Journal articles on the topic 'Excitable media'

To see the other types of publications on this topic, follow the link: Excitable media.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Excitable media.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zykov, Vladimir. "Excitable media." Scholarpedia 3, no. 5 (2008): 1834. http://dx.doi.org/10.4249/scholarpedia.1834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Colosimo, A. "Theory of excitable media." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 275, no. 2 (April 1989): 207–8. http://dx.doi.org/10.1016/0022-0728(89)87179-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Colosimo, A. "Theory of Excitable Media." Bioelectrochemistry and Bioenergetics 21, no. 2 (April 1989): 207–8. http://dx.doi.org/10.1016/0302-4598(89)80011-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andrecut, M. "A Simple Three-States Cellular Automaton for Modelling Excitable Media." International Journal of Modern Physics B 12, no. 05 (February 20, 1998): 601–7. http://dx.doi.org/10.1142/s0217979298000363.

Full text
Abstract:
Wave propagation in excitable media provides an important example of spatiotemporal self-organization. The Belousov–Zhabotinsky (BZ) reaction and the impulse propagation along nerve axons are two well-known examples of this phenomenon. Excitable media have been modelled by continuous partial differential equations and by discrete cellular automata. Here we describe a simple three-states cellular automaton model based on the properties of excitation and recovery that are essential to excitable media. Our model is able to reproduce the dynamics of patterns observed in excitable media.
APA, Harvard, Vancouver, ISO, and other styles
5

Davydov, Davydov, Morozov, Stolyarov, and Yamaguchi. "Autowaves in moving excitable media." Condensed Matter Physics 7, no. 3 (2004): 565. http://dx.doi.org/10.5488/cmp.7.3.565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hagberg, A., and E. Meron. "Propagation failure in excitable media." Physical Review E 57, no. 1 (January 1, 1998): 299–303. http://dx.doi.org/10.1103/physreve.57.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karamysheva, T. V. "Traveling waves in excitable media." Differential Equations 48, no. 3 (March 2012): 446–48. http://dx.doi.org/10.1134/s0012266112030172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vasiev, Bakthier, Florian Siegert, and Cornelis Weijer. "Multiarmed Spirals in Excitable Media." Physical Review Letters 78, no. 12 (March 24, 1997): 2489–92. http://dx.doi.org/10.1103/physrevlett.78.2489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tóth, Ágota, and Kenneth Showalter. "Logic gates in excitable media." Journal of Chemical Physics 103, no. 6 (August 8, 1995): 2058–66. http://dx.doi.org/10.1063/1.469732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meron, Ehud. "Pattern formation in excitable media." Physics Reports 218, no. 1 (September 1992): 1–66. http://dx.doi.org/10.1016/0370-1573(92)90098-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

CARTWRIGHT, JULYAN H. E., VÍCTOR M. EGUÍLUZ, EMILIO HERNÁNDEZ-GARCÍA, and ORESTE PIRO. "DYNAMICS OF ELASTIC EXCITABLE MEDIA." International Journal of Bifurcation and Chaos 09, no. 11 (November 1999): 2197–202. http://dx.doi.org/10.1142/s0218127499001620.

Full text
Abstract:
The Burridge–Knopoff model of earthquake faults with viscous friction is equivalent to a van der Pol–FitzHugh–Nagumo model for excitable media with elastic coupling. The lubricated creep–slip friction law we use in Burridge–Knopoff model describes the frictional sliding dynamics of a range of real materials. Low-dimensional structures including synchronous oscillations and propagating fronts are dominant, in agreement with the results of laboratory friction experiments. Here we explore the dynamics of fronts in elastic excitable media.
APA, Harvard, Vancouver, ISO, and other styles
12

SAGUÉS, F., S. ALONSO, and J. M. SANCHO. "WAVE PATTERN DYNAMICS IN FLUCTUATING MEDIA." International Journal of Modern Physics C 13, no. 09 (November 2002): 1243–52. http://dx.doi.org/10.1142/s0129183102004091.

Full text
Abstract:
Analytical and numerical results on the ordering role of external random fluctuations in excitable systems are presented. Our study focuses on a simple model for excitable systems. Regular waves are created and sustained out of noise when the system is forced with random perturbations. Explicit results for the generation and dynamics of rings and targets are presented.
APA, Harvard, Vancouver, ISO, and other styles
13

GUO, YUZHU, YIFAN ZHAO, DANIEL COCA, and S. A. BILLINGS. "A SIMPLE SCALAR COUPLED MAP LATTICE MODEL FOR EXCITABLE MEDIA." International Journal of Bifurcation and Chaos 21, no. 11 (November 2011): 3277–92. http://dx.doi.org/10.1142/s0218127411030520.

Full text
Abstract:
A simple scalar coupled map lattice (sCML) model for excitable media is derived in this paper. The new model, which has a simple structure, is shown to be closely related to the observed phenomena in excitable media. Properties of the sCML model are also investigated. Illustrative examples show that this kind of model is capable of reproducing the behavior of excitable media and of generating complex spatiotemporal patterns.
APA, Harvard, Vancouver, ISO, and other styles
14

ZHAO, Y., S. A. BILLINGS, and ALEXANDER F. ROUTH. "IDENTIFICATION OF EXCITABLE MEDIA USING CELLULAR AUTOMATA MODELS." International Journal of Bifurcation and Chaos 17, no. 01 (January 2007): 153–68. http://dx.doi.org/10.1142/s0218127407017239.

Full text
Abstract:
Excitable media represent an important class of spatio-temporal systems which can be studied using cellular automata models. In the present study examples of excitable media behavior generated using simple cellular automata models are introduced. A mutual information algorithm is then derived to determine the neighborhood, the excitation threshold, and the number of excitation states. Based on this information two methods of identifying the rule which describes the excitable media pattern using a multimodel and a polynomial model are introduced. The results are illustrated using simulated examples and real data from a Belousov–Zhabotinskii experiment.
APA, Harvard, Vancouver, ISO, and other styles
15

Nakano, Tadashi, Jianwei Shuai, Takako Koujin, Tatsuya Suda, Yasushi Hiraoka, and Tokuko Haraguchi. "Biological excitable media based on non-excitable cells and calcium signaling." Nano Communication Networks 1, no. 1 (March 2010): 43–49. http://dx.doi.org/10.1016/j.nancom.2010.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sendiña-Nadal, I., M. Gómez-Gesteira, V. Pérez-Muñuzuri, V. Pérez-Villar, J. Armero, L. Ramírez-Piscina, J. Casademunt, F. Sagués, and J. M. Sancho. "Wave competition in excitable modulated media." Physical Review E 56, no. 6 (December 1, 1997): 6298–301. http://dx.doi.org/10.1103/physreve.56.6298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schebesch, I., and H. Engel. "Wave propagation in heterogeneous excitable media." Physical Review E 57, no. 4 (April 1, 1998): 3905–10. http://dx.doi.org/10.1103/physreve.57.3905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pechenik, Leonid, and Herbert Levine. "Refraction of waves in excitable media." Physical Review E 58, no. 3 (September 1, 1998): 2910–17. http://dx.doi.org/10.1103/physreve.58.2910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kessler, David A., Herbert Levine, and William Reynolds. "Spiral-core meandering in excitable media." Physical Review A 46, no. 8 (October 1, 1992): 5264–67. http://dx.doi.org/10.1103/physreva.46.5264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gottwald, Georg A., and Lorenz Kramer. "A normal form for excitable media." Chaos: An Interdisciplinary Journal of Nonlinear Science 16, no. 1 (March 2006): 013122. http://dx.doi.org/10.1063/1.2168393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zykov, Vladimir S., and Eberhard Bodenschatz. "Wave Propagation in Inhomogeneous Excitable Media." Annual Review of Condensed Matter Physics 9, no. 1 (March 10, 2018): 435–61. http://dx.doi.org/10.1146/annurev-conmatphys-033117-054300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gong, Xiyuan, Tetsuya Asai, and Masato Motomura. "Excitable Reaction-Diffusion Media with Memristors." Journal of Signal Processing 16, no. 4 (2012): 283–86. http://dx.doi.org/10.2299/jsp.16.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zykov, V. S. "Spiral wave initiation in excitable media." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, no. 2135 (November 12, 2018): 20170379. http://dx.doi.org/10.1098/rsta.2017.0379.

Full text
Abstract:
Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications. This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)’.
APA, Harvard, Vancouver, ISO, and other styles
24

ZHENG, ZHIGANG, and MICHAEL C. CROSS. "DEFECT-INDUCED PROPAGATION IN EXCITABLE MEDIA." International Journal of Bifurcation and Chaos 13, no. 10 (October 2003): 3125–33. http://dx.doi.org/10.1142/s0218127403008491.

Full text
Abstract:
Wave dynamics in the coupled FitzHugh–Nagumo oscillators with pacemaker defects is studied. It is found that with increasing the coupling strength, the lattice experiences a dynamical transition from a local wave to the global propagation. For large enough coupling, a transition from global wave propagation to the propagation failure can be observed. Noise-enhanced wave propagation in the propagation-failure regime is revealed.
APA, Harvard, Vancouver, ISO, and other styles
25

CHERNIHOVSKYI, ANTON, and KLAUS LEHNERTZ. "MEASURING SYNCHRONIZATION WITH NONLINEAR EXCITABLE MEDIA." International Journal of Bifurcation and Chaos 17, no. 10 (October 2007): 3425–29. http://dx.doi.org/10.1142/s0218127407019159.

Full text
Abstract:
We examine a possible utilization of the recently proposed method of signal-induced excitation waves in nonlinear excitable media as a means for the noise-tolerant detection of zero-lag phase synchronization in very noisy time series. We show that in cases, where a relatively strong noise contamination aggravates the direct application of phase-based measures of synchronization, it is nevertheless possible to detect synchronization phenomena.
APA, Harvard, Vancouver, ISO, and other styles
26

Cytrynbaum, Eric N., Vincent MacKay, Olivier Nahman-Lévesque, Matt Dobbs, Gil Bub, Alvin Shrier, and Leon Glass. "Double-wave reentry in excitable media." Chaos: An Interdisciplinary Journal of Nonlinear Science 29, no. 7 (July 2019): 073103. http://dx.doi.org/10.1063/1.5092982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Muñuzuri, A. P., V. A. Davydov, M. Gómez-Gesteira, V. Pérez-Muñuzuri, and V. Pérez-Villar. "Frequency-modulated autowaves in excitable media." Physical Review E 54, no. 6 (December 1, 1996): R5921—R5924. http://dx.doi.org/10.1103/physreve.54.r5921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wellner, M., and A. M. Pertsov. "Generalized eikonal equation in excitable media." Physical Review E 55, no. 6 (June 1, 1997): 7656–61. http://dx.doi.org/10.1103/physreve.55.7656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Day, Charles. "Choreographing Wave Propagation in Excitable Media." Physics Today 55, no. 8 (August 2002): 21. http://dx.doi.org/10.1063/1.1510271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Puebla, Hector, Roland Martin, Jose Alvarez-Ramirez, and Ricardo Aguilar-Lopez. "Controlling nonlinear waves in excitable media." Chaos, Solitons & Fractals 39, no. 2 (January 2009): 971–80. http://dx.doi.org/10.1016/j.chaos.2007.04.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Maselko, Jerzy, and Kenneth Showalter. "Chemical waves in inhomogeneous excitable media." Physica D: Nonlinear Phenomena 49, no. 1-2 (April 1991): 21–32. http://dx.doi.org/10.1016/0167-2789(91)90189-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Starobin, Joseph, Yuri I. Zilberter, and C. Frank Starmer. "Vulnerability in one-dimensional excitable media." Physica D: Nonlinear Phenomena 70, no. 4 (February 1994): 321–41. http://dx.doi.org/10.1016/0167-2789(94)90069-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zemskov, E. P., and A. Yu Loskutov. "Oscillatory traveling waves in excitable media." Journal of Experimental and Theoretical Physics 107, no. 2 (August 2008): 344–49. http://dx.doi.org/10.1134/s1063776108080189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Muir, A. "Theory of excitable media, vol. 6." Endeavour 12, no. 3 (January 1988): 150–51. http://dx.doi.org/10.1016/0160-9327(88)90152-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

TRUSCOTT, J., and J. BRINDLEY. "Ocean plankton populations as excitable media." Bulletin of Mathematical Biology 56, no. 5 (September 1994): 981–98. http://dx.doi.org/10.1016/s0092-8240(05)80300-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Abraham, Ralph H. "Chaotic resonance patterns in excitable media." Journal of the Acoustical Society of America 88, S1 (November 1990): S162. http://dx.doi.org/10.1121/1.2028715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Maucher, Fabian, and Paul Sutcliffe. "Rings on strings in excitable media." Journal of Physics A: Mathematical and Theoretical 51, no. 5 (January 5, 2018): 055102. http://dx.doi.org/10.1088/1751-8121/aaa1ba.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Henze, C., E. Lugosi, and A. T. Winfree. "Helical organizing centers in excitable media." Canadian Journal of Physics 68, no. 9 (September 1, 1990): 683–710. http://dx.doi.org/10.1139/p90-100.

Full text
Abstract:
Numerical simulations of three distinct models of excitable media (two-variable Oregonator, with both variables diffusing equally; and piecewise linear A and B kinetics, with only the propagator variable diffusing) are used here to investigate the dynamics of scroll filaments, with emphasis on the role of twist. In all three models, initially uncurved filaments uniformly twisted more than a threshold amount 'sproing' into radially expanding helices, some of which stabilize at finite radius. By monitoring the evolution of these helices with a differential geometry 'tool kit', we attempt to discern the presumed causal dependence of filament motion (resolved into velocities along the normal and binormal directions of the local Frenet frame) and rotor spin rate, on local filament geometry (curvature and torsion) and twist. Twist can reverse the direction of normal velocity from that seen in untwisted scroll rings; binormal velocity is either reversed (A kinetics), abolished (B kinetics), or engendered (Oregonator). In all cases twist increased spin rate, as predicted by theory. Our efforts to perceive a functional dependence of the dynamical variables on filament geometry and twist have met with limited success, but we believe our attempts have uncovered some useful methodology and exposed some pitfalls relevant to any such investigation. The existence and properties of a novel class of stable organizing centers, as well as the existence of a threshold of twist for their induction, should be of interest to theorists. In addition, our findings here based on models suggest new phenomena to look for in various excitable media, such as the Belousov–Zhabotinsky reagent or heart muscle.
APA, Harvard, Vancouver, ISO, and other styles
39

Jung, Peter, and Gottfried Mayer-Kress. "Spatiotemporal Stochastic Resonance in Excitable Media." Physical Review Letters 74, no. 11 (March 13, 1995): 2130–33. http://dx.doi.org/10.1103/physrevlett.74.2130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gu, Guo-Feng, Hai-Ming Wei, and Guo-Ning Tang. "Wave Optics in Discrete Excitable Media." Chinese Physics Letters 29, no. 5 (May 2012): 054203. http://dx.doi.org/10.1088/0256-307x/29/5/054203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bär, M., I. G. Kevrekidis, H. H. Rotermund, and G. Ertl. "Pattern formation in composite excitable media." Physical Review E 52, no. 6 (December 1, 1995): R5739—R5742. http://dx.doi.org/10.1103/physreve.52.r5739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Grindrod, Peter. "One-way blocks in excitable media." Chaos, Solitons & Fractals 5, no. 3-4 (March 1995): 555–65. http://dx.doi.org/10.1016/0960-0779(95)95764-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bini, D., C. Cherubini, and S. Filippi. "On vortices heating biological excitable media." Chaos, Solitons & Fractals 42, no. 4 (November 2009): 2057–66. http://dx.doi.org/10.1016/j.chaos.2009.03.164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Truscott, J. E., and J. Brindley. "Ocean plankton populations as excitable media." Bulletin of Mathematical Biology 56, no. 5 (September 1994): 981–98. http://dx.doi.org/10.1007/bf02458277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Berestycki, Henri, and Fran�ois Hamel. "Front propagation in periodic excitable media." Communications on Pure and Applied Mathematics 55, no. 8 (June 3, 2002): 949–1032. http://dx.doi.org/10.1002/cpa.3022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Davydov, Valerii A., V. S. Zykov, and A. S. Mikhailov. "Kinematics of autowave structures in excitable media." Uspekhi Fizicheskih Nauk 161, no. 8 (1991): 45. http://dx.doi.org/10.3367/ufnr.0161.199108b.0045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chen, Yan-Yu, Hirokazu Ninomiya, and Chang-Hong Wu. "Global Dynamics on One-Dimensional Excitable Media." SIAM Journal on Mathematical Analysis 53, no. 6 (January 2021): 7081–112. http://dx.doi.org/10.1137/20m1343014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhang, Liang, and Andrew Adamatzky. "Towards Arithmetical Chips in Sub-Excitable Media." International Journal of Nanotechnology and Molecular Computation 1, no. 3 (July 2009): 63–81. http://dx.doi.org/10.4018/jnmc.2009070105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kessler, David A., Herbert Levine, and William N. Reynolds. "Spiral core in singly diffusive excitable media." Physical Review Letters 68, no. 3 (January 20, 1992): 401–4. http://dx.doi.org/10.1103/physrevlett.68.401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Dockery, J. D., and J. P. Keener. "Diffusive Effects on Dispersion in Excitable Media." SIAM Journal on Applied Mathematics 49, no. 2 (April 1989): 539–66. http://dx.doi.org/10.1137/0149031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography