Contents
Academic literature on the topic 'Explainable recommendation systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Explainable recommendation systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Explainable recommendation systems"
Pasrija, Vatesh, and Supriya Pasrija. "Demystifying Recommendations: Transparency and Explainability in Recommendation Systems." International Journal for Research in Applied Science and Engineering Technology 12, no. 2 (2024): 1376–83. http://dx.doi.org/10.22214/ijraset.2024.58541.
Full textLai, Kai-Huang, Zhe-Rui Yang, Pei-Yuan Lai, Chang-Dong Wang, Mohsen Guizani, and Min Chen. "Knowledge-Aware Explainable Reciprocal Recommendation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8636–44. http://dx.doi.org/10.1609/aaai.v38i8.28708.
Full textLeal, Fátima, Bruno Veloso, Benedita Malheiro, Juan C. Burguillo, Adriana E. Chis, and Horacio González-Vélez. "Stream-based explainable recommendations via blockchain profiling." Integrated Computer-Aided Engineering 29, no. 1 (2021): 105–21. http://dx.doi.org/10.3233/ica-210668.
Full textYang, Mengyuan, Mengying Zhu, Yan Wang, et al. "Fine-Tuning Large Language Model Based Explainable Recommendation with Explainable Quality Reward." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 9250–59. http://dx.doi.org/10.1609/aaai.v38i8.28777.
Full textAi, Qingyao, Vahid Azizi, Xu Chen, and Yongfeng Zhang. "Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation." Algorithms 11, no. 9 (2018): 137. http://dx.doi.org/10.3390/a11090137.
Full textCho, Gyungah, Pyoung-seop Shim, and Jaekwang Kim. "Explainable B2B Recommender System for Potential Customer Prediction Using KGAT." Electronics 12, no. 17 (2023): 3536. http://dx.doi.org/10.3390/electronics12173536.
Full textWang, Tongxuan, Xiaolong Zheng, Saike He, Zhu Zhang, and Desheng Dash Wu. "Learning user-item paths for explainable recommendation." IFAC-PapersOnLine 53, no. 5 (2020): 436–40. http://dx.doi.org/10.1016/j.ifacol.2021.04.119.
Full textGuesmi, Mouadh, Mohamed Amine Chatti, Shoeb Joarder, et al. "Justification vs. Transparency: Why and How Visual Explanations in a Scientific Literature Recommender System." Information 14, no. 7 (2023): 401. http://dx.doi.org/10.3390/info14070401.
Full textHuang, Xiao, Pengjie Ren, Zhaochun Ren, et al. "Report on the international workshop on natural language processing for recommendations (NLP4REC 2020) workshop held at WSDM 2020." ACM SIGIR Forum 54, no. 1 (2020): 1–5. http://dx.doi.org/10.1145/3451964.3451970.
Full textLi, Lei, Yongfeng Zhang, and Li Chen. "Personalized Prompt Learning for Explainable Recommendation." ACM Transactions on Information Systems 41, no. 4 (2023): 1–26. http://dx.doi.org/10.1145/3580488.
Full text