 (June 2021): eabg1218. http://dx.doi.org/10.1126/sciadv.abg1218.

Full text
Abstract:
Small, phreatic explosions from volcanic hydrothermal systems pose a substantial proximal hazard on volcanoes, which can be popular tourist sites, creating casualty risks in case of eruption. Volcano monitoring of gas emissions provides insights into when explosions are likely to happen and unravel processes driving eruptions. Here, we report SO2 flux and plume height data retrieved from TROPOMI satellite imagery before, during, and after the 9 December 2019 eruption of Whakaari/White Island volcano, New Zealand, which resulted in 22 fatalities and numerous injuries. We show that SO2 was detected without explosive activity on separate days before and after the explosion, and that fluxes increased from 10 to 45 kg/s ~40 min before the explosion itself. High temporal resolution gas monitoring from space can provide key insights into magmatic degassing processes globally, aiding understanding of eruption precursors and complementing ground-based monitoring.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Explosion de gaz"

1

Khalili, Imad. "Sensibilité, sévérité et spécificités des explosions de mélanges hybrides gaz/vapeurs/poussières." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0088/document.

Full text
Abstract:
La sensibilité et la sévérité d'explosion des différents mélanges gaz/vapeur-poussière ont été étudiées grâce à des dispositifs standards (sphère de 20 L, tube de Hartmann). Les spécificités des explosions de mélanges hybrides gaz/poussière ont été mises en évidence. En fait, même pour des concentrations de gaz inférieures à la limite inférieure d'explosivité (LIE), la probabilité d'inflammation et la gravité d'explosion peuvent être considérablement augmentées, ce qui permettra notamment de conduire à de grands changements dans la détermination des zones ATEX. Il a été, par exemple, démontré que ces mélanges peuvent être explosifs même lorsque la concentration en poudre et la concentration en vapeur sont respectivement en dessous de la concentration minimale explosive et de la LIE. En outre, des effets de synergie ont été observés et la vitesse de montée en pression de mélanges hybrides peut être supérieure à celles des gaz purs. Les origines de ces spécificités ne doivent pas être recherchées dans la modification d'un paramètre unique, mais peuvent probablement être attribuées aux effets combinés sur l'hydrodynamique (propagation de la flamme), le transfert thermique et la cinétique de combustion. Des expériences ont été menées afin de souligner l'importance de chaque contribution. Basé sur des schémas cinétiques classiques à coeur rétrécissant prenant en compte des diverses contraintes lors d'une réaction non-catalytique de gaz/solide et sur des modèles de combustion homogène pour les gaz, un modèle a été développé pour représenter l'évolution temporelle de la pression d'explosion pour ces mélanges
The explosion sensitivity and severity of various gas/vapor-dust mixtures have been studied thanks to specifically modified apparatuses based on a 20 L sphere and a Hartmann tube. The specificities of gas/dust hybrid mixtures explosions have been highlighted. In fact, even for gas concentrations lower than the lower explosivity limit (LEL), the ignition probability and the explosion severity can be greatly increased, which will notably lead to great changes in the Ex zones determination. For instance, it has been shown that such mixtures can be explosive when both the dust and gas concentrations are below their respective minimum explosive concentration and LEL. Moreover, synergistic effects have been observed and the rate of pressure rise of hybrid mixtures can be greater than those of the pure gases themselves. The origins of these specificities should not be sought in the modification of a single parameter, but could probably be attributed to combined impacts on hydrodynamics (flame propagation), thermal transfer and combustion kinetics. Experiments have been carried out in order to underline the significance of each contribution. Based on classical shrinking core models taking into account the various limitations during a non-catalytic gas/solid reaction and on homogeneous combustion for gases, a model has been developed to represent the time evolution of the explosion pressure for such mixtures
APA, Harvard, Vancouver, ISO, and other styles
2

Vanbersel, Benjamin. "Méthodes de raffinement de maillage automatique pour la simulation aux grandes échelles d'explosions de gaz." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP085.

Full text
Abstract:
La demande d’énergie ne cesse d’augmenter et est en grande partie obtenue grâce à la combustion, avec des carburants d’origine fossile ou renouvelable. Ces carburants, souvent stockés dans des environnements clos, présentent un danger en cas de fuite. En effet, l'inflammation d'un nuage de gaz pré-mélangé peut entraîner une explosion, provoquant une propagation rapide d'un front de flamme et générant des surpressions dangereuses pour les personnes et les infrastructures. Pour comprendre et prévenir ces explosions, diverses expérimentations sont menées, allant des tests en laboratoire aux simulations à l'échelle industrielle. Toutefois, les conditions extrêmes de température et de pression rendent les diagnostics précis difficiles à obtenir expérimentalement.La simulation numérique, notamment la simulation aux grandes échelles (LES) permet de compléter ces expérimentations en offrant une meilleure compréhension des phénomènes de combustion et de turbulence. La simulation LES a déjà prouvé son efficacité pour reproduire la dynamique des déflagrations et les surpressions associées dans des domaines de petite taille. Elle permet également des diagnostics précis à chaque point du domaine de calcul. Cependant, les grandes dimensions des installations industrielles posent des défis pour la résolution numérique complète des phénomènes physiques en jeu. La discrétisation homogène de tout le domaine de calcul serait trop coûteuse en termes de temps et de ressources. Ainsi, l'adaptation de maillage, particulièrement l'adaptation dynamique, est utilisée pour affiner la discrétisation dans les zones d'intérêt qui évoluent au fil du calcul. Cette technique permet de réduire la taille des maillages et les coûts de calcul en suivant les phénomènes d'intérêt prédéfinis durant leur propagation.Les travaux de cette thèse se concentrent sur le développement et la validation d'une méthode de raffinement adaptatif de maillage (AMR) pour les simulations LES des déflagrations, basée sur des critères physiques instantanés jouant un rôle important dans les explosions. La méthode proposée, nommée « Turbulent Flame Propagation-AMR » (TFP-AMR), reproduit la dynamique transitoire des flammes turbulentes et des structures tourbillonnaires dans l'écoulement et utilise la bibliothèque AMR non structurée kalpaTARU. Elle repose sur des critères dérivés des caractéristiques physiques des déflagrations, limitant la dépendance aux paramètres utilisateur. Un critère de sélection des vortex, issu de la théorie d'interaction flamme/vortex, et un critère spécifique d'adaptation de maillage sont développés pour garantir que les zones d'intérêt demeurent toujours dans une région de maillage raffiné tout au long du processus transitoire. La méthodologie est validée sur des cas élémentaires représentant des composantes fondamentales du problème, tels que la propagation de flamme, la propagation de vortex et l'interaction flamme-vortex.Enfin, la méthode est appliquée à des configurations de déflagrations, d’abord dans une chambre obstruée semi-confinée, puis dans un canal obstrué entièrement confiné, avec diverses variations paramétriques concernant la géométrie de la chambre et les propriétés du mélange initial. Dans ces configurations, la déflagration peut atteindre des régimes rapides, avec des formations d'ondes de choc en amont du front de flamme. Les comparaisons entre expériences et simulations démontrent que la méthode TFP-AMR obtient des résultats précis à un coût de calcul inférieur par rapport aux simulations de référence maillages statiques, en nécessitant que peu d’ajustement de paramètres, validant ainsi la robustesse et l'efficacité de la méthode pour ce type d’application
The global energy demand continues to rise, and is largely met through combustion, using fossil or renewable fuels. These fuels, often stored in enclosed environments, pose a significant hazard in the event of a leak. The ignition of a premixed gas cloud can lead to an explosion, causing rapid flame front propagation and generating dangerous overpressures that threaten both human life and infrastructure integrity. To understand and prevent these explosions, various experiments are conducted, ranging from laboratory tests to industrial-scale simulations. However, extreme conditions of temperature and pressure make it challenging to obtain accurate diagnostics experimentally.Numerical simulation, especially Large Eddy Simulation (LES), complements these experiments by providing a better understanding of combustion and turbulence phenomena at stake. LES has already proven effective in replicating the dynamics of deflagrations and the associated overpressures in small domains. It also allows for precise diagnostics at every point within the computational domain. However, the large dimensions of industrial installations raise challenges for a complete numerical resolution of the physical phenomena involved. An homogeneous discretisation of the entire computational domain would be too costly in terms of return time and computational resources. Therefore, mesh adaptation, particularly dynamic adaptation, is used to refine the discretisation in regions of interest that evolve during the calculation. This technique helps reduce mesh size and computational costs by tracking predefined phenomena of interest during their propagation.This thesis focuses on the development and validation of an adaptive mesh refinement (AMR) method for LES simulations of deflagrations, based on instantaneous physical criteria relevant to explosions. The proposed method, called "Turbulent Flame Propagation-AMR" (TFP-AMR), reproduces the transient dynamics of turbulent flames and vortical structures in the flow, and relies on the unstructured AMR library kalpaTARU. The method relies on criteria derived from the physical characteristics of deflagrations, minimising reliance on user-dependent parameters. In particular, a vortex selection criterion is derived from flame/vortex interaction theory. A specific mesh adaptation triggering criterion is also developed to ensure that regions of interest remain within a refined mesh zone throughout the transient propagation process.The methodology is validated on fundamental cases representative of the essential physical bricks of the problem, such as flame propagation, vortex propagation, and flame-vortex interaction. Finally, the method is applied to deflagration configurations. A semi-confined obstructed chamber is first considered, with extensive parametric variations regarding the chamber geometry and the initial mixture properties. A fully confined obstructed channel is then considered, where deflagration can reach high-speed regimes with shock waves forming ahead of the flame front. Comparisons between experimental and simulation results demonstrate that the TFP-AMR method achieves accurate results at a lower computational cost compared to static mesh reference simulations, while requiring minimal parameter adjustments. These application cases validate the method robustness and effectiveness for such applications
APA, Harvard, Vancouver, ISO, and other styles
3

Caillol, Christian. "Influence de la composition du gaz naturel carburant sur la combustion turbulente en limite pauvre dans les moteurs à allumage commandé." Aix-Marseille 1, 2003. http://www.theses.fr/2003AIX11042.

Full text
Abstract:
L'influence des composants minoritaires majeurs intervenant dans la composition du gaz naturel est quantifiee experimentalement. La base de donnees constituee met en evidence l'influence significative de la nature du gaz sur les performances energetiques et environnementales du moteur. Un modele de combustion predictif a une zone, base sur la resolution numerique des equations de conservation de l'energie et des especes et integrant une cinetique chimique detaillee est mis en Œuvre. Afin de prendre en compte les effets de la turbulence, une approche thermodynamique predictive a deux zones est ensuite adoptee. La propagation de la flamme de premelange est decrite dans un premier temps par une loi de comportement, puis par une formulation du taux de consommation du combustible gouverne par le melange turbulent. Enfin, une modelisation de la formation du monoxyde d'azote, basee sur l'utilisation d'une fonction de densite de probabilite de la temperature dans les gaz brules, est proposee
The influence of the main minor components involved in natural gas composition, ethane and propane, is experimentally quantified. The constituted experimental database demonstrates the significant effect of fuel mixture properties on engine performance and pollutant emission levels. A one-zone predictive combustion model, based on the numerical resolution of energy and species conservation equations, which integrates detailed chemical kinetics, is developed. In order to take into account the effects of turbulence on the combustion process, a two-zone predictive thermodynamic approach is then adopted. The premixed flame propagation is first described by an empirical burning law, then by an expression for the rate of combustion of fuel controlled by the turbulent mixing process. Finally, a numerical modeling approach of nitric oxide formation, based on the use of a probability density function of temperature in burnt gases, is proposed
APA, Harvard, Vancouver, ISO, and other styles
4

Mercier, Marc. "Contribution à l'étude du fonctionnement d'un moteur à allumage commandé alimenté au gaz naturel de Groningue." Valenciennes, 2006. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/14577380-5929-49d9-bd99-fb1d1dc8381f.

Full text
Abstract:
Le but de cette thèse est d’étudier le fonctionnement d’un moteur à allumage commandé alimenté au gaz naturel de Groningue et à l’essence afin de déterminer si le gaz naturel est un carburant alternatif à l’essence attrayant. Ce travail expérimental a été précédé du développement d’un banc d’essai spécifique. Dans un premier temps, l’analyse des performances du moteur a été abordée par l’étude du couple en fonction de la richesse, de la vitesse de rotation et de l’avance à l’allumage. Nous avons étudié les températures de fonctionnement du moteur ainsi que les températures d’échappement. De ce travail, nous avons ciblé les paramètres influençant majoritairement le comportement du moteur tels l’avance et la richesse. On enregistre une baisse de la valeur du couple au gaz naturel. Nous avons abordé par la suite l’étude de la pression cylindre, ce qui a été rendu possible par l’équipement du moteur d’un capteur de pression du type piézo-électrique dont le signal est acquis par le biais d’une baie d’acquisition rapide. Le gaz présente une plage de fonctionnement en richesse plus large qu’à l’essence. Les délais d’inflammation et durées de combustion sont augmentés au gaz ce qui nécessite un décalage d’avance accrue par rapport à l’essence pour l’obtention d’une PMI maximale. Nous avons réalisé la modélisation du délai et de la durée de combustion en fonction de la richesse. La dispersion cyclique de la pression cylindre fait l’objet de la troisième partie de ce mémoire. La stabilité de fonctionnement du moteur est optimal lorsque l’avance à l’allumage et la richesse sont réglées de manière à obtenir le couple maximal. Les charges partielles influencent de façon majeure les paramètres de fonctionnement du moteur en modulant la masse d’air admise dans les chambres de combustion en modifiant la pression de l’air du collecteur d’admission. Le couple obtenu à l’essence reste élevé pour des charges partielles à partir de la demie charge. Le couple au gaz naturel chute en dessous de trois quart de charge. Cependant le gaz présente une dispersion cyclique faible face à l’essence. Les taux d’émission de CO2, CO, HC au gaz sont plus faibles qu’à l’essence
We studied the performance of a spark ignition engine fuelled with natural Groningen gas and compared the obtained results with those given when using gasoline. The analysis was made versus rotational speed, spark ignition timing and equivalence ratio with simultaneous measurements of cylinder head and exhaust temperatures. The cylinder pressure recording show the possibility of working with poor mixtures in the case of natural gas. The ignition delays and combustion durations are higher with gas and imply the necessity of an increased spark timing in comparison with gasoline to maximize the mean effective pressure. We calculated the combustion temperatures and the ignition delays and combustion durations were modelled versus equivalence ratio. The cylinder pressure cyclic dispersion showed that the combustion stability is optimum for spark timings and equivalence ratio corrsponding to maximum torques. With these conditions, the combustion durations are minimum with a fast front flame propagation and maximum mean effective pressure. Part loads influence the performance data by adjusting the admitted air flow in the admission pipe. The torque with gasoline remains high up to half load whereas the torque with natural gas decreases quickly below three quarter load. The polluant emissions are weakes with natural gas. Natural gas is an attractive alternative solution for engines fitted to this type of fuel
APA, Harvard, Vancouver, ISO, and other styles
5

Brecq, Guillaume. "Contribution à la caractérisation thermodynamique du cliquetis dans les moteurs à gaz : application à de nouvelles méthodes de détection." Nantes, 2002. http://www.theses.fr/2002NANT2064.

Full text
Abstract:
Le gaz naturel représente un carburant prometteur alliant performances énergétiques et faibles émissions polluantes. Contrairement aux carburants liquides dont la qualité est maîtrisée, celle du gaz naturel dépend de son origine et est donc amenée à varier dans un réseau interconnecté. Pour des réglages prédéfinis du moteur, ces variations de qualité peuvent conduire à une combustion anormale (auto-inflammation de la charge fraiche. Ce phénomène, caractérisé par un bruit métallique, est appelé cliquetis. Un cliquetis intense provoque une dégradation des performances et conduit à des dégats importants, s'il n'est pas rapidement contrôlé. Le cliquetis constitue un obstacle pour l'optimisation des performances énergétiques des moteurs à gaz couplée à la réduction de la pollution atmosphérique. Le développement d'outils permettant sa maîtrise est l'objectif visé par ce travail. Dans cette optique, un modèle thermodynamique à "deux zones" a été développé et adapté à la caractérisation du cliquetis. Il est basé sur une loi comportementale de la combustion, fonction des paramètres moteur et de la qualité du gaz. . .
APA, Harvard, Vancouver, ISO, and other styles
6

Sorin, Anthony. "Étude de l'interaction solide - fluide dans la zone d'entrée d'un tube cylindrique support d'un écoulement d'air intermittent : application à l'étude thermique des collecteurs d'échappement de moteurs à explosion." Nantes, 2003. http://www.theses.fr/2003NANT2069.

Full text
Abstract:
Ce travail concerne l'étude expérimentale de l'interaction thermique entre la paroi d'un canal cylindrique droit et un écoulement intermittent d'air chaud en régime périodique établi. Cette étude trouve son application première dans le développement de nouvelles lignes d'échappement de véhicules automobiles. Le principe de mesure est fondé sur un modèle axisymétrique simple, de zone d'entrée, qui fait appel au couplage, conduction dans le solide, convection dans le fluide. L'estimation du coefficient de transfert paroi - écoulement intermittent se fait au moyen d'une technique inverse fondée sur la méthode du gradient conjugué. . .
APA, Harvard, Vancouver, ISO, and other styles
7

Zadnik, Martin Vingerhoeds Rob A. Vincent François. "Détection du cliquetis pour moteur automobile." Toulouse (Université Paul Sabatier, Toulouse 3), 2008. http://thesesups.ups-tlse.fr/206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Royer, Pascale. "Contribution de l'homogénéisation à l'étude de la filtration d'un gaz en milieu déformable à double porosité : application à l'étude du système gaz-charbon." Université Joseph Fourier (Grenoble ; 1971-2015), 1994. http://www.theses.fr/1994GRE10186.

Full text
Abstract:
L'objet de cette etude est de determiner, par la methode des developpements asymptotiques, des modeles mathematiques macroscopiques decrivant l'ecoulement d'un fluide compressible dans un milieu poreux a double porosite. Les limites des modeles classiques sont definies pour le cas particulier d'un milieu a double conductivite et une correction simple, elargissant leur domaine de validite, est proposee. Une adaptation de la methode des developpements asymptotiques pour le cas des milieux a double porosite est ensuite mise au point. Elle s'appuie sur l'existence de trois longueurs caracteristiques introduites par la geometrie du milieu. Alors que les methodes classiques considerent que le fluide est faiblement compressible, cette methode est appliquee ici pour etudier la filtration d'un fluide tres compressible dans un milieu poreux fracture. Le cas d'une matrice rigide, puis celui d'une matrice deformable, sont successivement envisages. Il s'avere que les comportements macroscopiques obtenus dependent des ordres de grandeur relatifs des rapports d'echelles. L'une des descriptions obtenues pour une matrice rigide est fortement non-lineaire et comporte des effets de memoire. L'etude pour une matrice deformable met en evidence la necessite de considerer separement les phenomenes de compressibilite du fluide et de deformabilite de la matrice. En guise d'application, l'etude du systeme gaz-charbon est alors envisagee, dans le but de contribuer a la prevention d'un phenomene dynamique se produisant dans les mines de charbon: le coup de poussier. Une description detaillee des differents processus qui se developpent au sein d'un milieu gaz-charbon, notamment le phenomene de sorption et ses consequences, est presentee et se fonde sur de nombreux resultats experimentaux. Enfin, en se basant sur l'etude theorique precedente, un modele de filtration avec adsorption d'un gaz dans un milieu poreux fracture rigide est propose
APA, Harvard, Vancouver, ISO, and other styles
9

Corre, Christian. "Structure d'une flamme en deux stades de butane : action d'un additif antidétonant : la n-méthylaniline." Lille 1, 1991. http://www.theses.fr/1991LIL10081.

Full text
Abstract:
L'étude de l'oxydation du butane sur brûleur à flamme plate a été effectuée pour la première fois au-dessus de la pression atmosphérique (1. 4 bar pour une flamme froide seule et 1. 8 bar pour une flamme en deux stades). L'emploi de la chromatographie en phase gaz, de la résonance paramagnétique électronique, de la polarographie et de la colorimétrie ont permis la détermination plus de 46 profils d'espèces. Les propriétés antidétonantes de la N-méthylaniline ont également été démontrées par son action très importante sur la flamme de deuxième stade
APA, Harvard, Vancouver, ISO, and other styles
10

Kosiwczuk, Wenceslas. "Mesure simultanée des vitesses des gouttes et du gaz en mélange diphasique par PIV et fluorescence." Rouen, 2006. http://www.theses.fr/2006ROUES065.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Explosion de gaz"

1

Steel Construction Institute (Great Britain). Fire and Blast Information Group. Explosion mitigation systems. [Acton, Eng.]: Steel Construction Institute, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

International Colloquium on Dynamics of Explosions and Reactive Systems (12th 1989 Ann Arbor, Mich.). Dynamics of detonations and explosions--explosion phenomena. Washington, DC: American Institute of Aeronautics and Astronautics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baker, W. E. Gas, dust, and hybrid explosions. Amsterdam: Elsevier, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Hongzhang. Gas Explosion Technology and Biomass Refinery. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

International Colloquium on Dynamics of Explosions and Reactive Systems (10th 1985 Berkeley, Calif.). Dynamics of explosions. New York, NY: American Institute of Aeronautics and Astronautics, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gelfand, Boris E., Mikhail V. Silnikov, Sergey P. Medvedev, and Sergey V. Khomik. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25352-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

V, Silnikov Mikhail, Medvedev Sergey P, Khomik Sergey V, and SpringerLink (Online service), eds. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Chemical Safety and Hazard Investigation Board, ed. Explosion at ASCO: Dangers of flammable gas accumulation. [Washington, DC]: U.S. Chemical Safety and Hazard Investigation Board, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Larsen, G. C. Gas explosion characterization, wave progagation (small-scale experiments). Luxembourg: Commission of the European Communities Directorate-General Information Market and Innovation, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

United States. Chemical Safety and Hazard Investigation Board., ed. Explosion at ASCO: Dangers of flammable gas accumulation. [Washington, DC]: U.S. Chemical Safety and Hazard Investigation Board, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Explosion de gaz"

1

Chen, Hongzhang. "Gas Explosion Equipments." In Gas Explosion Technology and Biomass Refinery, 87–143. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nasr, G. G., and N. E. Connor. "Fire and Explosion." In Natural Gas Engineering and Safety Challenges, 281–308. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08948-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sotoodeh, Karan. "Fire and Explosion." In Safety Engineering in the Oil and Gas Industry, 173–238. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003387275-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Hongzhang. "Principle of Gas Explosion Technology." In Gas Explosion Technology and Biomass Refinery, 27–86. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Hongzhang. "Process Development of Gas Explosion." In Gas Explosion Technology and Biomass Refinery, 145–95. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Mingxiao. "Blast Injuries from Mining Gas." In Explosive Blast Injuries, 559–78. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-2856-7_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hall, S. F., D. Martin, and J. MacKenzie. "Gas Cloud Explosions and their Effect on Nuclear Power Plant Basic Development of Explosion Codes." In Safety of Thermal Water Reactors, 255–68. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4972-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ma, Guowei, Yimiao Huang, and Jingde Li. "Risk Analysis Methods for Gas Explosion." In Risk Analysis of Vapour Cloud Explosions for Oil and Gas Facilities, 153–72. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7948-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Hongzhang. "Gas Explosion Technique Principles and Biomass Refining Pandect." In Gas Explosion Technology and Biomass Refinery, 1–25. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Hongzhang. "Characterization and Research Methods of Gas-Exploded Materials." In Gas Explosion Technology and Biomass Refinery, 197–226. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7414-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Explosion de gaz"

1

Kumar, Chenthil, Vishnu Rajendran, Anil Kumar, and Amita Tripathi. "Study of Leakage and Explosion of Hydrogen and Blast Wall Failures in an Offshore Platform." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67277.

Full text
Abstract:
Study of gaseous explosions and their effects on structures is helpful in designing offshore platforms. Specifically, reliable methods for the prediction of overpressures in offshore explosions are highly useful and are extensively researched. The selection and/or development of means of prevention, control and mitigation of explosions often depends on the comprehensive analysis of their probability of incidence and damage potential. This involves a number of factors, such as explosive gas leak size, location, composition, wind direction, and characteristics of probable ignition. This paper presents a 3D transient CFD based analysis tool for such purposes and the results of some simulations done using it. The first set of simulations is a validation exercise, which involves hydrogen leakage and explosion, and the computational results are compared with the experimental data. The second set of calculations involved simulation of a hydrogen gas leakage scenario on an offshore platform, followed by explosion studies for different scenarios to find the effect of various guidelines for the initial conditions in the reactive cloud. These results show that, the maximum explosion pressure occurs when stoichiometric initial mixture conditions are applied in the dispersed flammable region. The worst case explosion scenario thus observed has maximum over pressures and maximum blast wall displacement of about 18 to 20 times higher than the base case explosion.
APA, Harvard, Vancouver, ISO, and other styles
2

Vlasin, Nicolae-Ioan, Cristian Raul Cioara, Gheorghe Daniel Florea, Adrian Bogdan Simon-Marinica, and Zoltan Vass. "VIRTUAL DESIGN OF STANDS FOR EXPERIMENTING WITH HYDROGEN EXPLOSIONS." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/4.1/s17.19.

Full text
Abstract:
Hydrogen explosions can occur in industrial processes, in laboratories, in hydrogen production and storage processes, or in new combustion processes used in modern transportation. This gas presents a particularly dangerous potential due to its flammability properties. The combustion reaction of this gas mixed with air or oxygen is strongly exothermic, resulting in a rapid increase in temperatures and pressures developed. When these overpressures become too great to be supported by the vessels or enclosures where the combustion reaction takes place, the walls of the storage/transport vessels suffer ruptures, thus leading to serious accidents. Hydrogen explosions occur when three conditions are met at the same time: a sufficient concentration of hydrogen, a sufficient concentration of oxygen and an effective source of initiation of the explosive mixture (open flame, electric spark, etc.). To prevent this type of events, it is necessary to know how to handle, process and store this gas, to ensure the implementation and compliance with security protocols. This may include using explosion-proof equipment and ventilation systems and monitoring the presence of hydrogen gas in the environment. Hydrogen explosion research has been ongoing for many years and focuses on understanding the fundamental mechanisms behind the explosive behavior of hydrogen gas, as well as developing new strategies to prevent or mitigate hydrogen explosions. The present work supports research in this field, studying the possibilities of building stands where the explosions of air-hydrogen mixtures can be experimented in a controlled manner. The design of the stand is carried out in the virtual environment, through computer simulations of hydrogen explosions in different enclosures and interconnected spaces. The results of these simulations concern the behavior of the flame front, the maximum values of temperatures and overpressures generated by the explosions, as well as the locations where these values were recorded, at different hydrogen concentrations. The usefulness of the resulting data can be found in the a priori approach of safe construction methods of stands for conducting physical experiments on hydrogen explosions, stands that are extremely necessary in the process of researching ways to prevent phenomena of this type.
APA, Harvard, Vancouver, ISO, and other styles
3

Leishear, Robert A. "Fluid Transients Ignited the San Bruno Gas Pipeline Explosions." In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-109226.

Full text
Abstract:
Abstract Gas pipeline explosions and deaths occur year after year, and a primary cause for those explosions is now known. For decades, these explosions were attributed to corrosion and other incidental causes, but the extent of pipeline damages cannot be explained by corrosion. Pipelines are obliterated by large explosions, and pipelines explode from the inside to the outside. Pipes cannot explode in this manner unless air is present inside the pipes. To date, all previous investigations assumed that the gas industry prevents all air from entering pipelines, and this question about air was not raised in previous government investigations. Accordingly, explosion causes were not understood. Acknowledging that air is inside pipelines at the time of explosions, the ignition cause can be explained. When fluid transients occur in pipelines, flammable gases compress and heat to explode at the autoignition temperatures of the gases. In natural gas piping, explosions occur at system low points where air collects, since methane (natural gas) is lighter than air; and in propane, ethane, or butane systems, explosions occur at system high points, since these gases are heavier than air. In the absence of this Leishear Explosion Theory, the fact that pipes explode outward cannot be explained. An incorrect claim could be made that the stored energy of methane is so great that the pipes explode, but calculations show that this energy is inadequate to create the large craters created during pipeline explosions. In other words, air is required for internal gas pipeline explosions, fluid transients cause pressures to blow up pipelines, these transients may be caused by sudden valve slams, where slam valves are used to control gas flow in pipelines. To understand the fundamental physics of pipeline explosions, a San Bruno natural gas pipeline explosion will be evaluated as an example of this explosion theory.
APA, Harvard, Vancouver, ISO, and other styles
4

Bakke, Jan Roar, and Per Erik Skogrand. "Explosion Relief Panels and Their Effect on Gas Explosion Overpressure." In ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/omae2004-51005.

Full text
Abstract:
Explosion relief panels are commonly used on offshore installations to improve working environment and at the same time allow venting of gas explosions to control explosion risk. This is very important particularly in arctic regions where requirements for acceptable working environment may easily conflict with requirements for low explosion risk. Explosion relief panels have been tested in low congestion, medium scale explosion tests, and based on such tests it has been concluded that replacing solid walls with relief panels reduces explosion loads significantly. It is not clear whether this conclusion can be extended to real offshore modules, which are significantly larger and more congested. In the present paper the gas explosion simulator FLACS is therefore used to investigate the effect of different wall configurations (e.g. open, solid or relief panels) on explosion overpressure in a large, highly congested offshore module. The objective is to assess whether in reality similar benefits from using relief panels as seen in the experiments can be expected.
APA, Harvard, Vancouver, ISO, and other styles
5

Prodan, Maria, Andrei Szollosi-Mota, Irina Nalboc, Sonia Suvar, and Emilian Ghicioi. "EXPLOSION LIMITS EXPERIMENTAL DETERMINATION FOR GASOLINE, DIESEL FUEL AND ACETONE VAPORS." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s03.40.

Full text
Abstract:
In chemical processes, fire and explosion prevention is crucial, especially when flammable liquids or gases are present because they can create explosive atmospheres of gas or vapour in the air. These include oil-based products and organic solvents. It is essential to understand these compounds' characteristics as well as the size of an explosive atmosphere. Explosion hazards as well as the locations where explosive atmospheres are present can be identified and assessed. Safety data sheets also contains crucial information on explosive limits. It is important to establish by physical determination the explosion properties of process chemicals in order to provide recommendations for explosion protection and explosion prevention. The purpose of this research was to identify the experimental explosion properties for a few chosen items, such as LEL and minimum ignition temperature. The studies were completed in line with EN 1839 by method B and IEC 60079-20-1. The experiments were carried out in a 5 dm3 internal volume, closed, spherical vessel and in standard oven for minimum ignition temperature.
APA, Harvard, Vancouver, ISO, and other styles
6

Helegda, Matous, Iris Helegda, Jan Skrinsky, Katerina Kubricka, and Jiri Pokorny. "NEW ASPECTS OF EXPLOSIVE CHARACTERISTICS OF HYBRID MIXTURES OF DUST/GAS DISPERSIONS." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023v/4.2/s17.55.

Full text
Abstract:
A small amount of flammable gas mixed with dust can cause a large explosion with serious consequences. In this study, explosions of hybrid mixtures will be performed in an explosion chamber with a volume of 0.02 m3 and 1.00 m3. Research into testing the explosion characteristics of hybrid mixtures is usually conducted under standard conditions. Testing the explosion characteristics of hybrid mixtures at higher initial temperatures has already been presented in several earlier studies. Hybrid mixtures are created and occur, for example, in biomass gasification technology, which is located at VSB-TU Ostrava, where synthetic gas is the output of the entire technology. In technology, the hybrid mixture can be created in a �hot filter�, where a working temperature of 450 �C is required. This technology is not unique, similar gasification technologies are found in other academic or industrial fields in the world. However, they may differ slightly from each other. Given that there is currently a noticeable shift away from fossil fuels and the search for different alternatives, it is possible that these gasification technologies will increase in the world. With this, the risks resulting from the use of these technologies will also increase, i.e. the risks of fires and explosions (and not only from potential hybrid mixtures created in these technologies). In this study, the effect of further increasing the initial temperatures will be presented. It was found that as the temperature increases, the values of the explosion characteristics decrease. This has a major impact on the determination of explosion characteristics in industrial plants (e.g. in the food industry or biomass gasification technologies) where non-standard conditions occur.
APA, Harvard, Vancouver, ISO, and other styles
7

Golub, Eugene, Joshua Greenfeld, Robert Dresnack, F. H. Griffis, and Louis Pignataro. "Safe Separation Distances: Natural Gas Transmission Pipeline Incidents." In 1998 2nd International Pipeline Conference. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/ipc1998-2004.

Full text
Abstract:
The paper discusses a methodology to define safety implications of and damages that have resulted from gas transmission pipeline failures where fire and/or explosions have occurred. The records of the National Transportation Safety Board were examined to determine the area that was burned and/or impacted by a resulting explosion. The impacted area was then correlated with the physical parameters of the pipeline to see if a relationship existed. The parameters considered included the pipe diameter, the operating pressure at the point of release, the volume of material released, the maximum radius burned by the fire, the height of the flame and the maximum distance effected by the resulting explosion (if one occurred). Two strong correlations were found between the operating pressure in the pipe and the area burned in the incident for the two cases, with and without an explosion taking place. These results may be used to define a safe separation distance for a natural gas transmission pipeline.
APA, Harvard, Vancouver, ISO, and other styles
8

Vinnem, Jan Erik. "Perspective on Gas Explosions Risk Offshore; Low historic Gas Explosion Frequencies revealed in North Sea." In SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, 2000. http://dx.doi.org/10.2118/61501-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, Daniel N., and Luc Bauwens. "Detonation Arrestors: Evaluating Explosions due to Self-Reignition." In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1885.

Full text
Abstract:
Detonation arrestors are a key safety component in several gas handling facilities. The arrestor should be able to handle the largest explosion expected in the system. Using numerical simulations, we have studied detonations in conditions characteristic of near-limit mixtures where the wave will fail. When subjected to a one- or two-dimensional perturbation, the detonation initially fails, splitting up into a weak shock, surface discontinuity, and a rarefaction wave. Eventually, the detonation is reignited by a powerful explosion, much stronger than the steady C-J wave, that originates behind the leading shock. The explosions occur as a result of slow chemical heating in a pocket of fluid. In two-dimensions the explosions may occur earlier because the shock structure causes uneven distribution of temperature. The reignition process was analyzed with a one-dimensional model, and the results suggest a simple rule that may be used to evaluate the time and distances for an explosion to occur.
APA, Harvard, Vancouver, ISO, and other styles
10

Goldfarb, Igor, Vladimir Goldshtein, Grigory Kuzmenko, and J. Barry Greenberg. "Monodisperse Spray Effects on Thermal Explosion in a Gas." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0882.

Full text
Abstract:
Abstract The effect of a flammable spray on the thermal explosion in a combustible gas mixture is investigated based on an original physical model. For qualitative analysis of the system an advanced geometric asymptotic technique (integral manifold method) has been used. Possible types of dynamical behavior of the system are classified and parametric regions of their existence are determined analytically. It turns out that there are five main dynamical regimes of the system: slow regimes, conventional fast explosive regimes, thermal explosion with freeze delay and two different types of thermal explosion with delay (the concentration of the combustible gas decreases or increases). Peculiarities of these dynamical regimes are investigated and their dependence on physical system parameters are analyzed. Upper and lower bound estimates for the delay time are derived analitically and compared with results of numerical simulations. The comparison demonstrates satisfactory agreement.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Explosion de gaz"

1

Bjerketvedt, D., and E. Nornes. Numerical simulation of hypothetical gas explosions in a process unit: Effect of vapor barriers on explosion pressure. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/6890117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Esparza and Westine. L51482 Well Casing Response to Buried Explosive Detonations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 1985. http://dx.doi.org/10.55274/r0010272.

Full text
Abstract:
Occasionally, buried explosives are used within proximity of producing oil and gas wells which increases the stresses in the casing near the explosion which may result in failure of the well. A procedure was needed for predicting the maximum stresses in producing oil and gas wells, specifically the well casing, induced by nearby, buried, explosive detonations. An extensive experimental and analytical program were funded and performed over a six (6) year period 1975-1981. The program was divided into two (2) parts: In the first part, similitude theory, empirical analyses and test data were used to derive equations for estimating maximum ground displacement and particle velocity. The ground motions provided the forcing function imparted to a buried pipeline. In the second part, similitude theory, conservation of mass and momentum, and approximate energy methods were used to derive functional relationships for the maximum pipe strains and stresses. Experimental data from more than sixty (60) field tests ere used to develop equations for estimating maximum pipe stresses induced by point and parallel line explosive sources buried in homogeneous soil media. The pipe stress and ground motion data from these experiments were used to develop an equation for computing an effective standoff distance so that the point source soil equations could be used to approximate the casing response. The large amount of data used and the wide range of these data make the solutions applicable to most blasting situations near producing oil and gas wells. This report provides comprehensive and detailed information for pipeline as well as oil and gas operators to predict the effect of buried explosives and thus the safety of a well(s) while in-service through proper assessment of stresses and guidelines for the appropriate selection of explosive charges, techniques and methods. This will avoid unexpected damages, operational costs, provide guidance for \operator qualification\" for blasting near in-service wells and minimize liabilities to the operator.
APA, Harvard, Vancouver, ISO, and other styles
3

Cruse, Helen, Timothy Yates, and Muhammad Yazdani. Review of progress of the Iron Mains Risk Reduction Programme (IMRRP) 2013 to 2023. HSE, October 2024. http://dx.doi.org/10.69730/hse.24rr1216.

Full text
Abstract:
Iron mains within the natural gas distribution network are subject to corrosion and brittle failure. These failures give rise to gas escapes and the consequent risk of fire and explosion. To address this issue, the Gas Distribution Network operators (GDNs) are undertaking a 30-year programme of iron mains risk reduction (IMRRP). This technical review provides an independent analysis of the safety benefits realised by the decommissioning programme. The conclusions of this review will be used by HSE to inform the next iteration of the Iron Mains Enforcement Policy for the period 2026 to 2032.
APA, Harvard, Vancouver, ISO, and other styles
4

McKinnon, Mark, Sean DeCrane, and Steve Kerber. Four Firefighters Injured in Lithium-Ion Battery Energy Storage System Explosion -- Arizona. UL Firefighter Safety Research Institute, July 2020. http://dx.doi.org/10.54206/102376/tehs4612.

Full text
Abstract:
On April 19, 2019, one male career Fire Captain, one male career Fire Engineer, and two male career Firefighters received serious injuries as a result of cascading thermal runaway within a 2.16 MWh lithium-ion battery energy storage system (ESS) that led to a deflagration event. The smoke detector in the ESS signaled an alarm condition at approximately 16:55 hours and discharged a total flooding clean agent suppressant (Novec 1230). The injured firefighters were members of a hazardous materials (HAZMAT) team that arrived on the scene at approximately 18:28 hours. The HAZMAT team noted low-lying white clouds of a gas/vapor mixture issuing from the structure and nearby components and drifting through the desert. The team defined a hot zone and made several entries into the hot zone to conduct 360-degree size-ups around the ESS using multi-gas meters, colorimetric tubes, and thermal imaging cameras (TICs). The team detected dangerously elevated levels of hydrogen cyanide (HCN) and carbon monoxide (CO) during each entry. The team continued to monitor the ESS and noted the white gas/vapor mixture stopped flowing out of the container at approximately 19:50 hours. The HAZMAT leadership developed an incident action plan with input from a group of senior fire officers and information about the ESS provided by representatives from the companies that owned, designed, and maintained the ESS. The HAZMAT team made a final entry into the hot zone and found that HCN and CO concentrations in the vicinity of the ESS were below an acceptable threshold. In following with the incident action plan, the team opened the door to the ESS at approximately 20:01 hours. A deflagration event was observed by the firefighters outside the hot zone at approximately 20:04 hours. All HAZMAT team members received serious injuries in the deflagration and were quickly transported to nearby hospitals. Note: The lithium-ion battery ESS involved in this incident was commissioned prior to release of a first draft of the current consensus standard on ESS installations, NFPA 855 [1]; the design of the ESS complied with the pertinent codes and standards active at the time of its commissioning.
APA, Harvard, Vancouver, ISO, and other styles
5

PACE, M. E. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/820866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oswald and Smith. L52260 Gap Study and Recommendation - Pipe Response to Buried Explosive Detonations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 2005. http://dx.doi.org/10.55274/r0010252.

Full text
Abstract:
Current methods to assess pipeline response to nearby sub-surface blasting are largely empirical or semiempirical and do not consider increasingly important factors such as non-pristine pipelines, blasting in soil with varying soil and terrain characteristics, or mitigative measures. Also, the accuracy and limits to the applicability of these methods is questionable. Result: A primary task of this project was a literature search to identify all available testing, analysis, and mitigation methods related to blasting near pipelines. Analytical methods to consider cracks and corrosion in non-pristine pipeline are also reviewed in the report. The literature search showed that a significant database of test results of steel pipeline response to blasting in soil is available. A more limited database is available for steel pipeline response to blasting in rock and practically no data is available for non-steel and non-pristine pipeline response to blasting. The available models to predict blasting stresses in pipelines ranged from a semi-empirical method to predict pipeline stress to simple soil peak particle velocity (PPV) limits on ground shock produced at the pipeline location to prevent pipeline damage. Benefit: The literature review covered four main categories: data from blasting near pipelines and earthquakes, methodologies for predicting or controlling pipeline stresses from blasting, information on mitigative measures to reduce pipeline stresses from blasting, and methods to account for the effects of non-pristine pipeline. Procedures to address combined loadings on typical transmission pipelines are also summarized.
APA, Harvard, Vancouver, ISO, and other styles
7

Barowy, Adam, Alex Klieger, Jack Regan, and Mark McKinnon. UL 9540A Installation Level Tests with Outdoor Lithium-ion Energy Storage System Mockups. UL Firefighter Safety Research Institute, April 2021. http://dx.doi.org/10.54206/102376/jemy9731.

Full text
Abstract:
This report covers results of experiments conducted to obtain data on the fire and deflagration hazards from thermal runaway and its propagation through energy storage systems (ESS). The UL 9540A test standard provides a systematic evaluation of thermal runaway and propagation in energy storage system at cell, module, unit, and installation levels. The data from this testing may be used to design fire and explosion protection systems needed for safe siting and installation of ESS. In addition to temperature, pressure, and gas measurement instruments installed inside of the container, fire service portable gas monitors were placed at locations inside and outside the storage container during the experiments to assess their ability to detect products of thermal runaway and inform fire service size-up decisions. Review section 2.2.3 Fire Service Size-up Equipment to learn more. This research demonstrates a clear need for responding firefighters to have early access to data from instrumentation installed within an ESS, particularly gas measurement instrumentation, available through a monitoring panel. Additionally, it highlights the importance of communication between responding firefighters and personnel responsible for management of the ESS, who can aid in complete evaluation of system data to develop a more clear picture of system status and potential hazards.
APA, Harvard, Vancouver, ISO, and other styles
8

Lefrancois, A., R. Lee, and C. Tarver. Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test. Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/896294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salama, Hana, and Emma Bjertén-Günther. Women Managing Weapons: Perspectives for Increasing Women’s Participation in Weapons and Ammunition Management. United Nations Institute for Disarmament Research, July 2021. http://dx.doi.org/10.37559/gen/2021/02.

Full text
Abstract:
UNIDIR’s new study Women Managing Weapons: Perspectives for Increasing Women’s Participation in Weapons and Ammunition Management seeks to fill this gap by exploring women’s participation in the field of weapons and ammunition management, particularly their lived experiences in WAM technical roles, such as stockpile managers, armourers, ammunition and technical experts, explosive ordnance disposal specialist. The purpose is to unpack the challenges faced by these women and identify good practices for further inclusion of women in WAM. It also provides ideas for states, international organizations and disarmament stakeholders to improve gender diversity in implementation of arms control commitments, such as the UN PoA and its relevant instruments.
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, J. An Improved Analytical Approach to Determine the Explosive Effects of Flammable Gas-Air Mixtures. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/888583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography