To see the other types of publications on this topic, follow the link: Exergo-economic.

Journal articles on the topic 'Exergo-economic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Exergo-economic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aygun, Hakan, Mehmet E. Cilgin, and Onder Turan. "Exergo-economic cost accounting for PW4000 turbofan engine and its components." MATEC Web of Conferences 314 (2020): 02003. http://dx.doi.org/10.1051/matecconf/202031402003.

Full text
Abstract:
You The several series of PW4000 high bypass turbofan engine have used so far in many aircrafts. These commercial engines have played a crucial role on passenger and freight transportations. Namely, these engines are closely related to the environment impacts and security of energy supply. In this article, exergoeconomic analysis which is useful tool to investigate existing potential for improvement of the a system efficiency were carried out. The assesment, design and optimization of energy consuming systems are performed by means of these analyses. Therefore, thermo-economic costs were assigned to existing exergetic values of PW400 engine. Also exergo-economic performance parameters were evaluated. Finally, exergoeconomic deputy parameters were examined to understand relations with exergo-economic parameters. Based on the results of exergo-economics analysis, for Fan and exhaust, specific thrust costs are estimated 5.7051 $/hkN and 68.45$/hkN respectively. Also exergo-economics factor of PW4000 is found 7.958 % , while relative cost difference is determined at highest rate with 24.458 % for combustion chamber . With examination relations between economic variables and exergo-economic performance parameters, the change between 0.6 and 1.2 $/kg in the fuel price leads to increase the exhaust and fan specific thrust costs with 82.4701 $/hkN and 5.4332 $/hkN respectively. It is expected that conclusions of this study are helpful to notify exergo-economic impact of PW4000 engine Also, it may be benchmarking for similar gas turbine engines.
APA, Harvard, Vancouver, ISO, and other styles
2

Vallis, Athanasios G., Theodoros C. Zannis, Evangelos V. Hristoforou, Elias A. Yfantis, Efthimios G. Pariotis, Dimitrios T. Hountalas, and John S. Katsanis. "Design of Container Ship Main Engine Waste Heat Recovery Supercritical CO2 Cycles, Optimum Cycle Selection through Thermo-Economic Optimization with Genetic Algorithm and Its Exergo-Economic and Exergo-Environmental Analysis." Energies 15, no. 15 (July 26, 2022): 5398. http://dx.doi.org/10.3390/en15155398.

Full text
Abstract:
In the present study, energy and exergy analyses of a simple supercritical, a split supercritical and a cascade supercritical CO2 cycle are conducted. The bottoming cycles are coupled with the main two-stroke diesel engine of a 6800 TEU container ship. An economic analysis is carried out to calculate the total capital cost of these installations. The functional parameters of these cycles are optimized to minimize the electricity production cost (EPC) using a genetic algorithm. Exergo-economic and exergo-environmental analyses are conducted to calculate the cost of the exergetic streams and various exergo-environmental parameters. A parametric analysis is performed for the optimum bottoming cycle to investigate the impact of ambient conditions on the energetic, exergetic, exergo-economic and exergo-environmental key performance indicators. The theoretical results of the integrated analysis showed that the installation and operation of a waste heat recovery optimized split supercritical CO2 cycle in a 6800 TEU container ship can generate almost 2 MW of additional electric power with a thermal efficiency of 14%, leading to high fuel and CO2 emission savings from auxiliary diesel generators and contributing to economically viable shipping decarbonization.
APA, Harvard, Vancouver, ISO, and other styles
3

WU, S. Y., Y. R. LI, and D. L. ZENG. "EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 517–19. http://dx.doi.org/10.1142/s0217979205028943.

Full text
Abstract:
Based on the exergo-economic analysis of low temperature heat exchanger heat transfer and flow process, a new exergo-economic criterion which is defined as the net profit per unit heat flux for cryogenic exergy recovery low temperature heat exchangers is put forward. The application of criterion is illustrated by the evaluation of down-flow, counter-flow and cross-flow low temperature heat exchangers performance.
APA, Harvard, Vancouver, ISO, and other styles
4

Alibaba, Massomeh, Razieh Pourdarbani, Mohammad Hasan Khoshgoftar Manesh, Israel Herrera-Miranda, Iván Gallardo-Bernal, and José Luis Hernández-Hernández. "Conventional and Advanced Exergy-Based Analysis of Hybrid Geothermal–Solar Power Plant Based on ORC Cycle." Applied Sciences 10, no. 15 (July 28, 2020): 5206. http://dx.doi.org/10.3390/app10155206.

Full text
Abstract:
Today, as fossil fuels are depleted, renewable energy must be used to meet the needs of human beings. One of the renewable energy sources is undoubtedly the solar–geothermal power plant. In this paper, the conventional and advanced, exergo-environmental and exergo-economic analysis of a geothermal–solar hybrid power plant (SGHPP) based on an organic Rankin cycle (ORC) cycle is investigated. In this regard, at first, a conventional analysis was conducted on a standalone geothermal cycle (first mode), as well as a hybrid solar–geothermal cycle (second mode). The results of exergy destruction for simulating the standalone geothermal cycle showed that the ORC turbine with 1050 kW had the highest exergy destruction that was 38% of the total share of destruction. Then, the ORC condenser with 26% of the total share of exergy destruction was in second place. In the hybrid geothermal–solar cycle, the solar panel had the highest environmental impact and about 56% of the total share of exergy destruction. The ORC turbine had about 9% of all exergy destruction. The results of the advanced analysis of exergy in the standalone geothermal cycle showed that the avoidable exergy destruction of the condenser was the highest. In the hybrid geothermal–solar cycle, the solar panel, steam economizer and steam evaporator were ranked first to third from an avoidable exergy destruction perspective. The avoidable exergo-economic destruction of the evaporator and pump were higher than the other components. The hybrid geothermal–solar cycle, steam economizer, solar pane and steam evaporator were ranked first to third, respectively, and they could be modified. The avoidable exergo-environmental destruction of the ORC turbine and the ORC pump were the highest, respectively. In the hybrid geothermal–solar cycle, steam economizers, solar panel and steam evaporators had the highest avoidable exergy destruction, respectively. For the standalone geothermal cycle, the total endogenous exergy destruction and exogenous exergy destruction was 83.61% and 16.39%. Moreover, from an exergo-economic perspective, 89% of the total destruction rate was endogenous and 11% was exogenous. From an exergo-environmental perspective, 88.73% of the destruction rate was endogenous and 11.27% was exogenous. For the hybrid geothermal–solar cycle, the total endogenous and exogenous exergy destruction was 75.08% and 24.92%, respectively. Moreover, 81.82% of the exergo-economic destruction rate was endogenous and 18.82% was exogenous. From an exergo-environmental perspective, 81.19% of the exergy destruction was endogenous and 18.81% was exogenous.
APA, Harvard, Vancouver, ISO, and other styles
5

Talluri, Lorenzo, Giampaolo Manfrida, and Lorenzo Ciappi. "Exergo-economic assessment of OTEC power generation." E3S Web of Conferences 238 (2021): 01015. http://dx.doi.org/10.1051/e3sconf/202123801015.

Full text
Abstract:
Ocean Thermal Energy Conversion is an important renewable energy technology aimed at harvesting the large energy resources connected to the temperature gradient between shallow and deep ocean waters, mainly in the tropical region. After the first small-size demonstrators, the current technology is focused on the use of Organic Rankine Cycles, which are suitable for operating with very low temperatures of the resource. With respect to other applications of binary cycles, a large fraction of the output power is consumed for harvesting the resource – that is, in the case of OTEC, for pumping the cold and hot water resource. An exergy analysis of the process (including thermodynamic model of the power cycle as well as heat transfer and friction modelling of the primary resource circuit) was developed and applied to determine optimal conditions (for output power and for exergy efficiency). A parametric analysis examining the main design constraints (temperature range of the condenser and mass flow ratio of hot and cold resource flows) is performed. The cost of power equipment is evaluated applying equipment cost correlations, and an exergo-economic analysis is performed. The results allow to calculate the production cost of electricity and its progressive build-up across the conversion process. A sensitivity analysis with respect to the main design variables is performed.
APA, Harvard, Vancouver, ISO, and other styles
6

Giusti, E., L. Ciappi, P. Ungar, C. Zuffi, D. Fiaschi, G. Manfrida, and L. Talluri. "Exergo-economic and exergo-environmental analysis of a binary geothermal power plant with solar boosting." Journal of Physics: Conference Series 2385, no. 1 (December 1, 2022): 012124. http://dx.doi.org/10.1088/1742-6596/2385/1/012124.

Full text
Abstract:
Abstract The exploitation of renewable energies is a solution to the energy, economic and environmental issues related to the massive use of fossil resources. Thus, investing in renewable technologies is essential to achieve the carbon-neutral scenario within 2050. In this framework, geothermal energy may have a key role. In particular, power plants with a closed binary cycle are suitable for harnessing geothermal resources with low and medium enthalpy levels. They are prone to be integrated with other renewable devices to increase the global power output. Geothermal fluid can be drawn constantly from underground throughout the day and seasons. Conversely, the availability and intensity of solar energy depend on weather conditions and the time of year. In Italy, geothermal energy is currently harvested for continuous electricity generation, while solar energy is mainly used for photovoltaic generation. For small-to-medium size plants, rated between 5 and 20 MWe, the geothermal and thermodynamic solar hybridization may lead to relevant benefits for the economic competitiveness regarding separate photovoltaic or thermodynamic solar systems. This article aims to investigate the economic and environmental aspects of geothermal power plants with a closed binary cycle coupled with a topper cycle fed by linear parabolic solar collectors. The system operation in both design and off-design conditions was analysed, and exergo-economic and exergo-environmental simulations were conducted. The application site was selected near Torre Alfina (Italy). It has a water-dominant reservoir with a pressure of 44 bar, a temperature of 140 °C, and content of non-condensable gases (NCGs) approximately equal to 2% by weight. At the design point, the net power is 8.4 MW and the first and second principle efficiencies are 9.31% and 18.45%, respectively. The exergo-economic and exergo-environmental analyses indicate that the components with the highest economic and environmental impact are the condenser, the field of solar collectors, the evaporator, and the low-pressure turbine. The levelized cost of electricity (LCOE) is equal to 14.19 c€/kWh.
APA, Harvard, Vancouver, ISO, and other styles
7

Kallio, Sonja, and Monica Siroux. "Exergy and Exergy-Economic Approach to Evaluate Hybrid Renewable Energy Systems in Buildings." Energies 16, no. 3 (January 17, 2023): 1029. http://dx.doi.org/10.3390/en16031029.

Full text
Abstract:
Hybrid renewable energy systems (HRES) combine two or more renewable energy systems and are an interesting solution for decentralized renewable energy generation. The exergy and exergo-economic approach have proven to be useful methods to analyze hybrid renewable energy systems. The aim of this paper is to present a review of exergy and exergy-economic approaches to evaluate hybrid renewable energy systems in buildings. In the first part of the paper, the methodology of the exergy and exergo-economic analysis is introduced as well as the main performance indicators. The influence of the reference environment is analyzed, and results show that the selection of the reference environment has a high impact on the results of the exergy analysis. In the last part of the paper, different literature studies based on exergy and exergo-economic analysis applied to the photovoltaic-thermal collectors, fuel-fired micro-cogeneration systems and hybrid renewable energy systems are reviewed. It is shown that the dynamic exergy analysis is the best way to evaluate hybrid renewable energy systems if they are operating under a dynamic environment caused by climatic conditions and/or energy demand.
APA, Harvard, Vancouver, ISO, and other styles
8

Valencia Ochoa, Guillermo, Jhan Piero Rojas, and Jorge Duarte Forero. "Advance Exergo-Economic Analysis of a Waste Heat Recovery System Using ORC for a Bottoming Natural Gas Engine." Energies 13, no. 1 (January 5, 2020): 267. http://dx.doi.org/10.3390/en13010267.

Full text
Abstract:
This manuscript presents an advanced exergo-economic analysis of a waste heat recovery system based on the organic Rankine cycle from the exhaust gases of an internal combustion engine. Different operating conditions were established in order to find the exergy destroyed values in the components and the desegregation of them, as well as the rate of fuel exergy, product exergy, and loss exergy. The component with the highest exergy destroyed values was heat exchanger 1, which is a shell and tube equipment with the highest mean temperature difference in the thermal cycle. However, the values of the fuel cost rate (47.85 USD/GJ) and the product cost rate (197.65 USD/GJ) revealed the organic fluid pump (pump 2) as the device with the main thermo-economic opportunity of improvement, with an exergo-economic factor greater than 91%. In addition, the component with the highest investment costs was the heat exchanger 1 with a value of 2.769 USD/h, which means advanced exergo-economic analysis is a powerful method to identify the correct allocation of the irreversibility and highest cost, and the real potential for improvement is not linked to the interaction between components but to the same component being studied.
APA, Harvard, Vancouver, ISO, and other styles
9

Abam, Fidelis I., Tobinson A. Briggs, Ekwe B. Ekwe, and Samuel O. Effiom. "Investigation of intercooler-effectiveness on exergo-economic and exergo-sustainability parameters of modified Brayton cycles." Case Studies in Thermal Engineering 10 (September 2017): 9–18. http://dx.doi.org/10.1016/j.csite.2017.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dolinskii, A. A., B. Kh Draganov, and V. A. Dubrovin. "Optimization of Technical Systems by Exergo-Economic Methods." Heat Transfer Research 36, no. 3 (2005): 229–35. http://dx.doi.org/10.1615/heattransres.v36.i3.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chejne, F., and J. A. Restrepo. "New rules for the exergo-economic optimization methodology." Energy 28, no. 10 (August 2003): 993–1003. http://dx.doi.org/10.1016/s0360-5442(03)00083-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fiaschi, Daniele, Giampaolo Manfrida, Karolina Petela, Federico Rossi, Adalgisa Sinicropi, and Lorenzo Talluri. "Exergo-Economic and Environmental Analysis of a Solar Integrated Thermo-Electric Storage." Energies 13, no. 13 (July 6, 2020): 3484. http://dx.doi.org/10.3390/en13133484.

Full text
Abstract:
Renewable energies are often subject to stochastic resources and daily cycles. Energy storage systems are consequently applied to provide a solution for the mismatch between power production possibility and its utilization period. In this study, a solar integrated thermo-electric energy storage (S-TEES) is analyzed both from an economic and environmental point of view. The analyzed power plant with energy storage includes three main cycles, a supercritical CO2 power cycle, a heat pump and a refrigeration cycle, indirectly connected by sensible heat storages. The hot reservoir is pressurized water at 120/160 °C, while the cold reservoir is a mixture of water and ethylene glycol, maintained at −10/−20 °C. Additionally, the power cycle’s evaporator section rests on a solar-heated intermediate temperature (95/40 °C) heat reservoir. Exergo-economic and exergo-environmental analyses are performed to identify the most critical components of the system and to obtain the levelized cost of electricity (LCOE), as well as the environmental indicators of the system. Both economic and environmental analyses revealed that solar energy converting devices are burdened with the highest impact indicators. According to the results of exergo-economic analysis, it turned out that average annual LCOE of S-TEES can be more than two times higher than the regular electricity prices. However, the true features of the S-TEES system should be only fully assessed if the economic results are balanced with environmental analysis. Life cycle assessment (LCA) revealed that the proposed S-TEES system has about two times lower environmental impact than referential hydrogen storage systems compared in the study.
APA, Harvard, Vancouver, ISO, and other styles
13

Wu, Shuang Ying, Lan Xiao, Si Min Chen, and Feng Hua Guo. "Exergo-Economic Performance Evaluation of Enhanced Tube under Equivalent Pump Power Consumption." Advanced Materials Research 354-355 (October 2011): 310–14. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.310.

Full text
Abstract:
Based on the first and second laws of thermodynamics as well as exergo-economic theory, comprehensive performance evaluation criterion has been proposed for enhanced tube under the condition of equivalent pump (fan) power consumption, accounting for a variety of factors such as heat transfer, flow and investment costs. Performance evaluation criterion formula, namely, net profit value (NPV) has been derived from the perspective of the exergy recovery. Take spirally corrugated tube as an example, the results show that the exergo-economic performance of the spirally corrugated tube is superior to smooth tube for the range considered in the present study. From the viewpoint of NPV, although NPV of enhanced tube is greater than that of smooth tube, there exist critical values of Re and Nq exceeding which NPV of enhanced tube would be less than zero, showing no engineering significance.
APA, Harvard, Vancouver, ISO, and other styles
14

Le Goff, P., and J. M. Hornut. "Exergy Analysis and Exergo-Economic Optimization of Industrial Processes." Revue de l'Institut Français du Pétrole 53, no. 1 (January 1998): 99–102. http://dx.doi.org/10.2516/ogst:1998011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lamas, Wendell de Queiróz. "Exergo-economic analysis of a typical wind power system." Energy 140 (December 2017): 1173–81. http://dx.doi.org/10.1016/j.energy.2017.09.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Koşar, Ali. "Exergo-economic analysis of micro pin fin heat sinks." International Journal of Energy Research 35, no. 11 (July 26, 2010): 1004–13. http://dx.doi.org/10.1002/er.1751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mevada, Dinesh, Hitesh Panchal, and Kishor Kumar Sadasivuni. "Investigation on evacuated tubes coupled solar still with condenser and fins: Experimental, exergo-economic and exergo-environment analysis." Case Studies in Thermal Engineering 27 (October 2021): 101217. http://dx.doi.org/10.1016/j.csite.2021.101217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Basta, Giuseppe, Nicoletta Meloni, Francesco Poli, Lorenzo Talluri, and Giampaolo Manfrida. "Energy, Exergy and Exergo-Economic Analysis of an OTEC Power Plant Utilizing Kalina Cycle." Global Journal of Energy Technology Research Updates 8 (December 28, 2021): 1–18. http://dx.doi.org/10.15377/2409-5818.2021.08.1.

Full text
Abstract:
This study aims to analyse an Ocean Thermal Energy Conversion (OTEC) system through the use of a Kalina Cycle (KC), having a water-ammonia mixture as a working fluid. KC represents a technology capable of exploiting the thermal gap of ocean water. This system was then compared with OTEC systems, which exploit ammonia, R134A and butane-pentane mixture as working fluid. The comparison was carried on through energy analysis, exergetic analysis, and exergo-economic analysis using the EES (Engineering Equation Solver) software. For each case study, cost rates and auxiliary equations were evaluated for all components and the mass flow rate and unit exergy cost for each stream. The results showed that the KC with water-ammonia as working fluid achieves the best exergo-economic performance among the examined cycles. The cost of electricity produced through KC using water - ammonia mixture was found to be 26,66 c€/kWh. The thermal efficiency and the exergetic efficiency were calculated and the withdrawal depth of ocean water was considered. The efficiencies resulted to be 3.68% for the thermal efficiency and 95.96% for the exergetic efficiency.
APA, Harvard, Vancouver, ISO, and other styles
19

Khanmohammadi, Shoaib, Ahmad Reza Azimian, and Saber Khanmohammadi. "Exergy and exergo-economic evaluation of Isfahan steam power plant." International Journal of Exergy 12, no. 2 (2013): 249. http://dx.doi.org/10.1504/ijex.2013.053386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Saxena, Prakash, and K. S. Reddy. "Exergo-economic analysis of parabolic trough integrated cogeneration power plant." International Journal of Exergy 26, no. 1/2 (2018): 41. http://dx.doi.org/10.1504/ijex.2018.092502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Saxena, Prakash, and K. S. Reddy. "Exergo-economic analysis of parabolic trough integrated cogeneration power plant." International Journal of Exergy 26, no. 1/2 (2018): 41. http://dx.doi.org/10.1504/ijex.2018.10014023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Alvarado, S., and C. Gherardelli. "Input-output exergo-economic optimization of multicomponent-multiproduct systems methodology." Energy 19, no. 2 (February 1994): 251–58. http://dx.doi.org/10.1016/0360-5442(94)90064-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alibaba, Massomeh, Razieh Pourdarbani, Mohammad Hasan Khoshgoftar Manesh, Guillermo Valencia Ochoa, and Jorge Duarte Forero. "Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept." Heliyon 6, no. 4 (April 2020): e03758. http://dx.doi.org/10.1016/j.heliyon.2020.e03758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ismaila, Kehinde G., Ahmet Z. Sahin, and Bekir S. Yilbas. "Exergo-economic optimization of concentrated solar photovoltaic and thermoelectric hybrid generator." Journal of Thermal Analysis and Calorimetry 145, no. 3 (February 5, 2021): 1035–52. http://dx.doi.org/10.1007/s10973-020-10508-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shoeibi, Shahin, Nader Rahbar, Ahad Abedini Esfahlani, and Hadi Kargarsharifabad. "A comprehensive review of Enviro-Exergo-economic analysis of solar stills." Renewable and Sustainable Energy Reviews 149 (October 2021): 111404. http://dx.doi.org/10.1016/j.rser.2021.111404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nakashima, C. Y., S. Oliveira Jr., and E. F. Caetano. "SUBSEA MULTIPHASE PUMPING SYSTEM X GAS LIFT: AN EXERGO-ECONOMIC COMPARISON." Revista de Engenharia Térmica 3, no. 2 (December 31, 2004): 107. http://dx.doi.org/10.5380/reterm.v3i2.3531.

Full text
Abstract:
This paper presents a methodology for an exergetic comparison between two artificial lift systems: a gas lift and a twin-screw multiphase pump system, and a standalone offshore platform. A software (Hysys.Process v2.1) was used to simulate an offshore platform with the artificial lift methods and calculate all properties (including exergy) of the material and energy streams. The twin-screw multiphase pump behavior was simulated with a thermodynamic model developed recently (NAKASHIMA (2000) and NAKASHIMA, OLIVEIRA and CAETANO (2002)). The operational conditions of the PETROBRAS 7- MRL-72D-RJS well operating with cited systems were predicted by an internal study conducted in PETROBRAS (BARUZZI et al. (2001a) and partially published in BARUZZI et al. (2001b)). The comparisons cover the range of 2000 to 2020, the same range adopted in the study. Results show that in general the production costs are lower when the multiphase pump is used. The main advantages of this method over the gas lift is the absence of material (gas) recycle and a better energy management.
APA, Harvard, Vancouver, ISO, and other styles
27

Mondal, P., and S. Ghosh. "Externally fired biomass gasification-based combined cycle plant: exergo-economic analysis." International Journal of Exergy 20, no. 4 (2016): 496. http://dx.doi.org/10.1504/ijex.2016.078097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Haroon, Muhammad, Nadeem Ahmed Sheikh, Abubakr Ayub, Rasikh Tariq, Farooq Sher, Aklilu Tesfamichael Baheta, and Muhammad Imran. "Exergetic, Economic and Exergo-Environmental Analysis of Bottoming Power Cycles Operating with CO2-Based Binary Mixture." Energies 13, no. 19 (September 29, 2020): 5080. http://dx.doi.org/10.3390/en13195080.

Full text
Abstract:
This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
APA, Harvard, Vancouver, ISO, and other styles
29

Dainelli, Nicola, Giampaolo Manfrida, Karolina Petela, and Federico Rossi. "Exergo-Economic Evaluation of the Cost for Solar Thermal Depuration of Water." Energies 10, no. 9 (September 13, 2017): 1395. http://dx.doi.org/10.3390/en10091395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Siddiqui, F. R., M. A. I. El-Shaarawi, and S. A. M. Said. "Exergo-economic analysis of a solar driven hybrid storage absorption refrigeration cycle." Energy Conversion and Management 80 (April 2014): 165–72. http://dx.doi.org/10.1016/j.enconman.2014.01.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Barzegaravval, Hasan, Seyed Ehsan Hosseini, Mazlan Abdul Wahid, and Aminuddin Bin Saat. "Dimensionless exergo-economic and emission parameters for biogas fueled gas turbine optimization." Journal of Cleaner Production 262 (July 2020): 121153. http://dx.doi.org/10.1016/j.jclepro.2020.121153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Turan, Onder, and Hakan Aydin. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine." Energy 74 (September 2014): 638–50. http://dx.doi.org/10.1016/j.energy.2014.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Talluri, Lorenzo, Giampaolo Manfrida, and Daniele Fiaschi. "Thermoelectric energy storage with geothermal heat integration – Exergy and exergo-economic analysis." Energy Conversion and Management 199 (November 2019): 111883. http://dx.doi.org/10.1016/j.enconman.2019.111883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Jiangjiang, Shuwei Li, Guoqing Zhang, and Ying Yang. "Performance investigation of a solar-assisted hybrid combined cooling, heating and power system based on energy, exergy, exergo-economic and exergo-environmental analyses." Energy Conversion and Management 196 (September 2019): 227–41. http://dx.doi.org/10.1016/j.enconman.2019.05.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fiaschi, Daniele, Giampaolo Manfrida, Karolina Petela, and Lorenzo Talluri. "Thermo-Electric Energy Storage with Solar Heat Integration: Exergy and Exergo-Economic Analysis." Energies 12, no. 4 (February 17, 2019): 648. http://dx.doi.org/10.3390/en12040648.

Full text
Abstract:
A Thermo-Electric Energy Storage (TEES) system is proposed to provide peak-load support (1–2 daily hours of operation) for distributed users using small/medium-size photovoltaic systems (4 to 50 kWe). The purpose is to complement the PV with a reliable storage system that cancompensate the produc tivity/load mismatch, aiming at off-grid operation. The proposed TEES applies sensible heat storage, using insulated warm-water reservoirs at 120/160 °C, and cold storage at −10/−20 °C (water and ethylene glycol). The power cycle is a trans-critical CO2 unit including recuperation; in the storage mode, a supercritical heat pump restores heat to the hot reservoir, while a cooling cycle cools the cold reservoir; both the heat pump and cooling cycle operate on photovoltaic (PV) energy, and benefit from solar heat integration at low–medium temperatures (80–120 °C). This allows the achievement of a marginal round-trip efficiency (electric-to-electric) in the range of 50% (not considering solar heat integration).The TEES system is analysed with different resource conditions and parameters settings (hot storage temperature, pressure levels for all cycles, ambient temperature, etc.), making reference to standard days of each month of the year; exergy and exergo-economic analyses are performed to identify the critical items in the complete system and the cost of stored electricity.
APA, Harvard, Vancouver, ISO, and other styles
36

Saloux, E., M. Sorin, and A. Teyssedou. "Exergo-economic analyses of two building integrated energy systems using an exergy diagram." Solar Energy 189 (September 2019): 333–43. http://dx.doi.org/10.1016/j.solener.2019.07.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Calise, Francesco, Davide Capuano, and Laura Vanoli. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant." Energies 8, no. 4 (April 1, 2015): 2606–46. http://dx.doi.org/10.3390/en8042606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sahin, Ahmet Z., Abdullah Al-Sharafi, Bekir S. Yilbas, and Abdul Khaliq. "Overall performance assessment of a combined cycle power plant: An exergo-economic analysis." Energy Conversion and Management 116 (May 2016): 91–100. http://dx.doi.org/10.1016/j.enconman.2016.02.079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Du, Yawei, Xuefei Liang, Yan Liu, Lixin Xie, and Shaofeng Zhang. "Exergo-economic analysis and multi-objective optimization of seawater reverse osmosis desalination networks." Desalination 466 (September 2019): 1–15. http://dx.doi.org/10.1016/j.desal.2019.04.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ochoa, Guillermo Valencia, Carlos Acevedo Peñaloza, and Jhan Piero Rojas. "Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids." Applied Sciences 9, no. 21 (October 25, 2019): 4526. http://dx.doi.org/10.3390/app9214526.

Full text
Abstract:
This paper presents a thermo-economic analysis of a simple organic Rankine cycle (SORC) as a waste heat recovery (WHR) systems of a 2 MW stationary gas engine evaluating different working fluids. Initially, a systematic methodology was implemented to select three organic fluids according to environmental and safety criteria, as well as critical system operational conditions. Then, thermodynamic, exergy, and exergo-economic models of the system were developed under certain defined considerations, and a set of parametric studies are presented considering key variables of the system such as pump efficiency, turbine efficiency, pinch point condenser, and evaporator. The results show the influence of these variables on the combined power of the system (gas engine plus ORC), ORC exergetic efficiency, specific fuel consumption (∆BSFC), and exergo indicators such as the payback period (PBP), levelized cost of energy (LCOE), and the specific investment cost (SIC). The results revealed that heat transfer equipment had the highest exergy destruction cost rates representing 81.25% of the total system cost. On the other hand, sensitivity analyses showed that acetone presented better energetic and exergetic performance when the efficiency of the turbine, evaporator, and condenser pinch point was increased. However, toluene was the fluid with the best results when pump efficiency was increased. In terms of the cost of exergy destroyed by equipment, the results revealed that acetone was the working fluid that positively impacted cost reduction when pump efficiency was improved; and toluene, when turbine efficiency was increased. Finally, the evaporator and condenser pinch point increased all the economic indicators of the system. In this sense, the working fluid with the best performance in economic terms was acetone, when the efficiency of the turbine, pinch condenser, and pinch evaporator was enhanced.
APA, Harvard, Vancouver, ISO, and other styles
41

Singh, D. B. "Exergo-economic, enviro-economic and productivity analyses of N identical evacuated tubular collectors integrated double slope solar still." Applied Thermal Engineering 148 (February 2019): 96–104. http://dx.doi.org/10.1016/j.applthermaleng.2018.10.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chen, Yuzhu, Dandan Zhao, Jinzhao Xu, Jun Wang, and Peter D. Lund. "Performance analysis and exergo-economic optimization of a solar-driven adjustable tri-generation system." Energy Conversion and Management 233 (April 2021): 113873. http://dx.doi.org/10.1016/j.enconman.2021.113873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Aygun, Hakan, and Onder Turan. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight." Energy 224 (June 2021): 120227. http://dx.doi.org/10.1016/j.energy.2021.120227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sharma, Saksham, Rishabh Rathor, Harshit Gautam, Kirti Katiyar, Chinmay Gunawat, and Pankaj Dumka. "Influence of Coco Peat Powder on The Solar Still Productivity: An Exergo-Economic Study." IOP Conference Series: Earth and Environmental Science 795, no. 1 (June 1, 2021): 012012. http://dx.doi.org/10.1088/1755-1315/795/1/012012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fierro, José J., Cristian Hernández-Gómez, Carlos A. Marenco-Porto, César Nieto-Londoño, Ana Escudero-Atehortua, Mauricio Giraldo, Hussam Jouhara, and Luiz C. Wrobel. "Exergo-economic comparison of waste heat recovery cycles for a cement industry case study." Energy Conversion and Management: X 13 (January 2022): 100180. http://dx.doi.org/10.1016/j.ecmx.2022.100180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sharma, Meeta, and Onkar Singh. "Exergo-economic study of a dual-pressure HRSG in gas/steam combined cycle plants." International Journal of Ambient Energy 41, no. 1 (March 7, 2018): 50–57. http://dx.doi.org/10.1080/01430750.2018.1443496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Seyfouri, Zeynab, Mehran Ameri, and Mozaffar Ali Mehrabian. "Exergo-economic analysis of a low-temperature geothermal-fed combined cooling and power system." Applied Thermal Engineering 145 (December 2018): 528–40. http://dx.doi.org/10.1016/j.applthermaleng.2018.09.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Jamil, Muhammad Ahmad, Bilal Ahmed Qureshi, and Syed M. Zubair. "Exergo-economic analysis of a seawater reverse osmosis desalination plant with various retrofit options." Desalination 401 (January 2017): 88–98. http://dx.doi.org/10.1016/j.desal.2016.09.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lawal, Dahiru U., Syed M. Zubair, and Mohammad A. Antar. "Exergo-economic analysis of humidification-dehumidification (HDH) desalination systems driven by heat pump (HP)." Desalination 443 (October 2018): 11–25. http://dx.doi.org/10.1016/j.desal.2018.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Senturk Acar, Merve, and Oguz Arslan. "Exergo-economic Evaluation of a new drying system Boosted by Ranque-Hilsch vortex tube." Applied Thermal Engineering 124 (September 2017): 1–16. http://dx.doi.org/10.1016/j.applthermaleng.2017.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography