Dissertations / Theses on the topic 'Evolutionary computing; Fuzzy logic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Evolutionary computing; Fuzzy logic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Leitch, Donald Dewar. "A new genetic algorithm for the evolution of fuzzy sets." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318473.
Full text張大任 and Tai-yam Cheung. "Evolutionary design of fuzzy-logic controllers for overhead cranes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31243010.
Full textCheung, Tai-yam. "Evolutionary design of fuzzy-logic controllers for overhead cranes /." Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23636543.
Full textMcClintock, Shaunna. "Soft computing : a fuzzy logic controlled genetic algorithm environment." Thesis, University of Ulster, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268579.
Full textRossiter, Jonathan Michael. "Humanist computing for knowledge discovery from ordered datasets." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300571.
Full textWang, Haibin. "Interval neutrosophic sets and logic theory and applications in computing /." unrestricted, 2005. http://etd.gsu.edu/theses/available/etd-11172005-131340/.
Full text1 electronic text (119 p. : ill.) : digital, PDF file. Title from title screen. Rajshekhar Sunderraman, committee chair; Yan-Qing Zhang, Anu Bourgeois, Lifeng Ding, committee members. Description based on contents viewed Apr. 3, 2007. Includes bibliographical references (p. 112-119).
Wang, Haibin. "Interval Neutrosophic Sets and Logic: Theory and Applications in Computing." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/cs_diss/2.
Full textCreaser, Paul. "Application of evolutionary computation techniques to missile guidance." Thesis, Cranfield University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367124.
Full textSoufian, Majeed. "Hard and soft computing techniques for non-linear modeling and control with industrial applications." Thesis, Manchester Metropolitan University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273053.
Full textHill, Carla. "Mass assignments for inductive logic programming." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325748.
Full text鄺世凌 and Sai-ling Kwong. "Evolutionary design of fuzzy-logic controllers for manufacturing systems with production time-delays." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B3124323X.
Full text唐靜敏 and Ching-mun Tong. "Evolutionary design of fuzzy-logic controllers with minimal rule sets for manufacturing systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31243678.
Full textTong, Ching-mun. "Evolutionary design of fuzzy-logic controllers with minimal rule sets for manufacturing systems /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25100130.
Full textKwong, Sai-ling. "Evolutionary design of fuzzy-logic controllers for manufacturing systems with production time-delays /." Hong Kong : University of Hong Kong, 2002. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25100178.
Full textDadone, Paolo. "Fuzzy Control of Flexible Manufacturing Systems." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36531.
Full textFlexible manufacturing systems (FMS) are production systems consisting of identical multipurpose numerically controlled machines (workstations), automated material handling system, tools, load and unload stations, inspection stations, storage areas and a hierarchical control system. The latter has the task of coordinating and integrating all the components of the whole system for automatic operations. A particular characteristic of FMSs is their complexity along with the difficulties in building analytical models that capture the system in all its important aspects. Thus optimal control strategies, or at least good ones, are hard to find and the full potential of manufacturing systems is not completely exploited.
The complexity of these systems induces a division of the control approaches based on the time frame they are referred to: long, medium and short term. This thesis addresses the short-term control of a FMS. The objective is to define control strategies, based on system state feedback, that fully exploit the flexibility built into those systems. Difficulties arise since the metrics that have to be minimized are often conflicting and some kind of trade-offs must be made using "common sense". The problem constraints are often expressed in a rigid and "crisp" way while their nature is more "fuzzy" and the search for an analytical optimum does not always reflect production needs. Indeed, practical and production oriented approaches are more geared toward a good and robust solution.
This thesis addresses the above mentioned problems proposing a fuzzy scheduler and a reinforcement-learning approach to tune its parameters. The learning procedure is based on evolutionary programming techniques and uses a performance index that contains the degree of satisfaction of multiple and possibly conflicting objectives. This approach addresses the design of the controller by means of language directives coming from the management, thus not requiring any particular interface between management and designers.
The performances of the fuzzy scheduler are then compared to those of commonly used heuristic rules. The results show some improvement offered by fuzzy techniques in scheduling that, along with ease of design, make their applicability promising. Moreover, fuzzy techniques are effective in reducing system congestion as is also shown by slower performance degradation than heuristics for decreasing inter- arrival time of orders. Finally, the proposed paradigm could be extended for on-line adaptation of the scheduler, thus fully responding to the flexibility needs of FMSs.
Master of Science
Raad, Raad. "Neuro-fuzzy admission control in mobile communications systems." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20061030.153500/index.html.
Full textTomescu, Bogdan. "On the use of fuzzy logic to control paralleled DC-DC converters." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29366.
Full textPh. D.
Sule, Mary-Jane. "Trusted cloud computing modelling with distributed end-user attestable multilayer security." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12893.
Full textChen, Chen. "Soft Computing-based Life-Cycle Cost Analysis Tools for Transportation Infrastructure Management." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/28214.
Full textPh. D.
Kurtuluş, Bedri. "Modeling of groundwater flow and quality in karstic system using "soft computing" methods (neural networks, fuzzy logic)." Poitiers, 2008. http://www.theses.fr/2008POIT2304.
Full textLes aquifères karstiques présentent une grande extension à travers le monde (12 % des terres émergées) et notamment dans les pays du pourtour méditerranéen (de 20 à 90 % de la surface des pays méditerranéens). Ces aquifères représentent d’importantes potentialités en eau souterraine. Dans les deux pays concernés (France et Turquie), ces aquifères karstiques sont exploités pour l’alimentation en eau potable et pour d’autres activités économiques (agriculture, pisciculture, …) et constituent parfois l’unique ressource en eau dans certaines régions de ces pays. Le rôle des hydrosystèmes karstiques dans le développement social et économique de telles régions est de ce fait extrêmement crucial. Ces aquifères sont cependant très vulnérables aux contaminations et font l’objet de surexploitation, compte tenu de l’accroissement des besoins en eau. Les aquifères karstiques sont très complexes et présentent des caractéristiques très particulières (forte hétérogénéité, anisotropie, discontinuité du milieu, hiérarchisation des écoulements) qui rendent difficile toute approche classique d’identification de ces milieux et de gestion de leurs ressources en eau. La difficulté de modélisation provient du fait que ces systèmes karstiques sont hautement non-linéaires et sont peu adaptés aux méthodes d’identification classiques (modélisation des flux d’eau et de matière basée sur la loi de Darcy). L’objectif principal de cette thèse est la modélisation de ces systèmes à l’aide d’approches nouvelles (méthodes de ‘soft computing’) dans le but de prédire les flux et la qualité des eaux dans ces systèmes. Les systèmes retenus sont : le karst de La Rochefoucauld en France qui est utilisé notamment pour l’alimentation de la capitale régionale Angoulême ; Le karst de l’Orbe qui est utilisé pour la ville d’Arrete et le karst de Safranbolu en Turquie qui alimente la ville de Safranbolu. Dans cette thèse, les points suivants sont étudiés :Installation, calibrage des systèmes d'enregistrement des données (data logger) et contrôle des sondes, Recherche sur les différents types de systèmes karstiques (La Rochefoucauld et Orbe en France et Safranbolu en Turquie, Détermination de la pluie efficace sur le karst de Safranbolu en utilisant des données hydrométéorologiques (y compris la neige). Interprétation des données des enregistreurs automatiques et des analyses chimiques effectuées en laboratoire pour mieux comprendre le fonctionnement du karst, Développement des modèles ‘soft computing’ (réseaux de neurone et neuro-floue) concernant les 3 systèmes karstiques étudiés. Discussion sur les méthodes (réseaux de neurone et neuro–flou) et les calibrages des modèles. Comparaison des modèles avec entrée simple et entrées multiples. Détermination des propriétés faibles et fortes de ces modèles. Les conclusions obtenues sont les suivantes :Les corrélations entre débits simulés et débits observés sont élevées pour le karst de La Rochefoucauld. Le coefficient de détermination pour la phase d’apprentissage est élevé (R2=0. 90). Les hydrogrammes permettent de se rendre compte que l’apprentissage et la validation des modèles sont tout à fait opérationnels, puisqu’on remarque que les parties montantes des hydrogrammes simulés correspondent bien à de fortes pluies. De plus la forme des hydrogrammes simulés (montée rapide, suivie d’une décrue assez lente) est semblable à celle des hydrogrammes réels de sources d’aquifères karstiques (Voir Figure 4. 8). Les données de pluie utilisées concernent la pluie brute, sans transformation en pluie efficace, ce qui permet de s’affranchir de certaines hypothèses simplificatrices non vérifiables pour l’aquifère de La Rochefoucauld. Par contre nous avons retenu la pluie efficace comme entrée des modèles du karst de Safranbolu. L’effet de la fonte de neige et une correction de certaines données par rapport à l’altitude ont été intégrées dans l’évaluation de la pluie efficace. Les modèles ‘soft computing’ pluie - qualité de l’eau (Turbidité, Conductivité électrique) ont été développés. Pour les modèles neuro-flous la phase d’apprentissage est beaucoup plus lente et nécessite un moyen de calcul puissant. Les modèles hybrides (neuro-flous) sont plus efficaces que les modèles de réseaux de neurones. Les modèles neuro-flous ont un coefficient de détermination plus élevé que les modèles de réseaux de neurones (Voir Table 4. 5). Les variables d’entrée ont une très grande importance dans le développement des méthodes ‘soft computing’. En augmentant les données d’entrée, les modèles peuvent calculer de meilleurs résultats. Ainsi, les modèles avec deux variables d’entrées sont caractérisés par un coefficient de détermination plus élevé que les modèles à une variable d’entrée. En outre, pour la prédiction des valeurs extrêmes, les modèles avec entrées multiples sont plus efficaces que les modèles à entrée simple (Voir Table 4. 9). Pour les aquifères karstiques d’Orbe et de Safranbolu, la prédiction des paramètres hydrochimiques (conductivité électrique et turbidité) à été egalement modelisée à l’aide des méthodes ‘soft computing’. Les résultats montrent que la forme des chemogrammes simulés est semblable à celle des chemogrammes réels (Voir Figures 5. 19, 5. 22, 5. 25, 5. 27, 5. 28, 5. 29, 5. 30). Par contre, on constate aussi que pour obtenir des prédictions plus longues, le modèle aura besoin de séries de données plus longues. Ainsi, les résultats obtenus sont très encourageants et permettent d’envisager des perspectives intéressantes et nouvelles de modélisation des aquifères karstiques, qui sont des systèmes hautement non-linéaires
Abraham, Ajith 1968. "Hybrid soft computing : architecture optimization and applications." Monash University, Gippsland School of Computing and Information Technology, 2002. http://arrow.monash.edu.au/hdl/1959.1/8676.
Full textSahebkar, Khorasani Elham Sahebkar. "FORMALIZATION AND IMPLEMENTATION OF GENERALIZED CONSTRAINT LANGUAGE FOR REALIZATION OF COMPUTING WITH WORDS." OpenSIUC, 2012. https://opensiuc.lib.siu.edu/dissertations/592.
Full textPatel, Purvag. "MODELING AND IMPLEMENTATION OF Z-NUMBER." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/995.
Full textTorres, Parra Jimena Cecilia. "A Perception Based Question-Answering Architecture Derived from Computing with Words." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1967797581&sid=1&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textKumar, Vikas. "Soft computing approaches to uncertainty propagation in environmental risk mangement." Doctoral thesis, Universitat Rovira i Virgili, 2008. http://hdl.handle.net/10803/8558.
Full textIn the first part of this thesis different uncertainty propagation methods have been investigated. The first methodology is generalized fuzzy α-cut based on the concept of transformation method. A case study of uncertainty analysis of pollutant transport in the subsurface has been used to show the utility of this approach. This approach shows superiority over conventional methods of uncertainty modelling. A Second method is proposed to manage uncertainty and variability together in risk models. The new hybrid approach combining probabilistic and fuzzy set theory is called Fuzzy Latin Hypercube Sampling (FLHS). An important property of this method is its ability to separate randomness and imprecision to increase the quality of information. A fuzzified statistical summary of the model results gives indices of sensitivity and uncertainty that relate the effects of variability and uncertainty of input variables to model predictions. The feasibility of the method is validated to analyze total variance in the calculation of incremental lifetime risks due to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) for the residents living in the surroundings of a municipal solid waste incinerator (MSWI) in Basque Country, Spain.
The second part of this thesis deals with the use of artificial intelligence technique for generating environmental indices. The first paper focused on the development of a Hazzard Index (HI) using persistence, bioaccumulation and toxicity properties of a large number of organic and inorganic pollutants. For deriving this index, Self-Organizing Maps (SOM) has been used which provided a hazard ranking for each compound. Subsequently, an Integral Risk Index was developed taking into account the HI and the concentrations of all pollutants in soil samples collected in the target area. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a Geographic Information System (GIS). The second paper is an improvement of the first work. New approach called Neuro-Probabilistic HI was developed by combining SOM and Monte-Carlo analysis. It considers uncertainty associated with contaminants characteristic values. This new index seems to be an adequate tool to be taken into account in risk assessment processes. In both study, the methods have been validated through its implementation in the industrial chemical / petrochemical area of Tarragona.
The third part of this thesis deals with decision-making framework for environmental risk management. In this study, an integrated fuzzy relation analysis (IFRA) model is proposed for risk assessment involving multiple criteria. The fuzzy risk-analysis model is proposed to comprehensively evaluate all risks associated with contaminated systems resulting from more than one toxic chemical. The model is an integrated view on uncertainty techniques based on multi-valued mappings, fuzzy relations and fuzzy analytical hierarchical process. Integration of system simulation and risk analysis using fuzzy approach allowed to incorporate system modelling uncertainty and subjective risk criteria. In this study, it has been shown that a broad integration of fuzzy system simulation and fuzzy risk analysis is possible.
In conclusion, this study has broadly demonstrated the usefulness of soft computing approaches in environmental risk analysis. The proposed methods could significantly advance practice of risk analysis by effectively addressing critical issues of uncertainty propagation problem.
Los problemas del mundo real, especialmente aquellos que implican sistemas naturales, son complejos y se componen de muchos componentes indeterminados, que muestran en muchos casos una relación no lineal. Los modelos convencionales basados en técnicas analíticas que se utilizan actualmente para conocer y predecir el comportamiento de dichos sistemas pueden ser muy complicados e inflexibles cuando se quiere hacer frente a la imprecisión y la complejidad del sistema en un mundo real. El tratamiento de dichos sistemas, supone el enfrentarse a un elevado nivel de incertidumbre así como considerar la imprecisión. Los modelos clásicos basados en análisis numéricos, lógica de valores exactos o binarios, se caracterizan por su precisión y categorización y son clasificados como una aproximación al hard computing. Por el contrario, el soft computing tal como la lógica de razonamiento probabilístico, las redes neuronales artificiales, etc., tienen la característica de aproximación y disponibilidad. Aunque en la hard computing, la imprecisión y la incertidumbre son propiedades no deseadas, en el soft computing la tolerancia en la imprecisión y la incerteza se aprovechan para alcanzar tratabilidad, bajos costes de computación, una comunicación efectiva y un elevado Machine Intelligence Quotient (MIQ). La tesis propuesta intenta explorar el uso de las diferentes aproximaciones en la informática blanda para manipular la incertidumbre en la gestión del riesgo medioambiental. El trabajo se ha dividido en tres secciones que forman parte de cinco artículos.
En la primera parte de esta tesis, se han investigado diferentes métodos de propagación de la incertidumbre. El primer método es el generalizado fuzzy α-cut, el cual está basada en el método de transformación. Para demostrar la utilidad de esta aproximación, se ha utilizado un caso de estudio de análisis de incertidumbre en el transporte de la contaminación en suelo. Esta aproximación muestra una superioridad frente a los métodos convencionales de modelación de la incertidumbre. La segunda metodología propuesta trabaja conjuntamente la variabilidad y la incertidumbre en los modelos de evaluación de riesgo. Para ello, se ha elaborado una nueva aproximación híbrida denominada Fuzzy Latin Hypercube Sampling (FLHS), que combina los conjuntos de la teoría de probabilidad con la teoría de los conjuntos difusos. Una propiedad importante de esta teoría es su capacidad para separarse los aleatoriedad y imprecisión, lo que supone la obtención de una mayor calidad de la información. El resumen estadístico fuzzificado de los resultados del modelo generan índices de sensitividad e incertidumbre que relacionan los efectos de la variabilidad e incertidumbre de los parámetros de modelo con las predicciones de los modelos. La viabilidad del método se llevó a cabo mediante la aplicación de un caso a estudio donde se analizó la varianza total en la cálculo del incremento del riesgo sobre el tiempo de vida de los habitantes que habitan en los alrededores de una incineradora de residuos sólidos urbanos en Tarragona, España, debido a las emisiones de dioxinas y furanos (PCDD/Fs).
La segunda parte de la tesis consistió en la utilización de las técnicas de la inteligencia artificial para la generación de índices medioambientales. En el primer artículo se desarrolló un Índice de Peligrosidad a partir de los valores de persistencia, bioacumulación y toxicidad de un elevado número de contaminantes orgánicos e inorgánicos. Para su elaboración, se utilizaron los Mapas de Auto-Organizativos (SOM), que proporcionaron un ranking de peligrosidad para cada compuesto. A continuación, se elaboró un Índice de Riesgo Integral teniendo en cuenta el Índice de peligrosidad y las concentraciones de cada uno de los contaminantes en las muestras de suelo recogidas en la zona de estudio. Finalmente, se elaboró un mapa de la distribución espacial del Índice de Riesgo Integral mediante la representación en un Sistema de Información Geográfico (SIG). El segundo artículo es un mejoramiento del primer trabajo. En este estudio, se creó un método híbrido de los Mapas Auto-organizativos con los métodos probabilísticos, obteniéndose de esta forma un Índice de Riesgo Integrado. Mediante la combinación de SOM y el análisis de Monte-Carlo se desarrolló una nueva aproximación llamada Índice de Peligrosidad Neuro-Probabilística. Este nuevo índice es una herramienta adecuada para ser utilizada en los procesos de análisis. En ambos artículos, la viabilidad de los métodos han sido validados a través de su aplicación en el área de la industria química y petroquímica de Tarragona (Cataluña, España).
El tercer apartado de esta tesis está enfocado en la elaboración de una estructura metodológica de un sistema de ayuda en la toma de decisiones para la gestión del riesgo medioambiental. En este estudio, se presenta un modelo integrado de análisis de fuzzy (IFRA) para la evaluación del riesgo cuyo resultado depende de múltiples criterios. El modelo es una visión integrada de las técnicas de incertidumbre basadas en diseños de valoraciones múltiples, relaciones fuzzy y procesos analíticos jerárquicos inciertos. La integración de la simulación del sistema y el análisis del riesgo utilizando aproximaciones inciertas permitieron incorporar la incertidumbre procedente del modelo junto con la incertidumbre procedente de la subjetividad de los criterios. En este estudio, se ha demostrado que es posible crear una amplia integración entre la simulación de un sistema incierto y de un análisis de riesgo incierto.
En conclusión, este trabajo demuestra ampliamente la utilidad de aproximación Soft Computing en el análisis de riesgos ambientales. Los métodos propuestos podría avanzar significativamente la práctica de análisis de riesgos de abordar eficazmente el problema de propagación de incertidumbre.
Matthews, Stephen. "Learning lost temporal fuzzy association rules." Thesis, De Montfort University, 2012. http://hdl.handle.net/2086/8257.
Full textYang, Cheng. "Development of Intelligent Energy Management System Using Natural Computing." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1341375203.
Full textSkolpadungket, Prisadarng. "Portfolio management using computational intelligence approaches : forecasting and optimising the stock returns and stock volatilities with fuzzy logic, neural network and evolutionary algorithms." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/6306.
Full textTeske, Alexander. "Automated Risk Management Framework with Application to Big Maritime Data." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38567.
Full textKhan, Salman A. "Design and analysis of evolutionary and swarm intelligence techniques for topology design of distributed local area networks." Pretori: [S.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-09272009-153908/.
Full textPalavalasa, Swetha Rao. "Implementation of Constraint Propagation Tree for Question Answering Systems." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1796121021&sid=6&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textLe, Vinh Thinh. "Security and Trust in Mobile Cloud Computing." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1148/document.
Full textAs living in the cyber era, we admit that a dozen of new technologies have been born every day with the promises that making a human life be more comfortable, convenient and safe. In the forest of new technologies, mobile computing is raise as an essential part of human life. Normally, mobile devices have become the best companions in daily activities. They have served us from the simple activities like entertainment to the complicated one as business operations. As playing the important roles, mobile devices deserve to work in the environment which they can trust for serving us better. In this thesis, we investigate the way to secure mobile devices from the primitive security level (Trusted Platforms) to the sophisticated one (bio-inspired intelligence). More precisely, after addressing the challenges of mobile cloud computing (MCC), we have studied the real-case of mobile cloud computing, in terms of energy efficiency and performance, as well as proposed a demonstration of particular MCC model, called Droplock system. Moreover, taking advantages of trusted platform module functionality, we introduced a novel schema of remote attestation to secure mobile devices in the context of Mobile-Cloud based solution. To enhance the security level, we used fuzzy logic combining with ant colony system to assess the trust and reputation for securing another mobile cloud computing model based on the cloudlet notion
Faccioli, Rodrigo Antonio. "Algoritmo híbrido multi-objetivo para predição de estrutura terciária de proteínas." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-15052007-153736/.
Full textSeveral multi-objective optimization problems utilize evolutionary algorithms to find the best solution. Some of these algoritms make use of the Pareto front as a strategy to find these solutions. However, according to the literature, the Pareto front limitation for problems with up to three objectives can make its employment unsatisfactory in problems with four or more objectives. Moreover, many authors, in most cases, propose to remove the evolutionay algorithms because of Pareto front limitation. Nevertheless, characteristics of evolutionay algorithms qualify them to be employed in optimization problems, as it has being spread out by literature, preventing to eliminate it because the Pareto front elimination. Thus being, this work investigated to remove the Pareto front and for this utilized the Fuzzy logic, remaining itself thus the employ of evolutionary algorithms. The choice problem to investigate this remove was the protein tertiary structure prediction, because it is a open problem and extremely relevance to bioinformatic area.
Ochuko, Rita E. "E-banking operational risk assessment. A soft computing approach in the context of the Nigerian banking industry." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5733.
Full textOchuko, Rita Erhovwo. "E-banking operational risk assessment : a soft computing approach in the context of the Nigerian banking industry." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5733.
Full textFarias, Weslley Alves. "Comparação entre controladores fuzzy e neural desenvolvidos via simulação e transferidos para ambientes reais no âmbito da robótica evolutiva." Pós-Graduação em Engenharia Elétrica, 2018. http://ri.ufs.br/jspui/handle/riufs/9569.
Full textOne of the greatest limitations of Evolutionary Robotics is when transfering controllers evolved by simulation to real environments. This limitation is mainly caused by model simplifications and difficulties to represent dynamic characteristics, whether from the robot or the environment. And this results in performance degradation of the evolved controller after the transfer, a phenomenon called reality gap. Because this problem is a limitation for practical and complex applications of evolutionary robotics, many solutions have been proposed since the 90s. Until now, most of the research use control strategies based on artificial neural networks because they allow algorithms to be evolved with less designer influence. On the other hand, fuzzy logic can also be used for the development of controllers in the field of evolutionary robotics because it also allows emulating human intelligence. Therefore, this dissertation investigates whether fuzzy control systems are more robust than neural control systems, both optimized by a genetic algorithm in simulation and later transferred to a real robot in physical environment in the task of autonomous navigation while avoiding obstacles. The results show that in the analyzed conditions, fuzzy controllers present better transfer characteristics, mainly considering the smoothness of the executed trajectory, and an equivalent performance, when compared with neural controllers.
Uma das grandes limitações da Robótica Evolutiva diz respeito à transferência de controladores evoluídos por simulação e transferidos ao ambiente real. Tal limitação devese, sobretudo, a simplificações de modelo e dificuldades na representação de características dinâmicas, tanto do robô quanto do ambiente, e isso resulta na queda de desempenho do controlador evoluído após a transferência, fenômeno denominado de reality gap. Muitas soluções vêm sendo propostas desde a década de 90, em virtude deste problema ser uma limitação para aplicações práticas e complexas da robótica evolutiva. Até o momento, a maioria dos trabalhos de pesquisa desenvolvidos utiliza estratégias de controle baseadas em redes neurais artificiais por permitirem que algoritmos possam ser evoluídos com menor influência do projetista. Por outro lado, a lógica fuzzy também pode ser usada para o desenvolvimento de controladores no âmbito da robótica evolutiva, pois também permite emular a inteligência humana. Portanto, nesta dissertação é investigado se sistemas de controle fuzzy são mais robustos que sistemas de controle neurais, ambos otimizados por um algoritmo genético em simulação e posteriormente transferidos para um robô real em ambiente físico na tarefa de navegação autônoma evitando obstáculos. Como resultado, obteve-se que nas condições analisadas, os controladores fuzzy apresentaram uma melhor transferência, com destaque para a suavidade da trajetória executada, e um desempenho equivalente, quando comparados com controladores neurais.
São Cristóvão, SE
Fialho, Álvaro Roberto Silvestre. "Exploração de relações entre as técnicas nebulosas e evolutivas da inteligência computacional." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26072007-173902/.
Full textThis work addressed a search of relations, rules and transformations between two Computational Intelligence constituent methodologies - Fuzzy Computing and Evolutionary Computing. The existence of these relations changes the actual way of solutions modeling that uses these methodologies, allowing the utilization of well established theories and models of one technique by the other in a more robust, intrinsic and transparent way. Besides the research and systematization of points that indicate the existence of relations between the two methodologies, a model to guide these exploration was proposed. By this model analysis and by the bibliographic revision made, punctual transformations were pointed out, and further consolidated through practical experiments: a Knowledge Base (KB) of a Fuzzy Logic Controller was created and modified automatically by a Genetic Algorithm. With the developed approach, besides the creation of KBs, it became possible to automatically insert new \"desired behaviors\" to existent KBs. The results of such experiments, realized through a computational platform specified and implemented to this task, were presented and analyzed.
Ribacionka, Francisco. "Algoritmo distribuído para alocação de múltiplos recursos em ambientes distribuídos." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-06072014-231945/.
Full textWhen considering a distributed system composed of a set of servers, clients, and resources that characterize environments like computational grids or clouds that offer a large number of distributed resources such as CPUs or virtual machines, which are used jointly by different types of applications, there is the need to have a solution for allocating these resources. Support the allocation of resources provided by such environments must satisfy all Requests for resources such applications, and provide affirmative answers to the efficient allocation of resources, to do justice in this allocation in the case of simultaneous Requests from multiple clients and answer these resources in a finite time these Requests. Considering such a context of large- scale distributed systems, this paper proposes a distributed algorithm for resource allocation This algorithm exploits fuzzy logic whenever a server is unable to meet a request made by a client, forwarding this request to a remote server. The algorithm uses the concept of logical clock to ensure fairness in meeting the demands made on all servers that share resources. This algorithm follows a distributed model, where a copy of the algorithm runs on each server that shares resources for its clients and all servers take part in decisions regarding allocation of resources. The strategy developed aims to minimize the response time in allocating resources, functioning as a load-balancing in a client-server environment with high resource Requests by customers.
TELES, Ariel Soares. "Um Mecanismo Baseado em Lógica Nebulosa para a Identificação de Situações de Usuários Aplicado à Privacidade em Redes Sociais Móveis." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1250.
Full textMade available in DSpace on 2017-04-06T14:32:21Z (GMT). No. of bitstreams: 1 Ariel Soares.pdf: 3082206 bytes, checksum: 46f45860ff1dce76fc8e91ec4f3546f3 (MD5) Previous issue date: 2017-02-10
FAPEMA, CNPQ
This research firstly investigates the privacy requirements of users in Mobile Social Networks (MSNs) through a study with 164 Brazilians, which indicated that their requirements are usually dynamic and contextual. Next, the research applies the Situational Computing paradigm to develop a solution to serve them. This solution is called SelPri, developed as proof of concept in the form of a mobile social application to autonomously adapt the privacy settings of posts in MSNs according to the user situation. SelPri uses a conceptual model with fuzzy logic as the basis for constructing an inference engine to identify mobile user situations from the following context information: location, time of the day, day of week, and co-location. SelPri is integrated with Facebook. Additionally, to show the flexibility of the conceptual model, it is also used to construct an inference engine to be used in a different application domain, the mental health. This second inference engine identifies user situations from different context information: it does not use co-location and uses the user activity. The solution originated in the mental health domain is called SituMan. Two experiments were carried out with both solutions, in order to verify the accuracy of the fuzzy inference engine to identify situations, and to evaluate the user satisfaction. The use experience evaluation with SelPri emphasized that the approach to meet the dynamic and contextdependent privacy requirements was well accepted by the participants and proved to be of practical use. The experiments also showed that both solutions were well evaluated with respect to usability. The accuracy evaluations showed a high hit rate of the inference engines to identify situations: ≈94.6% and ≈ 92.04%, for SelPri and SituMan, respectively.
Esta pesquisa primeiramente investiga os requisitos de privacidade de usuários em Redes Sociais Móveis (RSMs) através de um estudo com 164 brasileiros, o qual indicou que seus requisitos são normalmente dinâmicos e contextuais. Em seguida, a pesquisa aplica o paradigma de Computação Situacional para o desenvolvimento de uma solução para atendê-los. Esta solução é chamada de SelPri, desenvolvida como prova de conceito em forma de uma aplicação social móvel para adaptar com autonomia as configurações de privacidade de postagens em RSMs de acordo com a situação do usuário. O SelPri utiliza um modelo conceitual que faz uso de lógica nebulosa como base para a construção de um motor de inferência para identificar as situações de usuários móveis a partir das seguintes informações de contexto: localização, período do dia, dias da semana, e co-localização. O SelPri é implementado integrado ao Facebook. Adicionalmente, para mostrar a flexibilidade do modelo conceitual, ele é também usado para a construção de um motor de inferência para ser utilizado em um domínio de aplicação diferente, o de saúde mental. Esse motor de inferência identifica situações de usuários a partir de informações contextuais diferentes: não utiliza a co-localização e passa a usar a atividade do usuário. A solução originada no domínio de saúde mental é chamada de SituMan. Dois experimentos foram realizados com ambas soluções, em que objetivaram verificar a acurácia do motor de inferência nebulosa para identificação de situações, e avaliar a satisfação do usuário. A avaliação da experiência de uso realizada com o SelPri destacou que a abordagem para atender os requisitos dinâmicos e dependentes de contexto de privacidade teve uma boa aceitação pelos participantes e provou ser de uso prático. As avaliações de experiência de uso também mostraram que ambas soluções foram bem avaliadas com relação a usabilidade. As avaliações de acurácia mostraram uma taxa de acerto elevada dos motores de inferência para identificar situações: ≈94,6% e ≈92,04%, para o SelPri e SituMan, respectivamente
Mohanarajah, Selvarajah. "Designing CBL systems for complex domains using problem transformation and fuzzy logic : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand." Massey University, 2007. http://hdl.handle.net/10179/743.
Full textXavier, Francisco Calaça. "Cognare: um sistema para alocação dinâmica de recursos baseado em técnicas de Inteligência Artificial." Universidade Federal de Goiás, 2012. http://repositorio.bc.ufg.br/tede/handle/tede/5514.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-04-27T13:40:15Z (GMT) No. of bitstreams: 2 Dissertação - Francisco Calaça Xavier - 2012.pdf: 5019345 bytes, checksum: 0e64a53ebdeda990e6ef1175f1732c19 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2016-04-27T13:40:15Z (GMT). No. of bitstreams: 2 Dissertação - Francisco Calaça Xavier - 2012.pdf: 5019345 bytes, checksum: 0e64a53ebdeda990e6ef1175f1732c19 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2012-06-21
The problem of decision making about the allocation of resources is present in many areas of society. The allocation of ambulances to the occurrence of accidents with victims and the allocation of teams to solve problems in the supply of electricity are examples of situations where it is necessary to make this decision. We can also mention the problems that occur in the allocation of hardware resources when a system is running in a distributed form. In this context, this paper presents the system COGNARE, which brings together techniques such as Genetic Algorithms, Fuzzy Logic and Multiagent Systems in order to allocate tasks to resources dynamically. The COGNARE was used in two different situations. At first, the problem was to allocate vehicles to a distributor of electricity to occurrences of failures in supply. In the second situation, the problem was to allocate hardware resources in a distributed system. In both cases, the COGNARE presented as a system of allocating resources efficiently. Keywords
O problema da tomada de decisão quanto a alocação de recursos está presente em diversas áreas da sociedade. A alocação de ambulâncias à ocorrências de acidentes com vítimas e a alocação de equipes para solução de problemas no fornecimento de energia elétrica são exemplos de situações onde são necessárias tomadas de decisão. Os problemas que ocorrem na alocação de recursos de hardware quando um sistema é executado de forma distribuída também requerem decisões. Neste contexto, este trabalho apresenta o sistema COGNARE, que reúne a utililização de técnicas como Algoritmos Genéticos, Lógica Fuzzy e Sistemas Multiagentes com o objetivo de alocar dinamicaminte tarefas a recursos. O COGNARE foi utilizado em duas situações distintas. Na primeira, o problema consistia em alocar dinamicamente viaturas de uma empresa de distribuição de energia elétrica a ocorrências de falhas no fornecimento. Na segunda situação, o problema consistia em alocar dinamicamente recursos de hardware em um sistema distribuído. Nestes dois casos, o COGNARE apresentou-se como um sistema de alocação de recursos eficiente.
Santos, Marcos Jesus dos. "Uma proposta de modelo de controlador para computa??o em nuvem utilizando m?quina de estados nebulosos." Pontif?cia Universidade Cat?lica de Campinas, 2012. http://tede.bibliotecadigital.puc-campinas.edu.br:8080/jspui/handle/tede/531.
Full textOver the last years, Cloud Computing has brought about a paradigm shift regarding the deployment of computing services for corporations, small business and even end-users. This model of resource utilization has originated a whole new set of business options and business opportunities yet to be explored. The Hybrid Cloud model, which refers to the situation when the cloud is built using both internal and external resources, or by the combination of resources provided by more than one provider, presents a new challenge for the network management tools. The main difficult is on an efficient resource allocation that allows the network management to follow the system performance in real-time. In this work, it is proposed a Fuzzy Logic controller based on a Fuzzy Finite-State Machine as a tool to manage Hybrid Cloud deployments. This Fuzzy Finite-State Machine operates as in accordance with the service level agreements (SLA) and the quality of experience of the user. By comparing the results obtained by using the proposed controller with typical controllers based on Boolean Logic, savings ranging from 3% to up to 50% where achieved, depending on the number of servers and the demand. The prior use of Fuzzy Finite-State Machines to manage Cloud Computing systems has not been found in the literature until the present proposal.
A utiliza??o de sistemas de Computa??o em Nuvem tem se tornado quase que obrigat?ria na disponibiliza??o de solu??es e servi?os, seja para pequenas ou grandes corpora??es, ou mesmo para usu?rios finais. Tal modelo de consumo de recursos abre toda uma gama de oportunidades de neg?cio que est? sendo cada vez mais explorada. Em especial, o uso de Nuvens H?bridas, nas quais os recursos da pr?pria organiza??o usu?ria s?o combinados com recursos de provedores externos, representa um novo desafio para as ferramentas de gerenciamento. Estas ferramentas devem permitir a aloca??o dos recursos de forma eficiente e possibilitar ao gestor a visualiza??o do estado do sistema em tempo real. Com tal cen?rio em vista, neste trabalho apresenta-se e investiga-se um modelo de controlador para Computa??o em Nuvem baseado em uma m?quina de estados nebulosos. Esta m?quina de estados opera de acordo com crit?rios definidos nos contratos de n?vel de acordo (service level agreement SLA) e com a qualidade de experi?ncia do usu?rio (quality of experience QoE). Comparando-se o desempenho desta ferramenta com o de um controlador t?pico, baseado em ?lgebra Booleana, obteve-se uma economia entre 3% at? 50% de recursos, isto para um sistema operando com servidor ?nico, dependendo das solicita??es de demanda. Finalmente, observa-se que, at? o presente momento, a abordagem desenvolvida neste trabalho ? in?dita na literatura.
Chopra, Shubham. "Evolved Design of a Nonlinear Proportional Integral Derivative (NPID) Controller." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/512.
Full textMaciel, Leandro dos Santos 1986. "Estimação e previsão da estrutura a termo das taxas de juros usando técnicas de inteligência computacional." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260710.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-20T17:20:07Z (GMT). No. of bitstreams: 1 Maciel_LeandrodosSantos_M.pdf: 2052895 bytes, checksum: a88ae55ebe5e6a0ea1053d3c5aef5f66 (MD5) Previous issue date: 2012
Resumo: Este trabalho propõe a utilização de técnicas de inteligência computacional para a estimação e previsão da estrutura a termo das taxas de juros, com base em dados dos mercados de renda fixa dos Estados Unidos e Brasil. Para o problema de estimação da curva de juros, as técnicas de computação evolucionária, Algoritmos Genéticos, Evolução Diferencial e Estratégias Evolutivas, foram comparadas com abordagens tradicionais da literatura, como mínimos quadrados não-lineares e programação quadrática sequencial. A motivação da aplicação de técnicas de computação evolucionária no problema de estimação da estrutura a termo busca superar limitações como não-convergência e elevada instabilidade dos parâmetros à inicialização. Além disso, recentemente, a literatura tem apontado o elevado desempenho dos algoritmos genéticos em problemas de modelagem da curva de rendimentos. Outra contribuição deste trabalho consiste no desenvolvimento de um modelo nebuloso evolutivo de aprendizado participativo estendido, denominado ePL+, que inclui em sua versão original, ePL, mecanismos para aumentar sua autonomia e adaptabilidade na modelagem de sistemas complexos. Dessa forma, o modelo ePL+ e outros modelos nebulosos funcionais evolutivos foram avaliados na questão da previsão das taxas futuras de juros, em contraposição com modelos econométricos baseados em processos autoregressivos e modelos de redes neurais artificiais multi-camadas, uma vez que a evolução das taxas de juros apresenta uma dinâmica altamente não-linear e variante no tempo, justificando a ideia de modelagem adaptativa. O desempenho dos métodos considerados foi avaliado em termos de métricas de erro, complexidade computacional e por meio de testes estatísticos paramétricos e não-paramétricos, MGN e SIGN, respectivamente. Os resultados evidenciaram o elevado potencial dos modelos de inteligência computacional na estimação e previsão da estrutura a termo em ambas economias consideradas, constatado pelo melhor desempenho, em termos de ajuste e significância estatística, em relação às técnicas de otimização de parâmetros e econométricas mais utilizadas na literatura
Abstract: This work proposes the term structure of interest rates modeling and forecasting using computational intelligence techniques, based on data from the US and Brazilian fixed income markets. The yield curve modeling includes the use of some evolutionary computation methods like Genetic Algorithms, Differential Evolution and Evolution Strategies in comparison with traditional optimization techniques such as nonlinear least squares and sequential quadratic programming. The motivation behind the use of evolutionary computation to yield curve estimation aims to overcome limitations like non-convergence and high parameters instability to initialization. Moreover, recently, the literature has been shown the higher performance of genetic algorithms in yield curve modeling problems. This work also contributes by developing an extended participatory learning fuzzy model, called ePL+, which includes on its original version, ePL, mechanisms to improve its autonomy and adaptability in complex systems modeling. Therefore, the ePL+ model and some evolving functional fuzzy approaches were evaluated in the future interest rates forecasting, as opposed to econometric models based on autoregressive processes and multilayer artificial neural networks methodologies, since interest rates evolution shows a high non-linear dynamics and also time-varying, justifying the idea of adaptive modeling. Models' performance were compared in terms of error measures, computational complexity and by parametric and non-parametric statistical tests, MGN and SIGN, respectively. The results reveal the high potential of computational intelligence methods to deal with the term structure modeling and forecasting for both economies considered, as pointed out by their adjustment and statistical superior performance then traditional optimization and econometrics techniques reported in the literature
Mestrado
Automação
Mestre em Engenharia Elétrica
Ji, Carolina Yoshico. "Lógica nebulosa aplicada a um sistema de detecção de intrusos em computação em nuvem." Universidade do Estado do Rio de Janeiro, 2013. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8019.
Full textThe objective of this study is to evaluate the risk of occurrence of intruders in a system of cloud computing at distributed systems using fuzzy logic. Cloud computing is a topic that has been widely discussed and has been leveraging heated discussions, both in academic and in professional speaking. Although this technology is gaining market share, some academics are incredulous saying that is too early to draw conclusions. This is mainly because of a critical factor, which is the security of data stored in the cloud. For this thesis, we designed a distributed system written in Java, with the purpose of controlling a process of softwares development in the cloud, wich served as a case study to evaluate the approach proposed intrusion detection. This environment was build with five machines (being four virtual machines and one real machine). It was created two fuzzy inference systems for analysis of problems in network security implemented in Java, in the distributed environment. Several tests were performed in order to verify the functionality of the application, presenting a satisfactory outcome within this methodology.
Minář, Petr. "Nelineární řízení komplexních soustav s využitím evolučních přístupů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-364594.
Full textAhmad, Abdul-Rahim. "An Intelligent Expert System for Decision Analysis and Support in Multi-Attribute Layout Optimization." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/785.
Full textInadequate information availability, combinatorial complexity, subjective and uncertain preferences, and cognitive biases of decision makers often hamper the procurement of a superior layout configuration. Consequently, it is desirable to develop an intelligent decision support system for layout design that could deal with such challenging issues by providing efficient and effective means of generating, analyzing, enumerating, ranking, and manipulating superior alternative layouts.
We present a research framework and a functional prototype for an interactive Intelligent System for Decision Support and Expert Analysis in Multi-Attribute Layout Optimization (IDEAL) based on soft computing tools. A fundamental issue in layout design is efficient production of superior alternatives through the incorporation of subjective and uncertain design preferences. Consequently, we have developed an efficient and Intelligent Layout Design Generator (ILG) using a generic two-dimensional bin-packing formulation that utilizes multiple preference weights furnished by a fuzzy Preference Inferencing Agent (PIA). The sub-cognitive, intuitive, multi-facet, and dynamic nature of design preferences indicates that an automated Preference Discovery Agent (PDA) could be an important component of such a system. A user-friendly, interactive, and effective User Interface is deemed critical for the success of the system. The effectiveness of the proposed solution paradigm and the implemented prototype is demonstrated through examples and cases.
This research framework and prototype contribute to the field of layout decision analysis and design by enabling explicit representation of experts? knowledge, formal modeling of fuzzy user preferences, and swift generation and manipulation of superior layout alternatives. Such efforts are expected to afford efficient procurement of superior outcomes and to facilitate cognitive, ergonomic, and economic efficiency of layout designers as well as future research in related areas.
Applications of this research are broad ranging including facilities layout design, VLSI circuit layout design, newspaper layout design, cutting and packing, adaptive user interfaces, dynamic memory allocation, multi-processor scheduling, metacomputing, etc.
Marpaung, Andreas. "TOWARD BUILDING A SOCIAL ROBOT WITH AN EMOTION-BASED INTERNAL CONTROL." Master's thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3901.
Full textM.S.
School of Computer Science
Engineering and Computer Science
Computer Science
Susnjak, Teo. "Accelerating classifier training using AdaBoost within cascades of boosted ensembles : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Sciences at Massey University, Auckland, New Zealand." Massey University, 2009. http://hdl.handle.net/10179/1002.
Full textMrázek, Vojtěch. "Metodologie pro automatický návrh nízkopříkonových aproximativních obvodů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-412599.
Full text