Academic literature on the topic 'Existence and multiplicity results'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Existence and multiplicity results.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Existence and multiplicity results"
Bereanu, Cristian, and Jean Mawhin. "Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions." Mathematica Bohemica 131, no. 2 (2006): 145–60. http://dx.doi.org/10.21136/mb.2006.134087.
Full textRudolf, Boris. "An existence and multiplicity result for a periodic boundary value problem." Mathematica Bohemica 133, no. 1 (2008): 41–61. http://dx.doi.org/10.21136/mb.2008.133946.
Full textGoeleven, D., V. H. Nguyen, and M. Willem. "Existence and multiplicity results for semicoercive unilateral problems." Bulletin of the Australian Mathematical Society 49, no. 3 (June 1994): 489–97. http://dx.doi.org/10.1017/s0004972700016592.
Full textDong, Wei. "Existence and multiplicity results for quasilinear elliptic equations." Bulletin of the Australian Mathematical Society 71, no. 3 (June 2005): 377–86. http://dx.doi.org/10.1017/s0004972700038375.
Full textHuy, Nguyen Bich, Bui The Quan, and Nguyen Huu Khanh. "Existence and multiplicity results for generalized logistic equations." Nonlinear Analysis 144 (October 2016): 77–92. http://dx.doi.org/10.1016/j.na.2016.06.001.
Full textLiu, Wulong, and Guowei Dai. "Existence and multiplicity results for double phase problem." Journal of Differential Equations 265, no. 9 (November 2018): 4311–34. http://dx.doi.org/10.1016/j.jde.2018.06.006.
Full textBaraket, Sami, and Giovanni Molica Bisci. "Multiplicity results for elliptic Kirchhoff-type problems." Advances in Nonlinear Analysis 6, no. 1 (February 1, 2017): 85–93. http://dx.doi.org/10.1515/anona-2015-0168.
Full textFilippakis, Michael, Leszek Gasiński, and Nikolaos S. Papageorgiou. "Multiplicity Results for Nonlinear Neumann Problems." Canadian Journal of Mathematics 58, no. 1 (February 1, 2006): 64–92. http://dx.doi.org/10.4153/cjm-2006-004-6.
Full textDong, Xiaojing, and Anmin Mao. "Existence and Multiplicity Results for General Quasilinear Elliptic Equations." SIAM Journal on Mathematical Analysis 53, no. 4 (January 2021): 4965–84. http://dx.doi.org/10.1137/20m1350741.
Full textArioli, Gianni, and Filippo Gazzola. "Existence and multiplicity results for quasilinear elliptic differential systems." Communications in Partial Differential Equations 25, no. 1-2 (January 2000): 125–53. http://dx.doi.org/10.1080/03605300008821510.
Full textDissertations / Theses on the topic "Existence and multiplicity results"
Fialho, João Manuel Ferrão. "Existence, localization and multiplicity results for nonlinear and functional." Doctoral thesis, Universidade de Évora, 2012. http://hdl.handle.net/10174/15248.
Full textTian, Rushun. "Existence and Multiplicity Results on Standing Wave Solutions of Some Coupled Nonlinear Schrodinger Equations." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1484.
Full textHuang, Lirong. "Multiplicity results for some classes of Schrödinger-Poisson systems." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/12867.
Full textIn this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Nesta tese, estudamos a existência e a multiplicidade de soluções da seguinte classe de sistemas denominada de Schr odinger-Poisson: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; onde l 2 L2(R3) ou l 2 L1(R3). Consideram-se não-linearidades que satisfazem um dos seguintes casos: (i) potências que envolvem um expoente sub-cr tico, da forma (x; u) = k(x)jujp2u + h(x)u, (4 p < 2 ), sendo k uma função com sinal indefinido e h uma função positiva; (ii) caso geral de uma não-linearidade indefi nida, da forma (x; u) = k(x)g(u) + h(x)u, sendo k uma função com sinal indefinido e h uma função positiva; (iii) potências que envolvem o expoente crí tico, da forma (x; u) = k(x)juj2 2u + h(x)jujq2u (2 q < 2 ). Convém salientar que esta tese tem três principais inovações, as quais ultrapassam dificuldades geradas pela natureza dos problemas estudados. Primeiro, como um relator anónimo referiu, este é o primeiro trabalho em que se trata a existência de várias soluções de sistemas de Schrödinger- Poisson com não-linearidade indefinida. Segundo, neste estudo encontrou-se um fen ómeno interessante, ver Capítulos 2 e 3, nomeadamente, não ser necess ária a condição R3 k(x)ep 1dx < 0 no caso indefinido e não-coercivo, sendo e1 a função associada ao primeiro valor próprio de + id em H1(R3) com peso h. Note-se que foi demonstrado que uma condi cão semelhante e condição necessária e suficiente na existência de solu cões positivas para equações elíticas semilineares com não-linearidades indefinidas em domínios limitados (ver e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), ou ser uma condição suficiente na existência de soluções positivas para equações elíticas semilineares com não-linearidades indefinidas em RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Adicionalmente, o método utilizado pode ser utilizado para estudar outros aspetos dos sistemas de Schrodinger-Poisson, permite também estudar sistemas de Kirchho e sistemas de Schrodinger quasilineares. Por m, para obter soluções com mudança de sinal no Cap. 5, segue se a ideia de Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, mas o método utilizado é uma versão simplificada do método apresentado no artigo referido.
Woodward, Christopher Thomas. "Multiplicity-free Hamiltonian actions and existence of invariant Kähler structure." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38408.
Full textGadam, Sudhasree. "Existence and Multiplicity of Solutions for Semilinear Elliptic Boundary Value Problems." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc332520/.
Full textGUARNOTTA, Umberto. "EXISTENCE RESULTS FOR SINGULAR CONVECTIVE ELLIPTIC PROBLEMS." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/524941.
Full textZhang, Yanping. "Existence and multiplicity of positive solutions in semilinear elliptic boundary value problems." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/414.
Full textMurillo, Kelly Patricia. "Existence results for elliptic equations with singular terms." Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/9888.
Full textEsta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de equações que envolve o operador Laplaciano, um termo singular e nãolinearidade com o exponente crítico de Sobolev, (II) uma classe de equações com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo côncavo e (III) uma classe de equações em forma divergente, que envolve um termo singular, um operador do tipo Leray-Lions, e uma função definida nos espaços de Lorentz. As não-linearidades consideradas nos problemas (I) e (II), apresentam dificuldades adicionais, tais como uma singularidade forte no ponto zero (de modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev (problema (II)). Pela singularidade existente no problema (III), a definição padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma noção especial de solução fraca em subconjuntos abertos do domínio. Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para provar a existência de soluções nos dois primeiros problemas. No problema (I), são usadas uma combinação adequada de técnicas de Nehari, o princípio variacional de Ekeland, métodos de minimax, um argumento de translação e estimativas integrais do nível de energia. Neste caso, demonstramos a existência de (pelo menos) quatro soluções não triviais onde pelo menos uma delas muda de sinal. No problema (II), usando o método de concentração de compacidade e o teorema de passagem de montanha, demostramos a existência de pelo menos duas soluções positivas e pelo menos um par de soluções com mudança de sinal. A abordagem do problema (III) combina um resultado de surjectividade para operadores monótonos, coercivos e radialmente contínuos com propriedades especiais do operador de tipo Leray- Lions. Demonstramos assim a existência de pelo menos, uma solução no espaço de Lorentz e obtemos uma estimativa para esta solução.
This dissertation study mainly three elliptical problems: (I) a class of equations, which involves the Laplacian operator, a singular term and a nonlinearity with the critical Sobolev exponent, (II) a class of equations with double singularity, the critical Hardy-Sobolev exponent and a concave term and (III) a class of equations in divergent form, which involves a singular term, a Leray-Lions operator, and a function defined on Lorentz spaces. The nonlinearities considered in problems (I) and (II), bring additional difficulties which, as the strong singularity at zero (so blow-up may occur) and the lack of compactness due to the presence of a Sobolev critical exponent (problem (I)) and a Hardy-Sobolev critical exponent (problem (II)). In problem (III), the singularity implies that the standard definition of weak solution may not make sense. Therefore is necessary to introduce a special notion of weak solution on open subsets of the domain. Variational methods and Critical Point Theory techniques are used to prove the existence of solutions in the two first problems. In problem (I), our method combines Nehari's techniques, Ekeland's variational principle, minimax methods, a translation argument and integral estimates of the energy level. In this case, we prove the existence of (at least) four nontrivial solutions where at least one of them is sign-changing. In problem (II), we prove the existence of at least two positive solutions and a pair of sign-changing solutions, using the concentration-compactness method and the mountain pass theorem. The approach in problem (III) combines a surjectivity result for monotone, coercive and radially continuous operators with special properties of Leray-Lions operators. We prove the existence of at least one solution in a Lorentz space and obtain an estimative for the solution.
Hata, Kazuya. "Multiplicity Results of Periodic Solutions for Two Classes of Nonlinear Problems." DigitalCommons@USU, 2014. https://digitalcommons.usu.edu/etd/4030.
Full textVelichkov, Bozhidar. "Existence and regularity results for some shape optimization problems." Doctoral thesis, Scuola Normale Superiore, 2013. http://hdl.handle.net/11384/85690.
Full textThe shape optimization problems naturally appear in engineering and biology. They aim to answer questions as:-What a perfect wing may look like?-How to minimize the resistance of a moving object in a gas or a fluid?-How to build a rod of maximal rigidity?-What is the behaviour of a system of cells?The shape optimization appears also in physics, mainly in electrodynamics and in the systems presenting both classical and quantum mechanics behaviour. For explicit examples and furtheraccount on the applications of the shape optimization we refer to the books [20] and [69]. Here we deal with the theoretical mathematical aspects of the shape optimization, concerning existence of optimal sets and their regularity. In all the practical situations above, the shape of the object in study is determined by a functional depending on the solution of a given partial differential equation. We will sometimes refer to this function as a state function.The simplest state functions are provided by solutions of the equations−∆w = 1 and −∆u = λu,which usually represent the torsion rigidity and the oscillation modes of a given object. Thus our study will be concentrated mainly on the situations, in which these state functions appear,i.e. when the optimality is intended with respect to energy and spectral functionals. [20] D. Bucur, G. Buttazzo: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations 65, Birkhauser Verlag, Basel (2005).[69] A. Henrot, M. Pierre: Variation et optimisation de formes: une analyse geometrique. Springer-Berlag, Berlin, 2005
Books on the topic "Existence and multiplicity results"
Nielsen, Lars Tyge. Existence of equilibrium in CAPM: Further results. Fontainbleau: INSEAD, 1990.
Find full textVelichkov, Bozhidar. Existence and Regularity Results for Some Shape Optimization Problems. Pisa: Scuola Normale Superiore, 2015. http://dx.doi.org/10.1007/978-88-7642-527-1.
Full textEnrico, Serra, ed. Semilinear elliptic equations for beginners: Existence results via the variational approach. London: Springer Verlag, 2011.
Find full textYAchin, Syergyey. The Human Existence Analytics: an Introduction to the Experience of Self-discovery. a Systematic Study. ru: INFRA-M Academic Publishing LLC., 2014. http://dx.doi.org/10.12737/3476.
Full textBorzyh, Stanislav. Universality of uniqueness. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1840173.
Full textOrlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.
Full textKondrat'ev, Sergey. Theory and practice of personalized learning. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1098272.
Full textHigh Order Boundary Value Problems: Existence, Localization and Multiplicity Results. Nova Science Publishers, Incorporated, 2014.
Find full textHaase, Christian, Andreas Paffenholz, Lindsay C. Piechnik, and Santos Francisco. Existence of Unimodular Triangulations-Positive Results. American Mathematical Society, 2021.
Find full textVelichkov, Bozhidar. Existence and Regularity Results for Some Shape Optimization Problems. Scuola Normale Superiore, 2015.
Find full textBook chapters on the topic "Existence and multiplicity results"
Minhós, Feliz Manuel. "Existence, Nonexistence and Multiplicity Results for Some Beam Equations." In Progress in Nonlinear Differential Equations and Their Applications, 257–67. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8482-1_21.
Full textCerami, Giovanna. "Existence and Multiplicity Results for Some Scalar Fields Equations." In Analysis and Topology in Nonlinear Differential Equations, 207–30. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04214-5_12.
Full textCostea, Nicuşor, Alexandru Kristály, and Csaba Varga. "Existence and Multiplicity Results for Differential Inclusions on Bounded Domains." In Variational and Monotonicity Methods in Nonsmooth Analysis, 143–210. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81671-1_6.
Full textDe Coster, C., and R. Habets. "Existence and Multiplicity Results for a Dirichlet Problem with Two Parameters." In Advances in Nonlinear Dynamics, 237–44. London: Routledge, 2023. http://dx.doi.org/10.1201/9781315136875-26.
Full textMallick, Mohan, and Subbiah Sundar. "Existence, Bifurcation, and Multiplicity Results for a Class of $$n\times n$$ p-Laplacian System." In Mathematical Modeling and Computational Tools, 283–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3615-1_20.
Full textFeltrin, Guglielmo. "High Multiplicity Results." In Positive Solutions to Indefinite Problems, 195–237. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_7.
Full textColding, Tobias, and William Minicozzi. "Existence results." In A Course in Minimal Surfaces, 133–62. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/gsm/121/04.
Full textFeltrin, Guglielmo. "Existence Results." In Positive Solutions to Indefinite Problems, 171–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_6.
Full textCostea, Nicuşor, Alexandru Kristály, and Csaba Varga. "Minimax and Multiplicity Results." In Variational and Monotonicity Methods in Nonsmooth Analysis, 105–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81671-1_5.
Full textBoyarsky, Abraham, and Paweł Góra. "Other Existence Results." In Laws of Chaos, 110–26. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-2024-4_6.
Full textConference papers on the topic "Existence and multiplicity results"
Bendahmane, M., M. Chrif, and S. El Manouni. "Existence and multiplicity results for some p(x)-Laplacian Neumann problems." In Proceedings of the Conference in Mathematics and Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814295574_0014.
Full textFrigon, Marlène. "Existence and multiplicity results for systems of first order differential equations via the method of solution-regions." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114024.
Full textBogatyrev, Vladimir, Stanislav Bogatyrev, and Anatoly Bogatyrev. "Multipath Redundant Real-Time Transmission with the Destruction of Expired Packets in Intermediate Nodes." In 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-971-979.
Full textGavassoni, Elvidio, Paulo Batista Gonc¸alves, and Deane M. Roehl. "Nonlinear Modes of a 2-DOF Inverted Pendulum." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47377.
Full textLiu, Yongjie, Zhaobo Sun, and Renfeng Yang. "Integrated Well Test Interpretation Approach for Complicated Carbonate Reservoirs: A Field Case." In Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31528-ms.
Full textChang, W., J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev. "Multiplicity of soliton transformations in the vicinity of the boundaries of their existence." In Microelectronics, MEMS, and Nanotechnology, edited by Derek Abbott, Tomaso Aste, Murray Batchelor, Robert Dewar, Tiziana Di Matteo, and Tony Guttmann. SPIE, 2007. http://dx.doi.org/10.1117/12.761199.
Full textWan Azmi, Wan Ashraf, and Mesliza Mohamed. "Existence and multiplicity of positive solutions for singular second order Dirichlet boundary value problem." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823876.
Full textBreuer, B., J. Horák, P. J. McKenna, M. Plum, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Travelling Waves in a Nonlinearly Supported Beam: A Computer-Assisted Existence and Multiplicity Proof." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241617.
Full textCHINNÌ, A., F. CAMMAROTO, and B. Di BELLA. "MULTIPLICITY RESULTS FOR TWO POINTS BOUNDARY VALUE PROBLEMS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0084.
Full textFARACI, FRANCESCA. "SOME MULTIPLICITY RESULTS FOR SECOND ORDER NON-AUTONOMOUS SYSTEMS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0086.
Full textReports on the topic "Existence and multiplicity results"
Wendelberger, James G. Initial Results for Neutron Multiplicity Uncertainties: The Correlation. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1335591.
Full textHesselt, Matteo, Jun Hyuk, Hado van Hassel, and David Heaphy. Some Existence Results for Internal Deep RL Architecture. Web of Open Science, April 2020. http://dx.doi.org/10.37686/ejai.v1i1.32.
Full textAbdelsalam, A., S. Kamel, M. E. Hafiz, N. Sabry, and N. Rashed. Results on the scaling of multiplicity distributions of fast target fragments in high energy nucleus-nucleus collisions. Edited by Lotfia Elnai and Ramy Mawad. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)148-154.
Full textSabates-Wheeler, Rachel, and Carolina Szyp. Key Considerations for Targeting Social Assistance in Situations of Protracted Crises. Institute of Development Studies (IDS), March 2022. http://dx.doi.org/10.19088/basic.2022.012.
Full textLylo, Taras. THE IDEOLOGEME «DICTATORSHIP OF RELATIVISM» IN THE ROBERTO DE MATTEI’S ESSAYS: POSTMODERN AND POST-COMMUNIST CONTEXTS. Ivan Franko National University of Lviv, March 2021. http://dx.doi.org/10.30970/vjo.2021.50.11100.
Full textBaader, Franz. Terminological cycles in a description logic with existential restrictions. Technische Universität Dresden, 2002. http://dx.doi.org/10.25368/2022.120.
Full textMykhayliv, Natalya. THE SUBJECT OF OF “VOGUE” AND “HARPER’S BAZAAR” MAGAZINES. Ivan Franko National University of Lviv, February 2021. http://dx.doi.org/10.30970/vjo.2021.49.11066.
Full textClément-Fontaine, Mélanie, Roberto Di Cosmo, Bastien Guerry, Patrick Moreau, and François Pellegrini. Encouraging a wider usage of software derived from research. Ministère de l'enseignement supérieur et de la recherche, November 2019. http://dx.doi.org/10.52949/4.
Full textBenavente, José Miguel, and Pluvia Zuñiga. The Effectiveness of Innovation Policy and the Moderating Role of Market Competition: Evidence from Latin American Firms. Inter-American Development Bank, September 2021. http://dx.doi.org/10.18235/0003655.
Full textTOTROVA, Z. H. THE TOPIC OF OBJECTIVITY OF KNOWLEDGE AS A SOCIOCULTURAL PROBLEM. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2077-1770-2021-14-1-3-14-21.
Full text