Dissertations / Theses on the topic 'Exoskeleton design'

To see the other types of publications on this topic, follow the link: Exoskeleton design.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Exoskeleton design.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Gün, Volkan Keçeci Emin Faruk. "Wearable Exoskeleton Robot Design/." [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezlerengelli/master/makinamuh/T000616.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tims, Jacob (Jacob F. ). "Dynamic exoskeleton : mechanical design of a human exoskeleton to enhance maximum dynamic performance." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105664.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 12).
An exoskeleton was designed with the primary goal of enhancing the maximum dynamic capability of a human, thus allowing the user to run faster, jump higher, or traverse challenging terrain. This paper presents the mechanical design of an alpha prototype with a focus on increasing the maximum vertical jump height of a human. High torque motors were constrained to the body with two degrees of freedom using carbon fiber, aluminum, and other lightweight materials. The exoskeleton actuates the hip joint by comfortably providing force to three points on the body. Human testing showed a maximum increase in jump height of 13%.
by Jacob Tims.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
3

Farid, Michael S. "Dynamic exoskeleton : design and analysis of a human exoskeleton to enhance maximum dynamic performance." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103463.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 40-41).
Most existing research in powered human exoskeletons aims to increase load bearing capability or reduce the metabolic cost of walking. Current exoskeletons are typically bulky and heavy and thus impede the motion of the user. Therefore, they are not suitable for highly dynamic motions. This thesis describes the first attempt to develop a powered exoskeleton suit that improves the maximum dynamic capability of a human. This Dynamic Exoskeleton is intended to enable to the user to run faster, jump higher, or traverse challenging terrain. This thesis presents a study on improving human vertical jump height using a powered exoskeleton. A simple human jump model is created, and dynamic simulation is utilized to determine the effectiveness of actuating the human hip joint for improving vertical jump height. A control system is developed and a series of human experiments with three test subjects are conducted. The test subjects improved their vertical jump heights by 13%, 6% and 5% respectively. The general challenges of actuating human joints and interfacing with the human body are presented.
by Michael S. Farid.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
4

Martínez, Conde Sergio, and Luque Estela Pérez. "Exoskeleton for hand rehabilitation." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15820.

Full text
Abstract:
This document presents the development of a first proposal prototype of a rehabilitation exoskeleton hand. The idea was to create a lighter, less complex and cheaper exoskeleton than the existing models in the market but efficient enough to carry out rehabilitation therapies.The methodology implemented consists of an initial literature review followed by data collection resulting in a pre-design in two dimensions using two different software packages, MUMSA and WinmecC. First, MUMSA provides the parameters data of the movement of the hand to be done accurately. With these parameters, the mechanisms of each finger are designed using WinmecC. Once the errors were solved and the mechanism was achieved, the 3D model was designed.The final result is presented in two printed 3D models with different materials. The models perform a great accurate level on the motion replica of the fingers by using rotary servos. The properties of the model can change depending on the used material. ABS material gives a flexible prototype, and PLA material does not achieve it. The use of distinct methods to print has a high importance on the difficulties of development throughout the entire process of production. Despite found difficulties in the production, the model was printed successfully, obtaining a compact, strong, lightweight and eco-friendly with the environment prototype.
APA, Harvard, Vancouver, ISO, and other styles
5

LaFay, Eric Bryan. "Mechanical System Design of a Haptic Cobot Exoskeleton." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181064920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hoyos, Rodriguez David. "Realistic Computer aided design : model of an exoskeleton." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17558.

Full text
Abstract:
The musculoskeletal disorders have significant health care, social and economic consequences in the factories nowadays. One of the most promising possible solutions is the use of exoskeletons in the workstations. Exoskeletons are assistive wearable robotics connected to the body of a person, which aims to give mechanical power or mobility to the user (Wang, Ikuma, Hondzinski, & de Queiroz, 2017). The objective of this project is to create a realistic CAD model of a passive exoskeleton which will be used in future research to analyse the behaviour of the workers in a virtual environment with and without the exoskeleton. This model will be a virtual representation of the exoskeleton EKSOVest which has been designed to support these workers who have to realize overhead tasks. This virtual representation will be carried out in PTC CREO and exported to IPS IMMA in order to check the viability of this model. To achieve a realistic model, the exoskeleton should have the same characteristics than the real exoskeleton. The objectives of this project will be defined for these characteristics, which are part creation, mechanisms, forces simulation, and parametrization. The parts and the mechanisms will be created and defined in PTC CREO with the same dimensions and behaviour as the real exoskeleton. Furthermore, this report will be focussed mainly in force simulation and the parametrization. The forces of the EKSOVest are generated by two different spring and by a high-pressure spring. To simulate these forces, the equation of these springs will be obtained and introduced in PTC CREO. These equations will be obtained through the regression of a set of points, which will be obtained from the real exoskeleton using a dynamometer. The parametrization will be carried out with the objective to make the virtual model adaptable for every type of mannequins. This parametrization will modify the length of the exoskeleton’s spine bar and the distance between the mechanical arms. These distances will be adapted according to the mannequin’s measures which will be introduced by the user. The measures that have to be introduced by the user are shoulder height, liac spine height, and chest width. In conclusion, it can be said that the regression of the springs obtained are an accurate result which can imitate quite well the forces of this exoskeleton. Furthermore, the results of the parametrization allow the exoskeleton adaptable to any type of dimensions that the mannequin could have. The final model obtained has been exported to IPS IMMA and implemented in a mannequin.
APA, Harvard, Vancouver, ISO, and other styles
7

Refour, Eric Montez. "Design and Integration of a Form-Fitting General Purpose Robotic Hand Exoskeleton." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/89647.

Full text
Abstract:
This thesis explores the field of robotic hand exoskeletons and their applications. These systems have emerged in popularity over the years, due to their potentials to advance the medical field as assistive and rehabilitation devices, and the field of virtual reality as haptic gloves. Although much progress has been made, hand exoskeletons are faced with several design challenges that are hard to overcome without having some tradeoffs. These challenges include: (1) the size and weight of the system, which can affect both the comfort of wearing it and its portability, (2) the ability to impose natural joint angle relationships among the user's fingers and thumb during grasping motions, (3) safety in terms of limiting the range of motions produce by the system to that of the natural human hand and ensuring the mechanical design does not cause harm or injury to the user during usage, (4) designing a device that is user friendly to use, and (5) the ability to effectively perform grasping motions and provide sensory feedback for the system to be applicable in various application fields. In order to address these common issues of today's state-of-the-art hand exoskeleton systems, this thesis proposes a mechanism design for a novel hand exoskeleton and presents the integration of several prototypes. The proposed hand exoskeleton is designed to assist the user with grasping motions while maintaining a natural coupling relationship among the finger and thumb joints to resemble that of a normal human hand. The mechanism offers the advantage of being small-size and lightweight, making it ideal for prolong usage. Several applications are discussed to highlight the proposed hand exoskeleton functionalities in processing sensory information, such as position and interactive forces.
MS
APA, Harvard, Vancouver, ISO, and other styles
8

Beauchamp, Sarah Emily. "Design and Evaluation of a Flexible Exoskeleton for Lifting." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/95965.

Full text
Abstract:
A flexible and passive exoskeleton is presented in this paper. The exoskeleton uses carbon fiber beams to provide an energetic return to its wearer and relieve their lower back muscles. The design of the exoskeleton and potential elastic mechanisms are described, and the results of biomechanical testing are given. The exoskeleton decreased the erector spinae muscle activity by 21-39.7%.
MS
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Manoj Kumar. "Design and Fabrication of Intention Based Upper-Limb Exoskeleton." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1462290841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weaver, Valerie A. "DESIGN AND FABRICATION OF A HYBRIDNEUROPROSTHETIC EXOSKELETON FOR GAITRESTORATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1495230976762559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Tabti, Nahla. "Contribution to the design of the scalable exoskeleton SOL3." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG007.

Full text
Abstract:
Les maladies qui affectent la fonction motrice et neuronale sont appelées maladies neuromusculaires. Ils sont de nature dégénérative, ce qui signifie qu'ils ont tendance à s'aggraver avec le temps. Ces dernières années, grâce aux récentes percées dans leur technologie les exosquelettes sont utilisés pour aider les patients atteints de maladies neuromusculaires pour leur mobilité. Par conséquent, les exosquelettes apparaissent comme une solution idéale pour ceux qui souhaitent maintenir leur mobilité tout en étant en position verticale. Il a été observé que la plupart des dispositifs n'étaient pas adaptables aux besoins des patients atteints de maladies neuromusculaires. Un exosquelette de membre inférieur, SOL3, est présenté ainsi que sa réalisation et son évaluation. Une attention particulière est portée à l'évolutivité et à l'adaptabilité de l'actionneur et de la structure de l'exosquelette. Bien que l'objectif principal de la conception soit d'assurer l'évolutivité, certaines directives de conception ont également été prises en compte. Il s'agit principalement de la résolution du problème de compatibilité cinématique et des éventuels désalignements pouvant survenir lors de la jonction de chaînes cinématiques deux par deux
Diseases that affect motor and neuronal function are called neuromuscular diseases. They are degenerative in nature, which means they tend to get worse over time. In recent years, thanks to recent breakthroughs in their technology exoskeletons are being used to help patients with neuromuscular diseases with their mobility. Therefore, exoskeletons appear as an ideal solution for those who wish to maintain their mobility while being in an upright position. It was observed that most of the devices were not adaptable to the needs of patients with neuromuscular disesases. A lower limb exoskeleton, SOL3, is presented along with its construction and evaluation. Particular attention is paid to the scalability and adaptability of the actuator and the structure of the exoskeleton. While the primary goal of the design is to ensure scalability, some design guidelines have also been considered. This mainly concerns the resolution of the kinematic compatibility problem and the possible misalignments that may occur when joining kinematic chains two by two
APA, Harvard, Vancouver, ISO, and other styles
12

Olivoni, Enea. "Design and optimisation of a reconfigurable exoskeleton for ankle rehabilitation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21098/.

Full text
Abstract:
The EPSRC (Engineering and Physical Sciences Research Council) decided to fund a project which aims to deliver innovative rehabilitation through an exoskeleton which is modular and reconfigurable, to meet individual needs and have the required intelligence to monitor recovery, personalise treatments and deliver effective rehabilitation in stroke patients' own homes. The work of thesis has been carried out at King’s College in London, where a team worked on the different parts which make up the exoskeleton, namely hip, knee and ankle. The device that models the human ankle is the topic of this thesis, the content of which can be summarized as follows. After an introduction, in Chapter 2 a novel 2-UPS-UPRU/S mechanism (where P, R, U, S stand for prismatic, revolute, universal and spherical joint, respectively) which models the human ankle as a spherical joint, is introduced. This device is proposed to cover those rehabilitation tasks which see the patient as sitting or lying down. The direct and inverse kinematic problems are solved, and the singularity analysis is carried out. Furthermore, the calculation of the mechanism stiffness matrix via screw theory is presented. In Chapter 3, the requirements for walking are highlighted. This lays the groundwork to introduce the reconfiguration process described later in this chapter, which enable the transformation of the 2-UPS-UPRU/S into the UPS-UPU/S mechanism. This latter is intended for weight bearing tasks, including walking. Then, the CAD model of both devices which consider problems such as interference between elements and joint angle limitations is presented. The mobility analysis of the UPS-UPU/S device will be addressed by means of screw theory in Chapter 4. This part also, deals with the kinematic, singularity and stiffness analyses of the mechanism. In each chapter, calculations have been carried out using MATLAB software. Conclusions and future developments are covered in Chapter 5.
APA, Harvard, Vancouver, ISO, and other styles
13

Leibowitz, Dalia. "Design and testing of a flexible exoskeleton-to-shoe interface." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105692.

Full text
Abstract:
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 40).
A lightweight minimalist lower-limb exoskeleton has been designed that reduces the metabolic cost of walking. Currently, this exoskeleton must be permanently attached to a shoe; holes are drilled into each new shoe used, a practice that is neither flexible nor cost-effective. A new attachment system is proposed to temporarily but securely connect the exoskeleton to shoes of various sizes. This exoskeleton-to-shoe interface is lightweight, adjustable for various shoe sizes, and easy to attach and remove. This interface is meant to increase the testing flexibility and commercial potential of the exoskeleton. After the interface was designed and built, the stiffness of the interface was measured and compared to the stiffness of the original rigid attachment. The stiffness was calculated using exoskeleton torque and the corresponding angle of attachment. Torque was calculated based on force applied by the exoskeleton, and the time-varying angle was found using motion capture. The results of these measurements suggest that at the tested frequencies of 0.5, 1, and 2 Hz the stiffness of the exoskeleton-to-shoe interface, which ranged from 8.082 Nm/° to 16.94 Nm/°, is greater than the stiffness of the control, which ranged from 6.143 Nm/° to 6.957 Nm/°. At all tested frequencies, the interface stiffness remained equal to or greater than the natural ankle stiffness during level ground walking. Since the interface stiffness is greater than the natural ankle stiffness, this flexible interface has acceptable stiffness. A flexible, lightweight, and size-variable exoskeleton-to-shoe interface with higher than natural ankle stiffness has the potential to be useful in both future research and eventual commercialization of the exoskeleton.
by Dalia Leibowitz.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
14

Kuan, Jiun-Yih. "A leg exoskeleton simulator for design, sensing and control development." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115717.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 137-143).
Leg exoskeletons have been developed in an effort to augment human locomotion for over a century. However, only two portable leg exoskeletal devices have shown a significant decrease in walking metabolism [35, 11], not to mention, no device that has shown effective assistance and biomimetic behavior across different walking speeds and terrains. This thesis aims to build a Leg Exoskeleton Simulator to effectively search the space of potential prosthetic and orthotic design, control, and sensing strategies so as to find the best means to improve human locomotion through wearable electromechanical technology and modern bionics, enabling rapid advancement of the human-machine interface. This thesis presents the MIT Exoskeleton Simulator, which is a modular tethered system that includes cable-drive mechanisms along with off-board power, actuation, control hardware, and wearable end-effector modules. In order to effectively transmit force to a wearable end-effector module, high-performance cable-drive modules with the Rolling Cable Transmission for both unidirectional actuation and bidirectional actuation were developed. A new Adaptive Coupling Joint design principle was proposed for designing a simple mechanical interface that can transmit pure torque from an input actuation source to any biological joint without altering the biological joint motions. The Simulator has been controlled with a bio-inspired control based controller that emulates the behavior of human morphology and neural control for the non-amputee participants. In this thesis, I tried to provide a base of knowledge regarding effective design, control, and sensing strategies for effective human augmentation. In the near future, more criteria can be further established for building effective leg exoskeletons that will improve the ambulatory speed, metabolic economy, and stability of walking humans. The Simulator could potentially enhance the ambulation of able-bodied persons or individuals with movement pathology, as well as providing the treatment or relief of gait dysfunction resulting from movement pathology, or restoration of age-related reduced locomotory function.
by Jiun-Yih Kuan.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
15

Souza, Rafael Sanchez. "Design and prototyping of a development platform for exoskeleton research." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-26022018-141504/.

Full text
Abstract:
Human machine interface has been a growing field of scientific research for the last years. Conventional robots have been conceived as rigid metallic structures and, when metal meets human tissue, it is necessary to break the mindset in order to achieve better interaction. Exoskeletons, often called wearable robots, shares the same challenges with applications ranging from industry, to military, medicine and entertainment. This work introduces a systematic design of a development platform for exoskeleton research supported by Requirement Engineering and implemented through prototyping. The dynamics of the human joint and the robotic joint are modelled with different couplings between them. A Model Reference Adaptive Control is proposed as a solution for exoskeleton control and simulations indicate that it is capable of estimating human joint parameters in real time. The Model Reference controller is implemented, with successful modulation of the robotic joint apparent impedance. From a practical perspective, we present the design and construction of an experimental workbench and the use of an on-line repository for the control software development. The on-line repository results in a viable way for collaborative project management, software versioning and scientific contribution. The experimental workbench which was designed to meet the stakeholders needs - the university, patients and therapists - being of modular application, easy to operate and relatively low cost, can be used to conduct motor control experiments and rehabilitation tasks.
Interface homem e máquina tem sido um campo crescente de pesquisa científica nos últimos anos. Robôs convencionais têm sido concebidos como estruturas metálicas rígidas que, quando em contato com o tecido humano, faz necessário romper com o modo de pensar corrente para atingir uma melhor interação. Exoesqueletos, chamados também de robôs vestíveis, compartilham destes desafios e abrangem aplicação na indústria, militar, medicina e entretenimento. Este trabalho introduz uma abordagem sistemática, baseada em Engenharia de Requisitos e Prototipagem, para projeto de uma plataforma de desenvolvimento para pesquisa em exoesqueletos. A dinâmica da junta humana e da junta robótica são modeladas para diferentes acoplamentos entre si. O Controle Adaptativo por Modelo de Referência é proposto como uma solução para controle de exoesqueletos; simulações indicam ser capaz de estimar os parâmetros da junta humana em tempo real. O controlador por Modelo de Referência foi implementado, tendo sucesso na modulação da impedância aparente da junta robótica. De uma perspectiva mais prática, é apresentado o projeto e construção de uma bancada experimental e o uso de um repositório online para desenvolvimento do software de controle. O repositório on-line viabiliza gestão de projetos colaborativos, focado em versionamento de software e contribuição científica. A bancada experimental foi projetada para atender as necessidades de diferentes stakeholders - a universidade, os pacientes e terapeutas - sendo de aplicação modular, de fácil operação e relativo baixo custo, é capaz de conduzir experimentos de controle motor e tarefas de reabilitação.
APA, Harvard, Vancouver, ISO, and other styles
16

Koendjbiharie, Marlon Winston. "Control system design for exoskeleton of the right lower limb." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/31932.

Full text
Abstract:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2017.
Submitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-11-24T15:54:01Z No. of bitstreams: 1 2017_MarlonWinstonKoendjbiharie.pdf: 4084677 bytes, checksum: 744dd7c81d89333ffa3cd981a9fa93e7 (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-05-21T18:13:34Z (GMT) No. of bitstreams: 1 2017_MarlonWinstonKoendjbiharie.pdf: 4084677 bytes, checksum: 744dd7c81d89333ffa3cd981a9fa93e7 (MD5)
Made available in DSpace on 2018-05-21T18:13:34Z (GMT). No. of bitstreams: 1 2017_MarlonWinstonKoendjbiharie.pdf: 4084677 bytes, checksum: 744dd7c81d89333ffa3cd981a9fa93e7 (MD5) Previous issue date: 2018-05-21
Nesta pesquisa o modelo de um exoesqueleto do membro inferior direita para melhorar a mobilidade do usuário e seu sistema de controle foram desenvolvidos. O projeto físico do modelo do exoesqueleto consiste em três partes principais: um quadril e a parte superior e inferior da perna conectados um com o outro por juntas revolutas. Cada uma das juntas é atuado por um motor Brushless DC (BLDC) com caixa de redução para aumentar torque. Os motores a serem usados na construção possuem sensores de velocidade e de posição para fornecer os dados necessários para o sistema de controle. Solidworks Computer Aided Design (CAD) software é usado para desenvolver o modelo do exoesqueleto, que é salvo em formato extensible markup language (XML) para depois ser importado em Simmechanics, permitindo a integração de modelos de corpos físicos com componentes de Simulink. A cinemática inversa do exoesqueleto é desenvolvido e projetado em Very high speed integrated circuit Hardware Description Language (VHDL) usando aritmética em ponto flutuante para ser executado a partir de um dispositivo Field Programmable Gate Array (FPGA). Quatro representações diferentes do projeto de hardware do modelo cinematico do exoesqueleto foram desenvolvidos fazendo análise de erro com Mean Square Error (MSE) e Average Relative Error (ARE). Análise de trade-off de desempenho e área em FPGA é feito. A estratégia de controle Proportional-Integrative-Derivative (PID) é escolhido para desenvolver o sistema de controle do exoesqueleto por ser relativamente simples e eficiente para desenvolver e por ser amplamente usado em muitas áreas de aplicação. Duas estratégias de sistemas de controle combinado de posiçaõ e velocidade são desenvolvidos e comparados um com o outro. Cada sistema de controle consiste em dois controladores de velocidade e dois de posição. Os parâmetros PID são calculados usando os métodos de sintonização Ziegler-Nichols e Particle Swarm Optimization (PSO). PSO é um método de sintonização relativamente simples porém eficiente que é aplicado em muitos problemas de otimização. PSO é baseado no comportamento supostamente inteligente de cardumes de peixes e bandos de aves em procura de alimento. O algoritmo, junto com o método Ziegler-Nichols, é usado para achar parâmetros PID apropriados para os blocos de controle nas duas estratégias te controle desenvolvidos. A resposta do sistema de controle é avaliada, analisando a resposta a um step input. Simulação da marcha humana é também feito nos dois modelos de sistema de controle do exoesqueleto fornecendo dados de marcha humana ao modelo e analisando visualmente os movimentos do exoesqueleto em Simulink. Os dados para simulação da marcha humana são extraídos de uma base de dados existente e adaptados para fazer simulações nos modelos de sistema de controle do exoesqueleto.
In this research a model of an exoskeleton of the right lower limb for user mobility enhancement and its control system are designed. The exoskeleton design consists of three major parts: a hip, an upper leg and a lower leg part, connected to one another with revolute joints. The joints will each be actuated by Brushless DC (BLDC) Motors equipped with gearboxes to increase torque. The motors are also equipped with velocity and position sensors which provide the necessary data for the designed control systems. Solidworks Computer Aided Design (CAD) software is used to develop a model of the exoskeleton which is then exported in extensible markup language (XML) format to be imported in Simmechanics, enabling the integration of physical body components with Simulink components. The inverse kinematics of the exoskeleton model is calculated and designed in Very high speed integrated circuit Hardware Description Language (VHDL) using floating-point numbers, to be executed from a Field Programmable Gate Array (FPGA) Device. Four different bit width representations of the hardware design of the kinematics model of the exoskeleton are developed, performing error analysis with the Mean Square Error (MSE) and the Average Relative Error (ARE) approaches. Trade-off analysis is then performed against performance and area on FPGA. The Proportional-Integrative-Derivative (PID) control strategy is chosen to develop the control system for the exoskeleton for its relatively simple design and proven efficient implementation in a very broad range of real life application areas. Two control system strategies are developed and compared to one another. Each control system design is comprised of two velocity- and two position controllers. PID parameters are calculated using the Ziegler-Nichols method and Particle Swarm Optimization (PSO). PSO is a relatively simple yet powerful optimization method that is applied in many optimization problem areas. It is based on the seemingly intelligent behaviour of fish schools and bird flocks in search of food. The algorithm, alongside the Ziegler-Nichols method, is used to find suitable PID parameters for control system blocks in the two designs. The system response of the control systems is evaluated analyzing step response. Human gait simulation is also performed on the developed exoskeleton control systems by observing the exoskeleton model movements in Simulink. The gait simulation data is extracted from a human gait database and adapted to be fed as input to the exoskeleton control system models.
APA, Harvard, Vancouver, ISO, and other styles
17

Nandor, Mark J. "DESIGN AND FABRICATION OF AN ADVANCED EXOSKELETON FOR GAIT RESTORATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333751142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Firouzy, Sina. "Optimal design of actuation systems for an enhancive robotic exoskeleton." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/20675/.

Full text
Abstract:
Enhancing the physical abilities of the human body is desirable for a number of reasons. These reasons include, but are not limited to, avoiding injury of workers who have to handle heavy loads in situations and environments where it is not possible to use conventional machinery (e.g. forklifts). A potential solution to this problem is the use of robotic exoskeletons to augment the strength and endurance of the human body for load-handling tasks. This study is part of a larger, industry-funded group-research project, done with the aim of developing an enhancive exoskeleton. The needs and target requirements of the final prototype have been determined based on the market-oriented goals of the group project. An energetically autonomous exoskeleton with an acceptably high load-carrying capacity is to be developed, and the key to accomplishing this is the optimal design of the actuation system. The ideal actuation system needs to be strong, but also power-efficient, so that it can be powered by a light-weight, portable power supply. The actuators should also be lightweight, so that the total weight of the exoskeleton is low enough to be safe for the human user. Therefore, this study was done with the aim of developing an optimal design for the actuators to achieve high load-carrying capacity, and low weight and power consumption. To be more specific, the aims of this research included the identification of the degrees of freedom (DOFs) to be actuated, obtaining the torque and power requirements for each actuator, and to design the actuators using the optimal motor size and optimal power transmission mechanism. Since initial investigations suggested the use of electric motors to achieve an untethered design, the baulk of the work done in this study is focused on actuator design using electric motors. Furthermore, the scope of this research is limited to the lower-body DOFs (namely the ankle, knee and hip joints) in the sagittal plane. To address the above-mentioned design problem, dynamic modelling and simulation of the exoskeleton movements were performed to obtain the torque and power requirements at the joint. These requirements, in addition to being used later in a novel optimisation algorithm, were also used as guidelines for a market search on electric motors, which resulted in a list which represents the current state of the art of electric motors. The list of motors was saved as a spreadsheet, in the form of a table containing the technical data which characterise each motor. Similar tables were also created for a number of different types of power transmission mechanisms considered in this study, namely strain gears, chain-and-sprocket mechanisms, and ballscrews. These lists have been used by the optimisation algorithm, which was developed to combine the mathematical models of a motor and a transmission mechanism from the lists, assess the performance of the combination, and repeat this procedure for each and every motor and transmission mechanism in these lists. Thus, through an exhaustive search, the optimum choices for the motors and power transmissions system can be determined for each actuator. Based on the results of the developed optimisation algorithm, a single-joint test prototype was designed, built and used to perform experiments in order to test and validate the reliability of simulations used in the optimisation algorithm. The test results were also used to modify the assumed values of an efficiency parameter within the simulation program. The optimisation algorithm was then refined with the modified parameter value, and the optimal designs of the actuators were obtained for the knee, hip and ankle joints in the sagittal plane. It was also discovered that the most power-efficient motors also yielded the upper bound of the required load-carrying capacity, which is 60 kg. In addition, energy harvesting aspect of such robotic exoskeletons have also been explored.
APA, Harvard, Vancouver, ISO, and other styles
19

Tizi, Giulia. "Kinematic Synergy extraction for the design of an upper limb exoskeleton." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
This thesis aims to establish a procedure for the mechanical design of an upper limb exoskeleton through postural synergy extraction. For this purpose, a biomechanical analysis of the upper limb has been conducted through six selected tasks. Firstly, movements have been captured with Vicon motion capture system and then Inverse kinematic has been executed with OpenSim in order to obtain joint displacements. The principal component analysis (PCA) is chosen to reduce the dimensionality, indicating the relationship between the angular displacements of the target joints.
APA, Harvard, Vancouver, ISO, and other styles
20

Briner, Hazel (Hazel Linn). "Design, prototyping and preliminary testing of an elastic-powered climbing exoskeleton." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69504.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 24).
Human powered elastic mechanisms can be used to reduce work requirements of muscles, by storing and releasing energy to more evenly distribute work load. An exoskeleton was designed to delay human fatigue during rock climbing. This exoskeleton stores energy in the less intensive motion, extension while reaching upwards, and uses the stored energy in the more intensive motion, flexion during upwards ascent. A cuff 3D which will be printed by Objet Geometries Inc. utilizes Arthur Iberall's lines of non-extension to simultaneously maximize rigidity and comfort. Due to the inability of Objet's printed items to withstand the required high forces, a prototype climbing exoskeleton for the arm was fabricated from heat moldable plastic and latex springs. Pilot tests were conducted with the prototype and preliminary results were promising.
by Hazel Briner.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
21

Paar, Maja. "Design of the Trunk and Torso of a Lower-Limb Exoskeleton." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1624988804573986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ball, Stephen Joseph. "Novel robotic mechanisms for upper-limb rehabilitation and assessment." Thesis, Kingston, Ont. : [s.n.], 2008. http://hdl.handle.net/1974/1344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lovrenovic, Zlatko. "Development and Testing of Passive Walking Assistive Exoskeleton with Upward Force Assist." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36947.

Full text
Abstract:
An aging population and rising prevalence in obesity, arthritis and diabetes are resulting in a great number of elders that are suffering from mobility challenges. Walking assist exoskeletons have the potential to help preserve mobility in elders. The most common type of exoskeleton relies on heavily, complex and expensive components to help their user walk effortlessly. Recent research on walking assist exoskeletons has shifted towards the creation of an entirely mechanical system called passive walking assist exoskeleton. This research aims to design, model and test a passive walking assist exoskeleton that reduces the felt weight of the user during gait. The assist is achieved by the action of a seat mechanism which constantly produces an upward force on the pelvis of the user. This thesis details the entire composition and assembly of such device. The proposed device was modelled in order to predict the assistance provided by the seat mechanism when standing and walking with the device. A human-sized prototype was built and tested in order to mechanically validate the proposed design. The test results validated the proposed seat mechanism which produces the desired upward force, but the use of the exoskeleton in its current state hindered the natural gait pattern of the user.
APA, Harvard, Vancouver, ISO, and other styles
24

Cao, Jennifer M. "Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984268/.

Full text
Abstract:
Knee osteoarthritis (KOA) is the primary cause of chronic immobility in populations over the age of 65. It is a joint degenerative disease in which the articular cartilage in the knee joint wears down over time, leading to symptoms of pain, instability, joint stiffness, and misalignment of the lower extremities. Without intervention, these symptoms gradually worsen over time, decreasing the overall knee range of motion (ROM) and ability to walk. Current clinical interventions include offloading braces, which mechanically realign the lower extremities to alleviate the pain experienced in the medial compartment of the knee joint. Though these braces have proven effective in pain management, studies have shown a significant decrease in knee ROM while using the brace. Concurrently, development of active exoskeletons for rehabilitative gait has increased within recent years in efforts to provide patients with a more effective intervention for dealing with KOA. Though some developed exoskeletons are promising in their efficacy of fostering gait therapy, these devices are heavy, tethered, difficult to control, unavailable to patients, or costly due to the number of complicated components used to manufacture the device. However, the idea that an active component can improve gait therapy for patients motivates this study. This study proposes the design of an adjustable lower extremity exoskeleton which features a single linear actuator adapted onto a commercially available offloading brace. This design hopes to provide patients with pain alleviation from the brace, while also actively driving the knee through flexion and extension. The design and execution of this exoskeleton was accomplished by 3D computer simulation, 3D CAD modeling, and rapid prototyping techniques. The exoskeleton features 3D printed, ABS plastic struts and supports to achieve successful adaptation of the linear actuator to the brace and an electromechanical system with a rechargeable operating capacity of 7 hours. Design validation was completed by running preliminary gait trials of neutral gait (without brace or exoskeleton), offloading brace, and exoskeleton to observe changes between the different gait scenarios. Results from this testing on a single subject show that there was an observed, significant decrease in average knee ROM in the offloading brace trials from the neutral trials and an observed, significant increase in average knee ROM in the exoskeleton trials when compared to the brace trials as hypothesized. Further evaluation must be completed on the clinical efficacy of this device with a larger, and clinically relevant sample size to assess knee ROM, pain while using the device, and overall comfort level. Further development of this design could focus on material assessment, cost analysis, and risk mitigation through failure mode analysis.
APA, Harvard, Vancouver, ISO, and other styles
25

Walsh, Conor James. "Biomimetic design for an under-actuated leg exoskeleton for load-carrying augmentation." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35648.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
Includes bibliographical references (leaves 79-81).
Metabolic studies have shown that there is a metabolic cost associated with carrying a load (Griffin et al, 2003). Further studies have shown that by applying forward propulsive forces a person can walk with a reduced metabolic rate (Farley & McMahon, 1992 and Gottschall & Kram, 2003). Previous work on exoskeleton design has not considered the passive dynamics of walking and has focused on fully actuated systems that are inefficient and heavy. In this thesis, an under-actuated exoskeleton is presented that runs parallel to the human leg. The exoskeleton component design is based on the kinematics and kinetics of human walking. The joint components of the exoskeleton in the sagittal plane consist of a force-controllable actuator at the hip, a variable-damper mechanism at the knee and a passive spring at the ankle. A state-machine control strategy is written based on joint angle and ground-exoskeleton force sensing. Positive, non-conservative power is added at the hip during the walking cycle to help propel the mass of the human and payload forward. At the knee, the damper mechanism is turned on at heel strike as the exoskeleton leg is loaded and turned off during terminal stance to allow knee flexion.
(cont.) The spring at the ankle engages in controlled dorsiflexion to store energy that is later released to assist in powered plantarflexion. Kinetic and metabolic data are recorded from human subjects wearing the exoskeleton with a 751b payload. These data are compared to data recorded from subjects walking without the exoskeleton. It is demonstrated that the exoskeleton does transfer loads to the ground with a 90% and higher load transfer depending on the phase of gait. Further, exoskeleton wearers report that the exoskeleton greatly reduces the stress on the shoulders and back. However, although a significant fraction of the payload is transferred through the exoskeleton structure, the exoskeleton is found to increase metabolic economy by 74%. By comparing distinct exoskeleton configurations, the relative effect of each exoskeleton component is determined. Metabolic data show that the variable-damper knee and ankle spring mechanisms increase metabolism by only 32%, whereas a non-actuated exoskeleton (no motor, variable-damper, or spring) increases walking metabolism by 62%. These results highlight the benefit of ankle elastic energy storage and knee variable-damping in exoskeleton design, and further the need for a lighter, more efficient hip actuator.
by Conor James Walsh.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
26

Mazzotti, Claudio <1986&gt. "New Solutions for the Modelling and Design of a Hand Exoskeleton System." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7563/.

Full text
Abstract:
Recently, a prototype of a hand exoskeleton for post-stroke rehabilitation purpose was proposed by the Group of Robotics, Automation and Articular Biomechanics (GRAB) at the Department of Industrial Engineering, University of Bologna. The prototype comprises five planar mechanisms (one per finger) globally actuated by two DC motors. A total of fifteen human-machine connections are needed to fasten the device to the patient hand. The moving link of the thumb mechanism is actuated by a spatial RSSR mechanism whose frame link geometry must be ad hoc regulated every time the device is fitted on the patient hand. With the future goal to build a new version of the hand exoskeleton, in this dissertation three problems arising from this prototype were tackled. The first problem regards the need to lower the number of human-machine connections needed to fasten the exoskeleton to the patient hand. A new finger mechanism that permits to lower the total number of human-machine connections from fifteen to only six was proposed. The second problem regards the synthesis of the RSSR mechanism. A novel synthesis procedure was proposed in order to guarantee the optimal motion and force transmission to the thumb mechanism once the hand exoskeleton is fitted to a new patient, i.e. for different frame link geometries of the RSSR mechanism. The third problem regards the need to approximate the finger phalange motion as a rotation about a revolute axis. In this perspective, two different joint axes identification techniques were proposed. The techniques are based on the Burmester theory (a theory generally used for the synthesis of mechanisms), here used in an original way to identify an axis of rotation. A comparison of this two technique with a more standard technique based on the finite helical axis is reported.
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Xiao. "Structural Design of a 6-DoF Hip Exoskeleton using Linear Series Elastic Actuators." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78751.

Full text
Abstract:
A novel hip exoskeleton with six degrees of freedom (DoF) was developed, and multiple prototypes of this product were created in this thesis. The device was an upper level of the 12-DoF lower-body exoskeleton project, which was known as the Orthotic Lower-body Locomotion Exoskeleton (OLL-E). The hip exoskeleton had three motions per leg, which were roll, yaw, and pitch. Currently, the sufferers of hemiplegia and paraplegia can be addressed by using a wheelchair or operating an exoskeleton with aids for balancing. The motivation of the exoskeleton project was to allow paraplegic patients to walk without using aids such as a walker or crutches. In mechanical design, the hip exoskeleton was developed to mimic the behavior of a healthy person closely. The hip exoskeleton will be fully powered by a custom linear actuator for each joint. To date, there are no exoskeleton products that are designed to have all of the hip joints powered. Thus, packaging of actuators was also involved in the mechanical design of the hip exoskeleton. As a result, the output torque and speed for the roll joint and yaw joint were calculated. Each hip joint was structurally designed with properly selected bearings, encoder, and hard stops. Their range of motions met desired requirements. In addition, a backpack assembly was designed for mounting the hardware, such as cooling pumps, radiators, and batteries. In the verification part, finite element analysis (FEA) was conducted to show the robustness of the structural design. For fit testing, three wearable prototypes were produced to verify design choices. As a result, the weight of the current hip exoskeleton was measured as 32.1 kg.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
28

Xu, Shang. "Investigations into the Form and Design of an Elbow Exoskeleton Using Additive Manufacturing." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/103204.

Full text
Abstract:
The commercial exoskeletons are often heavy and bulky, thus reducing the weight and simplifying the form factor becomes a critical task. This thesis details the process of designing and making a low-profile, cable-driven arm exoskeleton. Many advanced methods are explored: 3D scanning, generative design, soft material, compliant joint, additive manufacturing, and 3D latticing. The experiments on TPU kerf cut found that the stress-strain curve of the sample can be modified by changing the cut pattern, it is even possible to control the linear region. The TPU TPMS test showed that given the same volume, changing the lattice parameters can result in different bending stress-strain curves. This thesis also provides many prototypes, test data, and samples for future reference.
Master of Science
Wearing an exoskeleton should be easy and stress-free, but many of the available models are not ergonomic nor user-friendly. To make an exoskeleton that is inviting and comfortable to wear, various nontraditional methods are used. The arm exoskeleton prototype has a lightweight and ergonomic frame, the joints are soft and compact, the cable-driven system is safe and low-profile. This design also brings aesthetics to the exoskeleton which closes the gap between engineering and design.
APA, Harvard, Vancouver, ISO, and other styles
29

Shen, Zefang. "Design and Development of a 1-Degree-of-Freedom Leg Exoskeleton for Rehabilitation." Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/78295.

Full text
Abstract:
Current leg exoskeletons for rehabilitation are mostly heavy and bulky, which limits their applications in clinical settings. Moreover, portable leg exoskeletons driven by built-in batteries have limited working hours due to low energy efficiency. This thesis was aimed to develop a compact and portable leg exoskeleton with a long lasting battery life. The exoskeleton adopted a planar 1-DOF linkage for compactness and clutched-spring mechanisms for energy efficiency.
APA, Harvard, Vancouver, ISO, and other styles
30

Wilson, Bradford Asin. "Mechanical Design of the Legs for OLL-E, a Fully Self-Balancing, Lower-Body Exoskeleton." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/93574.

Full text
Abstract:
Exoskeletons show great promise in aiding people in a wide range of applications. One such application is medical rehabilitation and assistance of those with spinal cord injuries. Exoskeletons have the potential to offer several benefits over wheelchairs, including a reduction in the risk of upper-body injuries associated with extended wheelchair use. To fully mitigate this risk of injury, exoskeletons will need to be fully self-balancing, able to move and stand without crutches or other walking aid. To accomplish this, the Orthotic Lower-body Locomotion Exoskeleton (OLL-E) will actuate 12 Degrees of Freedom, six in each leg, using custom design linear series elastic actuators. The placement of these actuators relative to each joint axis, and the geometry of the linkage connecting them, were critical to ensuring each joint was capable of producing the required outputs for self-balancing locomotion. In pursuit of this goal, a general model was developed, relating the actuator's position and linkage geometry to the actual joint output over its range of motion. This model was then adapted for each joint in the legs and compared against the required outputs for humans and robots moving through a variety of gaits. This process allowed for the best placement of the actuator and linkages within the design constraints of the exoskeleton. The structure of the exoskeleton was then designed to maintain the desired geometry while meeting several other design requirements such as weight, adjustability, and range of motion. Adjustability was a key factor for ensuring the comfortable use of the exoskeleton and to minimize risk of injury by aligning the exoskeleton joint axes as close as possible to the wearer's joints. The legs of OLL-E can accommodate users between 1.60 m and 2.03 m in height while locating the exoskeleton joint axes within 2 mm of the user's joints. After detailed design was completed, analysis showed that the legs met all long-term goals of the exoskeleton project.
Master of Science
Exoskeletons show great promise in aiding people in a wide range of applications. One such application is medical rehabilitation and assistance of those with spinal cord injuries. Exoskeletons have the potential to offer several benefits over wheelchairs, including a reduction in the risk of upper-body injuries associated with extended wheelchair use. To best reduce this risk of injury, exoskeletons will need to be fully self-balancing, able to move and stand without crutches or relying on any other outside structure to stay upright. To accomplish this, the Orthotic Lower-body Locomotion Exoskeleton (OLL-E) will use a set of custom designed motors to apply power and control to 12 joints, six in each leg. Where these motors were placed, and how they connect to the joints they control, were critical to ensuring the exoskeleton was able to self-balance, walk, and climb stairs. To find the correct position, a set of equations was developed to determine how different positions changed each joints’ speed, strength, and range of motion. These equations were then put into a piece of custom software that could quickly evaluate different joint layouts and compare the capabilities against measurements from people and robots walking, climbing stairs, and standing up out of a chair. This process allowed for the best placement of the motors and joints while still keeping the exoskeleton relatively compact. The rest of the exoskeleton was then designed to connect these joints together, while meeting several other design requirements such as weight, adjustability, and range of motion. Adjustability was very important for ensuring the comfortable use of the exoskeleton and to minimize risk of injury by ensuring that the exoskeleton legs closely matched the movements of the person inside. The legs of OLL-E can accommodate users between 1.60 m and 2.03 m in increments of 7 mm. After detailed design was completed, additional analyses were performed to check the strength of the structure and ensure it met other long-term goals of the project.
APA, Harvard, Vancouver, ISO, and other styles
31

Tomeček, Michal. "Konstrukční návrh hydraulického systému robotického exoskeletonu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-449718.

Full text
Abstract:
The main goal of this diploma thesis is to design a hydraulic system for robotic exoskeleton actuation. In the first part of the thesis a list of available sources of exoskeleton designs, is presented, followed by a thorough systematic analysis of hydraulic system elements and their use for this application, is made. The second part of the thesis consists of the hydraulic system design, as well the mechanical design for the hydraulic system which is subsequently tested structurally in the Autodesk Inventor software. The last part of the thesis consists of risk analysis and critical evaluation of thesis‘ results.
APA, Harvard, Vancouver, ISO, and other styles
32

Goodson, Caleb Benjamin. "Mechanical Redesign and Fabrication of a 12 DOF Orthotic Lower Limb Exoskeleton and 6 Axis Force-Torque Sensor." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100734.

Full text
Abstract:
This thesis details several modifications to the mechanical design of the Orthotic Lower Limb Exoskeleton (OLL-E) that improve upon the functionality and manufacturability of parts and their assemblies. The changes made to these parts maintain or improve the factor of safety against yield and fatigue failure as compared to the original designs. Design changes are verified by FEA simulations and hand calculations. The changes included in this thesis also allowed parts that were previously difficult or impossible to manufacture using traditional methods to be made in house or outsourced to another machine shop. In addition to the mechanical design changes, this thesis also details the design and implementation of a six axis force-torque sensor built into the foot of OLL-E. The purpose of this sensor is to provide feedback to the central control system and allow OLL-E to be self-balancing. This foot sensor design is calibrated and initial results are discussed and shown to be favorable.
Master of Science
Recent developments in the fields of robotics and exoskeleton design have increased their feasibility for use in medical rehabilitation and mobility enhancement for persons with limited mobility. The Orthotic Lower Limb Exoskeleton (OLL-E) is an exoskeleton specifically designed for enhancing mobility by allowing users with lower limb disabilities such as spinal cord injuries or paraplegia to walk. The research detailed in this thesis explains the design and manufacturing processes used to make OLL-E as well as providing design details for a force sensor built into the exoskeleton foot. Before manufacturing could take place some parts needed to be redesigned and this thesis provides insight into the reasons for these changes. After the manufacturing and design process was completed the OLL-E was assembled and the project can now move forward with physical testing.
APA, Harvard, Vancouver, ISO, and other styles
33

Linder-Aronson, Philip, and Simon Stenberg. "Exo-Controlled Biomimetic Robotic Hand : A design solution for control of a robotic hand with an exoskeleton." Thesis, KTH, Mekatronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295846.

Full text
Abstract:
Robotic arms and hands come in all shapes and sizes, they can be general purpose or task-specific. They can be pre-programed by a computer or controlled by a human operator. There is a certain subsection of robotic hands which try to mimic the shape, movement and function of the human hand, these are sometimes known as biomimetic robotics. This project explores the human robot interaction by creating an anthropomorphic robotic hand with an accompanying exoskeleton. The hand, which consists of a 3D-printed body and fingers, is connected to a forearm where the servos that control the fingers are housed. The exoskeleton connects to the operator's hand allowing finger tracking through a set of potentiometers. This setup allows the operator to intuitively control a robotic hand with a certain degree of precision. We set out to answer research questions in regard to the form and function of a biomimetic hand and the exoskeleton. Along the way, a multitude of problems were encountered such as budgetary issues resulting in only half the fingers having movement. Despite this, good results were gathered from the functioning fingers and our research questions were answered.
Robotarmar och händer finns många former och storlekar, de kan vara för allmänna ändamål eller uppgiftsspecifika. De kan programmeras av en dator eller styras av en mänsklig operatör. Det finns en viss typ av robothänder som försöker efterlikna formen, rörelsen och funktionen hos den mänskliga handen, och brukar kallas biomimetisk robotik. Detta projekt utforskar interaktionen mellan människa och robot genom att skapa en antropomorf robothand med tillhörande exoskelett. Handen, som består av en 3D-printad kropp och fingrar, är ansluten till en underarm där servormotorerna som styr fingrarna sitter. Exoskelettet ansluts till operatörens hand vilket möjliggör spårning av fingrarnas rörelse genom ett antal potentiometrar. Detta tillåter operatören att intuitivt styra en robothand med en viss grad av precision. Vi valde att besvara ett antal forskningsfrågor med avseende på form och funktion av en biomimetisk hand och exoskelettet. Under projektets gång påträffades en mängd problem såsom budgetproblem som resulterade i att bara hälften av fingrarna kan kontrolleras. Trots detta fick vi bra resultat från de fungerande fingrarna och våra forskningsfrågor kunde besvaras.
APA, Harvard, Vancouver, ISO, and other styles
34

Wood, Evan A. "Design and Prototype of an Active Knee Exoskeleton to Aid Farmers with Mobility Limitations." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/93531.

Full text
Abstract:
As farmers continue to get older, they will likely face age-related disabilities that impede their ability to work and increase risk of suffering serious injuries. One of the major age- related diseases is arthritis, which currently accounts for about 40% of disability cases in agriculture nationwide. The effect of arthritis on farmers is profound because it reduces their physical strength, joint range of motion and is a source of joint pain, all culminating in the lack of ability to perform routine activities regularly and safely. One way to decrease the rate of injuries is by reducing the strength and joint loading required to perform these activities through the use of wearable robotics. As opposed to existing solutions that focus only on injury prevention, this thesis will present an active, knee-assist exoskeleton intent on providing 30% of the necessary joint rotation force to perform activities such as sit-to- stand actions and the ascent/descent of stairs and hills. The device will be a lightweight, unobtrusive cable-driven exoskeleton actuated by distally-worn electric motors. We hope that use of the exoskeleton will result in increased ranges of motion and overall reduction of stress on the wearer's body, which will minimize the effects of arthritis and ultimately improve safety and quality of life.
Master of Science
As farmers continue to get older, they will likely face age-related disabilities that impede their ability to work and increase risk of suffering serious injuries. One of the major age-related diseases is arthritis, which currently accounts for about 40% of disability cases in agriculture nationwide. The effect of arthritis on farmers is profound because it reduces their physical strength, joint range of motion and is a source of joint pain, all culminating in the lack of ability to perform routine activities regularly and safely. One way to decrease the rate of injuries is by reducing the strength and joint loading required to perform these activities through the use of wearable robotics. As opposed to existing solutions that focus only on injury prevention, this thesis will present an active, knee-assist exoskeleton intent on providing 30% of the necessary joint rotation force to perform activities such as sit-to-stand actions and the ascent/descent of stairs and hills. The device will be a lightweight, unobtrusive cable-driven exoskeleton actuated by distally-worn electric motors. We hope that use of the exoskeleton will result in increased ranges of motion and overall reduction of stress on the wearer’s body, which will minimize the effects of arthritis and ultimately improve safety and quality of life.
APA, Harvard, Vancouver, ISO, and other styles
35

Valiente, Andrew (Andrew J. ). "Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34412.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.
Page 114 blank.
Includes bibliographical references (p. 97-99).
Biomechanical experiments suggest that it may be possible to build a leg exoskeleton to reduce the metabolic cost of walking while carrying a load. A quasi-passive, leg exoskeleton is presented that is designed to assist the human in carrying a 75 lb payload. The exoskeleton structure runs parallel to the legs, transferring payload forces to the ground. In an attempt to make the exoskeleton more efficient, passive hip and ankle springs are employed to store and release energy throughout the gait cycle. To reduce knee muscular effort, a variable damper is implemented at the knee to support body weight throughout early stance. In this thesis, I hypothesize that a quasi-passive leg exoskeleton of this design will improve metabolic walking economy for carrying a 751b backpack compared with a leg exoskeleton without any elastic energy storage or variable-damping capability. I further anticipate that the quasi-passive leg exoskeleton will improve walking economy for carrying a 751b backpack compared with unassisted loaded walking. To test these hypotheses, the rate of oxygen consumption is measured on one human test participant walking on a level surface at a self-selected speed. Pilot experimental data show that the quasi-passive exoskeleton increases the metabolic cost of carrying a 751b backpack by 39% compared to carrying 75 lbs without an exoskeleton. When the variable-damper knees are replaced by simple pin joints, the metabolic cost relative to unassisted load carrying decreases to 34%, suggesting that the dampening advantages of the damper knees did not compensate for their added mass.
(cont.) When the springs are removed from the aforementioned pin knee exoskeleton, the metabolic cost relative to unassisted load carrying increased to 83%. These results indicate that the implementation of springs is beneficial in exoskeleton design.
by Andrew Valiente.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
36

Kasarová, Dominika. "Design pracovního exoskeletonu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Perry, Joel C. "Design and development of a 7 degree-of-freedom powered exoskeleton for the upper limb /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/7077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Irshaidat, M. M. "Design and implementation of a novel lightweight soft upper limb exoskeleton using pneumatic actuator muscles." Thesis, University of Salford, 2018. http://usir.salford.ac.uk/48758/.

Full text
Abstract:
Stroke is the leading cause of disability and weakness in the UK and around the world. Thus, stroke patients require an extensive rehabilitation therapy to regain some of the weaknesses. Many rehabilitation robotic devices have been designed and developed to assist the stroke patients to perform their activities of daily living and to perform repetitive movements. However, these devices remain unmanageable to use by the patients alone not only because they are cumbersome to use but also due to their weights, rigid, fix and non-portable characteristics. Thus there is a need to invent a novel exoskeleton soft arm that has a lightweight and a high power to rehab the elbow joint with lower cost and without the need to therapists. Here for elbow joint rehabilitation, we investigate and propose a novel exoskeleton soft robotic arm, which is wearable, lightweight and portable so that it would allow patients to perform repetitive motion therapy more often with a greater intensity in their homes and relevant to their Activities of Daily Living (ADL). The proposed arm consists of various bending pneumatic muscle actuators (pMA), where traditional pMA are not suitable. Testing on various pMA (traditional and bending) revealed its behaviour and the relationship between pressure, length, force, and bending angle in different setups such as isotonic and isometric. Experiments are done to analyse its non-linear behaviour, moreover, geometrical and numerical models are compared to the experimental results to validate the results. A developed control approach to control the soft arm is implemented to validate the design. Model reference adaptive control (MRAC) to control the arm using (Proportional, Integral, and Derivative) PID controller as an input for MRAC. Neural Network (NN) is also used in MRAC to improve the performance of MRAC.
APA, Harvard, Vancouver, ISO, and other styles
39

Viennet, Emmanuel, and Loïc Bouchardy. "Preliminary design and testing of a servo-hydraulic actuation system for an autonomous ankle exoskeleton." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71229.

Full text
Abstract:
The work presented in this paper aims at developing a hydraulic actuation system for an ankle exoskeleton that is able to deliver a peak power of 250 W, with a maximum torque of 90 N.m and maximum speed of 320 deg/s. After justifying the choice of a servo hydraulic actuator (SHA) over an electro hydrostatic actuator (EHA) for the targeted application, some test results of a first functional prototype are presented. The closed-loop unloaded displacement frequency response of the prototype shows a bandwidth ranging from 5 Hz to 8 Hz for displacement amplitudes between +/-5mm and +/- 20mm, thus demonstrating adequate dynamic performance for normal walking speed. Then, a detailed design is proposed as a combination of commercially available components (in particular a miniature servo valve and a membrane accumulator) and a custom aluminium manifold that incorporates the hydraulic cylinder. The actuator design achieves a total weight of 1.0 kg worn at the ankle.
APA, Harvard, Vancouver, ISO, and other styles
40

Mukherjee, Gaurav. "Design and Development of an Assistive Exoskeleton for Independent Sit-Stand Transitions among the Elderly." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1407407328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Marecki, Andrew T. (Andrew Thomas). "Design of a high torque, lightweight clutch for use in an exoskeleton to augment human running." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59941.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 25).
The metabolic augmentation of human locomotion though the use of wearable exoskeletons is a complex and difficult goal. One exoskeleton architecture adds parallel elasticity to the user during stance phase to unload the user's muscles and joints. Critical to this design is the creation of a lightweight, high torque clutch that can endure the forces associated with ground impact and stance phase in running and also disengage to permit a natural swing phase. The clutch makes use of radial, ratcheting clutch plates, a planetary gearbox, and a novel mechanical decoupling concept to meet the design requirements.
by Andrew T. Marecki.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
42

Shaheen, Robert. "Design and Material Characterization of a Hyperelastic Tubular Soft Composite." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36117.

Full text
Abstract:
Research within the field of human motion assistive device development, with the purpose of reducing the metabolic cost of daily activities, is seeing the benefits of the exclusive use of passive actuators to store and release energy during the gait cycle. Designs of novel exoskeletons at the University of Ottawa implement the Pneumatic Artificial Muscle (PAM) as the primary method of nonlinear, passive actuation. The PAM is proven as a superior actuator for these devices when compared to the linear mechanical springs used by other researchers. There are, however, challenges regarding PAM pressure loss and the limitation of PAM elongation that have been identified. This thesis aims to develop a hyperelastic tubular soft composite that replicates the distinctive mechanical behaviour of the PAM without the need for internal pressurization. The final soft composite solution was achieved by impregnating a prefabricated polyethylene terephthalate braided sleeve, held at a high initial fibre angle, with a silicone prepolymer. A comprehensive experimental evaluation was performed on numerous prototypes for a variety of customizable design parameters including: initial fibre angle, silicone stiffness, and braided sleeve style. Moreover, two separate analytical models were formulated based on incompressible finite elasticity theory using either a structural model of Holzapfel’s type, or a phenomenological model of Fung’s type. Both models were in good agreement with the experimental data that were collected through a modified extension-inflation test. This research has successfully developed, tested, and validated an innovative soft composite that can achieve specific mechanical properties, such as contraction distance and nonlinear stiffness, for optimal use in human motion assistive devices.
APA, Harvard, Vancouver, ISO, and other styles
43

Shah, Shriya. "Design and Implementation of a Scalable Real-Time Motor Controller Architecture for Humanoid Robots and Exoskeletons." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78734.

Full text
Abstract:
Embedded systems for humanoid robots are required to be reliable, low in cost, scalable and robust. Most of the applications related to humanoid robots require efficient force control of Series Elastic Actuators (SEA). These control loops often introduce precise timing requirements due to the safety critical nature of the underlying hardware. Also the motor controller needs to run fast and interface with several sensors. The commercially available motor controllers generally do not satisfy all the requirements of speed, reliability, ease of use and small size. This work presents a custom motor controller, which can be used for real time force control of SEA on humanoid robots and exoskeletons. Emphasis has been laid on designing a system which is scalable, easy to use and robust. The hardware and software architecture for control has been presented along with the results obtained on a novel Series Elastic Actuator based humanoid robot THOR.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
44

Kendrick, John Thomas. "Design of High-Performance, Dual-Motor Liquid-Cooled, Linear Series Elastic Actuators for a Self-Balancing Exoskeleton." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83236.

Full text
Abstract:
As a valuable asset in human augmentation and medical rehabilitation, exoskeletons have become a major area for research and development. They have shown themselves to be effective tools for training and rehabilitation of individuals suffering from limited mobility. However, most exoskeletons are not capable of balancing without the assistance of crutches from the user. Leveraging technology and techniques developed for force controlled humanoid robots, a project was undertaken to develop a fully self-balancing, compliant lower-body robotic exoskeleton. Due to their many beneficial features, series elastic actuators were utilized to power the joints on the exoskeleton. This thesis details the development of four linear series elastic actuators (LSEA) as part of this project. All 12-degrees of freedom will be powered by one of these four LSEA's. Actuator requirements were developed by examining human gait data and three robot-walking simulations. These four walking scenarios were synthesized into one set of power requirements for actuator development. Using these requirements, analytical models were developed to perform component trade studies and predict the performance of the actuator. These actuators utilize high-efficacy components, parallel electric motors, and liquid cooling to attain high power-to-weight ratios, while maintaining a small lightweight design. These analyses and trade studies have resulted in the design of a dual-motor liquid-cooled actuator capable of producing a peak force 8500N with a maximum travel speed of 0.267m/s, and three different single-motor actuators capable of producing forces up to 2450N continuously, with a maximum travel speeds up to 0.767m/s.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
45

Pradhan, Sarthak. "Design and Control of a Robotic Exoskeleton Glove Using a Neural Network Based Controller for Grasping Objects." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104663.

Full text
Abstract:
Patients suffering from brachial plexus injury or other spinal cord related injuries often lose their hand functionality. They need a device which can help them to perform day to day activities by restoring some form of functionality to their hands. A popular solution to this problem are robotic exoskeletons, mechanical devices that help in actuating the fingers of the patients, enabling them to grasp objects and perform other daily life activities. This thesis presents the design of a novel exoskeleton glove which is controlled by a neural network-based controller. The novel design of the glove consists of rigid double four-bar linkage mechanisms actuated through series elastic actuators (SEAs) by DC motors. It also contains a novel rotary series elastic actuator (RSEA) which uses a torsion spring to measure torque, passive abduction and adduction mechanisms, and an adjustable base. To make the exoskeleton glove grasp objects, it also needs to have a robust controller which can compute forces that needs to be applied through each finger to successfully grasp an object. The neural network is inspired from the way human hands can grasp a wide variety of objects with ease. Fingertip forces were recorded from a normal human grasping objects at different orientations. This data was used to train the neural network with a R2 value of 0.81. Once the grasp is initiated by the user, the neural network takes inputs like orientation, weight, and size of the object to estimate the force required in each of the five digits to grasp an object. These forces are then applied by the motors through the SEA and linkage mechanisms to successfully grasp an object autonomously.
Master of Science
Humans are one of the few species to have an opposable thumb which allows them to not only perform tasks which require power, but also tasks which require precision. However, unfortunately, thousands of people in the United States suffer from hand disabilities which hinder them in performing basic tasks. The RML glove v3 is a robotic exoskeleton glove which can help these patients in performing day to day activities like grasping semi-autonomously. The glove is lightweight and comfortable to use. The RML glove v3 uses a neural network based controller to predict the grasp force required to successfully grasp objects. After the user provides the required input, the glove estimates the object size and uses other inputs like object orientation and weight to estimate the grasp force in each finger linkage mechanism. The motors then drive the linkages till the required force is achieved on the fingertips and the grasp is completed.
APA, Harvard, Vancouver, ISO, and other styles
46

Choi, JungHun. "Design and Development of a Minimally Invasive Endoscope: Highly Flexible Stem with Large Deflection and Stiffenable Exoskeleton Structure." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/26218.

Full text
Abstract:
Colonoscopy provides a minimally invasive tool for examining and treating the colon without surgery, but current endoscope designs still cause a degree of pain and injury to the colon wall. The most common colonoscopies are long tubes inserted through the rectum, with locomotion actuators, fiber optic lights, cameras, and biopsy tools on the distal end. The stiffness required to support these tools makes it difficult for the scopes to navigate the twisted path of the colon without damaging the inside wall of the colon or distorting its shape. In addition, little is known about how sharp and forceful endoscopes can be without accidentally cutting into tissue during navigation. In order to solve the requirements of stiffness (to support tools) and flexibility (to navigate turns), we expanded on a design by Zehel et al. [49], who proposed surrounding a flexible endoscope with an external exoskeleton structure, with controllable stiffness. The exoskeleton structure is comprised of rigid, articulating tubular units, which are stiffened or relaxed by four control cables. The stiffened or locked exoskeleton structure aids navigation and provides stability for the endoscope when it protrudes beyond the exoskeleton structure for examination and procedures. This research determined the design requirements of such an exoskeleton structure and simulated its behavior in a sigmoid colon model. To predict just how pointed an endoscope can be without damaging tissue under a given force, we extrapolated a strength model of the descending colon from published stress-strain curves of human colon tissue. Next we analyzed how friction, cable forces, and unit angles interact to hold the exoskeleton structure in a locked position. By creating two- and three-dimensional models of the exoskeleton structure, we optimized the dimensions of the units of an exoskeleton structure (diameter, thickness, and leg angle) and cable holders ( cable attachment location) to achieve the turns of the sigmoid colon, while still remaining lockable. Models also predicted the loss of force over the exoskeleton structure due to curving, further determining the required cable angles and friction between units. Finally we determined how the stiffness of the endoscope stem affected locking ability and wear inside the exoskeleton structure.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
47

Subra, Mani Vishnu Aishwaryan. "Design, Development and Characterization of a Wrap Spring Clutch/Brake Mechanism as a Knee Joint for a Hybrid Exoskeleton." Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-theses/1359.

Full text
Abstract:
Evolution had played a significant role in structuring on how humans stand, walk or run. The nervous system plays a major role in the control of locomotion and injuries to the system can lead to gait abnormalities or disabilities. A Spinal Cord Injury (SCI) causes lack of signal communication between the central nervous system and the muscle fibers leading to deprived or no activation of the muscles thus resulting in paraplegia or quadriplegia. Over the past decade wearable robotics and exoskeletons have been gaining outstanding recognition in the field of medical, assistive and augmentative robotics and have led to numerous new innovative mechanisms in the mechanical engineering field. Due to fast paced research activities, the critical importance and performance of mechanisms such as wrap spring clutch/brake,Wafer Disc brakes are overlooked or used ineffectively. So, researchers tend to create new actuators from scratch and have limited their use of previously available resources, which has prevented us to explore the potential of these devices.The research presented focuses on developing a mechanism (“A Wrap Spring Clutch/Brake Mechanism”) from scratch using a trade study approach. This thesis addresses the fundamental relationship between coefficient of friction, interference, spring diameter and the holding torque of the mechanism using analytical, testing and simulation results. The human biomechanical data during ground level walking was used as design targets to develop the mathematical model of the system. Data from the testing stated that these targeted goals have been achieved by the design. This mechanism is used as a Knee Joint for the Hybrid EXoskeleton (HEX) GEN-1 project which is developed at the Automation and Interventional Medicine (AIM) Robotics Research Laboratory to rehabilitate the SCI.
APA, Harvard, Vancouver, ISO, and other styles
48

Laubscher, Curt A. "Design and Development of a Powered Pediatric Lower-Limb Orthosis." Cleveland State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=csu1590485999836396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Balasubramaniam, Srinivasa Prashanth. "Influence of Joint Kinematics and Joint Moment on the Design of an Active Exoskeleton to Assist Elderly with Sit-to-Stand Movement." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1458643962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Yang. "Design and synthesis of mechanical systems with coupled units." Thesis, Rennes, INSA, 2019. http://www.theses.fr/2019ISAR0004/document.

Full text
Abstract:
Ce mémoire traite de nouveaux principes de conception qui sont inspirés par le couplage de deux unités représentant les différentes structures mécaniques. Les critères de conception optimale et les types d'unités combinées sont différents. Cependant, toutes les tâches sont considérées dans le couplage de ces unités. L'examen critique présenté dans le premier chapitre est divisé en trois sections en raison de la nature des problèmes traités: les robots marcheurs, les compensateurs de gravité et les robots collaboratifs. Le deuxième chapitre traite du développement de robots marcheurs à actionneur unique, conçus par couplage de deux mécanismes ayant les fonctionnants de jambe. Basée sur l'algorithme génétique, la synthèse proposée permet d'assurer la reproduction de la trajectoire obtenue à partir de la marche humaine. Par l'ajustement des paramètres géométriques des unités conçues, il devient possible non seulement d'assurer une marche du robot à des pas variables, mais également de monter les escaliers. Ensuite la conception et la synthèse des équilibreurs pour les robots sont considérés. Un costume robotisé type exosquelette permettant d'aider aux personnes transportant des charges lourdes est examiné dans le chapitre suivant La conception proposée présente une symbiose d'un support rigide et léger et d'un système de câbles monté sur ce support. L'étude et l'optimisation statique et dynamique ont conduit aux tests sur un mannequin. Le dernier chapitre propose l'étude et 'optimisation d'un système couplé, comprenant un manipulateur équilibré à commande manuelle et un robot collaboratif. Le but d'une telle coopération est de manipuler de lourdes charges avec un cobot
This thesis deals with the design principles, which arc based on the coupling of two mechanical structures. The criteria for optimal design and the types of combined units are different. However, all the tasks are considered in coupling of given mechanical units. The critical review given in the first chapter is divided into three sections due to the nature of the examined problems: legged walking robots, gravity compensators used in robots and collaborative robots. Chapter two deals with the development of single actuator walking robots designed by coupling of two mechanisms. Based on the Genetic Algorithm, the synthesis allows one to ensure the reproduction of prescribed points of the given trajectory obtained from the walking gait. By adjusting the geometric parameters of the designed units, it becomes possible not only to operate the robot at variable steps, but also to climb the stairs. The next chapter deals with the design and synthesis of gravity balancers. A robotic exosuit that can help people carrying heavy load is the subject of chapter four. The proposed exosuit presents a symbiosis of two systems: rigid lightweight support and cable system. Static and dynamic studies and optimization are considered. Experiments are also carried out on a mannequin test bench. The last chapter presents a coupled system including a hand-operated balanced manipulator and a collaborative robot. The aim of such a cooperation is to manipulate heavy payloads with less powerful robots. Dynamic analysis of the coupled system is perfonned and methods for reducing the oscillation of the HOBM at the final phase of the prescribed trajectories are proposed
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography