Dissertations / Theses on the topic 'Evolutionary Algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Evolutionary Algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Reimann, Axel. "Evolutionary algorithms and optimization." Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=969093497.
Full textCiftci, Erhan. "Evolutionary Algorithms In Design." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12607983/index.pdf.
Full texts and EVO program&rsquo
s usefulness to the practical aspect of design, the work presented herein applies the ESO method to case studies. They concern the optimization of 2-D frames, and the optimization of 3-D spatial frames and beams with the prepared program EVO. Comparisons of these optimised models are then made to those that exist in literature.
Loshchilov, Ilya. "Surrogate-Assisted Evolutionary Algorithms." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00823882.
Full textMaitre, Ogier. "GPGPU for Evolutionary Algorithms." Strasbourg, 2011. http://www.theses.fr/2011STRA6240.
Full textEvolutionary algorithms can find satisfactory, but not necessarily optimal solutions to complex problems. The power of these algorithms is directly related to the available computing power. Indeed, these algorithms perform a parallel exploration of the search space, through the evolution of a population of individuals more or less suited to the problem being solved. The available computing power has a direct impact on the population size and therefore the exploration/exploitation ability of a given algorithm. On the other hand, multicore processor architectures are being developed largely nowadays. These processors can contain up to hundreds of cores in a chip, but have structural constraints that impose an adaptation of the algorithms to be ported on. Among multicore processors, GPGPU-type (for General Purpose Graphical Processing Unit) processors, which are generalized versions of 3D rendering chips, have been industrially developed since 2007. These processors have up to hundreds of cores per chip and allow to obtain speedups of several hundred times, on some applications. This thesis details the use of such architectures in the context of evolutionary algorithms. Several variants of these algorithms are studied, such as GA / ES and GP. Implementation on mixed architectures and GPGPUs only were considered, using artificial and real-world application
Rohlfshagen, Philipp. "Molecular Algorithms for Evolutionary Computation." Thesis, University of Birmingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.522032.
Full textSmith, James Edward. "Self adaptation in evolutionary algorithms." Thesis, University of the West of England, Bristol, 1998. http://eprints.uwe.ac.uk/11046/.
Full textWilliams, Kenneth Peter. "Evolutionary algorithms for automatic parallelization." Thesis, University of Reading, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265665.
Full textShen, Liang. "Evolutionary algorithms with mixed strategy." Thesis, Aberystwyth University, 2016. http://hdl.handle.net/2160/f08f9fe9-f4d1-48cd-aa17-3218eb2f4f35.
Full textSrikanth, Veturi. "Evolutionary algorithms for currency trading." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619749.
Full textKarunarathne, Lalith. "Network coding via evolutionary algorithms." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/57047/.
Full textLohpetch, Dome. "Evolutionary algorithms for financial trading." Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2510.
Full textAngeline, Peter John. "Evolutionary algorithms and emergent intelligence /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847309052203.
Full textWang, Rui. "Preference-inspired co-evolutionary algorithms." Thesis, University of Sheffield, 2013. http://etheses.whiterose.ac.uk/4920/.
Full textKhmeleva, Elena. "Evolutionary algorithms for scheduling operations." Thesis, Sheffield Hallam University, 2016. http://shura.shu.ac.uk/15608/.
Full textPelikan, Martin. "Hierarchical Bayesian optimization algorithm : toward a new generation of evolutionary algorithms /." Berlin [u.a.] : Springer, 2005. http://www.loc.gov/catdir/toc/fy053/2004116659.html.
Full textKarahan, Ibrahim. "Preference-based Flexible Multiobjective Evolutionary Algorithms." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609578/index.pdf.
Full text#64257
ning property of the algorithm rather than using an explicit diversity preservation mechanism. This leads to substantial computational e&
#64259
ciency. We test the algorithm on commonly used test problems and compare its performance against well-known benchmark algorithms. In addition to approximating the entire Pareto-optimal frontier,we develop a preference incorporation mechanism to guide the search towards the decision maker&
#8217
s regions of interest. Based on this mechanism, we implement two variants of the algorithm. The &
#64257
rst gathers all preference information before the optimization stage to &
#64257
nd approximations of the desired regions. The second one is an interactive algorithm that focuses on the desired region by interacting with the decision maker during the solution process. Based on tests on 2- and 3-objective problems, we observe that both algorithms converge to the preferred regions.
Fu, Xinye. "Building Evolutionary Clustering Algorithms on Spark." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-219608.
Full textEvolutionär clustering (EC) är en slags klustringsalgoritm för att hantera bruset av tidutvecklad data. Det kan spåra sanningshanteringen av klustring över tiden genom att beakta historien. EC försöker göra klustringsresultatet passar både aktuell data och historisk data / modell, så varje EC-algoritm definierar ögonblicks kostnad (SC) och tidsmässig kostnad (TC) för att reflektera båda förfrågningarna. EC-algoritmer minimerar både SC och TC med olika metoder, och de har olika möjligheter att hantera ett annat antal kluster, lägga till / radera noder etc.Hittills finns det mer än 10 EC-algoritmer, men ingen undersökning om det. Därför skrivs en undersökning av EC i avhandlingen. Undersökningen introducerar först applikationsscenariot för EC, definitionen av EC och historien om EC-algoritmer. Därefter introduceras två kategorier av EC-algoritmer algoritmer på algoritmer och algoritmer på datanivå en för en. Dessutom jämförs varje algoritm med varandra. Slutligen ges resultatprediktion av algoritmer. Algoritmer som optimerar hela problemet (det vill säga optimera förändringsparametern eller inte använda ändringsparametern för kontroll), acceptera en förändring av klusternummer som bäst utför i teorin.EC-algoritmen bearbetar alltid stora dataset och innehåller många iterativa datintensiva beräkningar, så de är lämpliga för implementering på Spark. Hittills finns det ingen implementering av EG-algoritmen på Spark. Därför implementeras fyra EC-algoritmer på Spark i projektet. I avhandlingen införs tre aspekter av genomförandet. För det första är algoritmer som kan parallellisera väl och ha en bred tillämpning valda att implementeras. För det andra har programdesigndetaljer för varje algoritm beskrivits. Slutligen verifieras implementeringarna av korrekthet och effektivitetsexperiment.
Dorn, Jason Liam. "Evolutionary Algorithms to Aid Watershed Management." NCSU, 2004. http://www.lib.ncsu.edu/theses/available/etd-12282004-235442/.
Full textWeicker, Karsten. "Evolutionary algorithms and dynamic optimization problems /." Osnabrück : Der Andere Verl, 2003. http://www.gbv.de/dms/ilmenau/toc/365163716weick.PDF.
Full textRaj, Ashish. "Evolutionary Optimization Algorithms for Nonlinear Systems." DigitalCommons@USU, 2013. http://digitalcommons.usu.edu/etd/1520.
Full textKorejo, Imtiaz Ali. "Adaptive mutation operators for evolutionary algorithms." Thesis, University of Leicester, 2012. http://hdl.handle.net/2381/10315.
Full textShenfield, Alex. "Grid enabled optimisation using evolutionary algorithms." Thesis, University of Sheffield, 2008. http://etheses.whiterose.ac.uk/3611/.
Full textGraham, Ian J. "Genetic algorithms for evolutionary product design." Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/6900.
Full textChan, Kit Yan. "Experimental design techniques in evolutionary algorithms." Thesis, London South Bank University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434451.
Full textNguyen, Trung Thanh. "Continuous dynamic optimisation using evolutionary algorithms." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1296/.
Full textFagan, Francois. "A qualitative model of evolutionary algorithms." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86224.
Full textENGLISH ABSTRACT: Evolutionary Algorithms (EAs) are stochastic techniques, based on the idea of biological evolution, for finding near-optimal solutions to optimisation problems. Due to their generality and computational speed, they have been applied very successfully in a wide range of disciplines. However, as a consequence of their stochasticity and generality, very little has been rigorously established about their performance. Developing models for explaining and predicting algorithmic performance is, in fact, one of the most important challenges facing the field of optimisation. A qualitative version of such a model of EAs is developed in this thesis. There are two paradigms for explaining why EAs are expected to converge toward an optimum. The traditional explanation is that of Universal Darwinism, but an alternative explanation is that they are hill climbing algorithms which utilise all possible escape strategies — restarting local search, stochastic search and acceptance of non-improving solutions. The combination of the hill climbing property and the above escape strategies leads to a fast algorithm that is able to avoid premature convergence. Due to the difficulty in mathematically or empirically explaining the performance of EAs, terms such as exploitation, exploration, intensity and diversity are routinely employed for this purpose. Six prevalent views on exploitation and exploration are identified in the literature, each expressing a different facet of these notions. The coherence of these views is substantiated by their deducibility from the proposed novel definitions of exploitation and exploration. This substantiation is based on a novel hypothetical construct, namely that of a Probable Fitness Landscape (PFL), which both unifies and clarifies the surrounding terminology and our understanding of the performance of EAs. The PFL is developed into a qualitative model of EAs by extending it to the notion of an Ideal Probability Distribution (IPD). This notion, along with the criteria of diversity and computational speed, forms a method for judging the performance of EA operators. It is used to explain why the principal operators of EAs, namely mutation and selection, are effective. There are three main types of EAs, namely Genetic Algorithms (GAs), Evolution Strategies and Evolutionary Programming, each of which employ their own unique operators. Important facets of the crossover operator (which is particular to GAs) are identified, such as: opposite step vectors, genetic drift and ellipsoidal parent-centred probability distributions with variance proportional to the distance between parents. The shape of the crossover probability distribution motivates a comparison with a novel continuous approximation of mutation, which reveals very similar underlying distributions, although for crossover the distribution is adaptive whereas for mutation it is fixed. The PFL and IPD are used to analyse the crossover operator, the results of which are contrasted with the traditional explanations of the Schema Theorem and Building Block Hypothesis as well as the Evolutionary Progress Principle and Genetic Repair Hypothesis. It emerges that the facetwise nature of the PFL extracts more sound conclusions than the other explanations which, falsely, attempt to prove GAs to be superior.
AFRIKAANSE OPSOMMING: Evolusionere Algoritmes (EAs) is stogastiese tegnieke vir die bepaling van naby-optimale oplossings vir optimeringsprobleme wat gebaseer is op die beginsel van biologiese evolusie. As gevolg van hul algemene toepasbaarheid en hoe berekeningspoed, is hierdie algoritmes al met groot sukses in ’n wye verskeidenheid dissiplines toegepas. Die stogastiese aard en algemene toepasbaarheid van hierdie klas van algoritmes het egter tot gevolg dat baie min al oor hul werkverrigting formeel bewys is. Die ontwikkeling van modelle waarmee die doeltreffendheid van algoritmes verklaar en voorspel kan word, is trouens een van die grootste uitdagings in die studieveld van optimering. ’n Kwalitatiewe weergawe van so ’n model word in hierdie verhandeling vir EAs daargestel. Daar bestaan twee paradigmas vir die verklaring van waarom daar van EAs verwag word om na ’n optimum te konvergeer. Die tradisionele verklaring geskied aan die hand van Universele Darwinisme, maar ’n alternatiewe verklaring is dat hierdie algoritmes bergtop-soekend is en van alle moontlike ontsnapstrategiee gebruik maak — lokale soekstrategiee, stogastiese soekstrategiee en die aanvaarding van minderwaardige oplossings. Die kombinasie van die bergtop-soekende eienskap en die insluiting van die bogenoemde ontsnapstrategiee gee aanleiding tot vinnige algoritmes wat daartoe in staat is om voortydige konvergensie te vermy. Omdat dit moeilik is om die werkverrigting van EAs wiskundig of empiries te verklaar, word terminologie soos uitbuiting, verkenning, intensiteit en diversiteit roetinegewys vir hierdie doel ingespan. Ses heersende menings in die literatuur oor uitbuiting en verkenning word ge¨ıdentifiseer wat elkeen ’n ander faset van hierdie begrippe uitlig. Die samehang van hierdie menings word deur hul afleibaarheid uit nuwe definisies van uitbuiting en verkenning gedemonstreer. Hierdie demonstrasie is gebaseer op ’n nuwe hipotetiese konstruk, naamlik die van ’n Waarskynlike Fiksheidslandskap (WFL), wat beide die omliggende terminologie¨e en ons begrip van die werking van EAs enersyds verenig en andersyds verduidelik. Die begrip van ’n WFL word tot ’n kwantitatiewe model vir EAs ontwikkel deur dit tot die konstruk van ’n Ideale Waarskynlikheidsverdeling (IWV) uit te brei. Hierdie konsep word saam met die kriteria van diversiteit en berekeningspoed gebruik om ’n metode te ontwikkel waarmee die werkverrigting van EAs beoordeel kan word. Die IWV word gebruik om te verklaar waarom die hoofoperatore van EAs, naamlik mutasie en seleksie, doeltreffend is. Daar is drie tipes van EAs, naamlik Genetiese Algoritmes (GAs), Evolusionere Strategiee en Evolusionere Programmering, wat elk hul eie, unieke operatore bevat. Belangrike fasette van die oorgangsoperator (wat eie is aan GAs) word uitgelig, soos regoorstaande trapvektore, genetiese neiging en ellipsoıdale ouer-gesentreerde waarskynlikheidsverdelings met variansies wat eweredig is aan die afstand tussen ouers. Die vorm van die oorgangs-waarskynlikheidsverdeling gee aanleiding tot ’n vergelyking tussen die begrip van oorgang en ’n nuwe, kontinue benadering van mutasie. Daar word gevind dat die onderliggende verdelings baie soortgelyk is, alhoewel die oorgangsverdeling aanpasbaar is, terwyl die verdeling vir mutasie vas is. Die WFL en IWV word gebruik om die oorgangsoperator te analiseer en die resultate van hierdie analise word teenoor die tradisionele verklarings van die Skemastelling en Boublok-hipotese sowel as die Evolusionere Vooruitgangsbeginsel en die Genetiese Herstel-hipotese gekontrasteer. Dit blyk dat meer grondige gevolgtrekkings gemaak kan word uit die fasetgewyse aard van die WFL as uit ander verklarings wat valslik poog om die meer doeltreffende werkverrigting van GAs te demonstreer. Die gebruik van faset-gewyse en kwalitatiewe modelle word geregverdig deur hul sukses in terme van die verklaring van EA werkverrigting. Die argument word gemaak dat die beste rigting vir voortgesette navorsing oor EAs is om weg te bly van vergelykende studies en die afleiding van sogenaamde vergelykings van beweging, maar om eerder die ontwikkeling van wetenskaplikgefundeerde, faset-gewyse modelle vir algoritmiese werkverrigting na te streef.
Cruz, Alfredo. "Evolutionary Algorithms for VLSI Test Automation." NSUWorks, 2002. http://nsuworks.nova.edu/gscis_etd/472.
Full textAnsell, D. W. "Antenna performance optimisation using evolutionary algorithms." Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/4661.
Full textNwamba, André Chidi. "Automated offspring sizing in evolutionary algorithms." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Nwamba_09007dcc8068c83d.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed August 10, 2009) Includes bibliographical references (p. 49-51).
Morrison, Ronald W. "Designing evolutionary algorithms for dynamic environments /." Berlin ; New York ; Paris : Springer, 2004. http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-102-22-29182350-0,00.html?changeHeader=true.
Full textJohnson, Colin G. "A design framework for evolutionary algorithms." Thesis, University of Kent, 2003. https://kar.kent.ac.uk/13944/.
Full textSauerland, Volkmar [Verfasser]. "Algorithm Engineering for some Complex Practise Problems : Exact Algorithms, Heuristics and Hybrid Evolutionary Algorithms / Volkmar Sauerland." Kiel : Universitätsbibliothek Kiel, 2012. http://d-nb.info/1026442745/34.
Full textPryde, Meinwen. "Evolutionary computation and experimental design." Thesis, University of South Wales, 2001. https://pure.southwales.ac.uk/en/studentthesis/evolutionary-computation-and-experimental-design(acc0a9a5-aa01-4d4a-aa4e-836ee5190a48).html.
Full textJayachandran, Jayakanth. "Improving resiliency using graph based evolutionary algorithms." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2010. http://scholarsmine.mst.edu/thesis/pdf/Jayachandran_09007dcc807d6ba6.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed July 19, 2010) Includes bibliographical references (p. 56-62).
Ozsayin, Burcu. "Multi-objective Combinatorial Optimization Using Evolutionary Algorithms." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12610866/index.pdf.
Full textPaulden, Timothy John. "Combinatorial spanning tree representations for evolutionary algorithms." Thesis, University of Exeter, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486767.
Full textDick, Grant, and n/a. "Spatially-structured niching methods for evolutionary algorithms." University of Otago. Department of Information Science, 2008. http://adt.otago.ac.nz./public/adt-NZDU20080902.161336.
Full textHayward, Kevin. "Application of evolutionary algorithms to engineering design." University of Western Australia. School of Mechanical Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2009.0018.
Full textWhitacre, James M. Chemical Sciences & Engineering Faculty of Engineering UNSW. "Adaptation and self-organization in evolutionary algorithms." Awarded by:University of New South Wales. Chemical Sciences & Engineering, 2007. http://handle.unsw.edu.au/1959.4/40444.
Full textMoraglio, Alberto. "Towards a geometric unification of evolutionary algorithms." Thesis, University of Essex, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446045.
Full textPicardi, Chiara. "Characterization of neurological disorders using evolutionary algorithms." Thesis, University of York, 2018. http://etheses.whiterose.ac.uk/21702/.
Full textPacula, Maciej. "Evolutionary algorithms for compiler-enabled program autotuning." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66313.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 116-122).
PetaBricks [4, 21, 7, 3, 5] is an implicitly parallel programming language which, through the process of autotuning, can automatically optimize programs for fast QoS-aware execution on any hardware. In this thesis we develop and evaluate two PetaBricks autotuners: INCREA and SiblingRivalry. INCREA, based on a novel bottom-up evolutionary algorithm, optimizes programs offline at compile time. SiblingRivalry improves on INCREA by optimizing online during a program's execution, dynamically adapting to changes in hardware and the operating system. Continuous adaptation is achieved through racing, where half of available resources are devoted to always-on learning. We evaluate INCREA and SiblingRivalry on a large number of real-world benchmarks, and show that our autotuners can significantly speed up PetaBricks programs with respect to many non-tuned and mis-tuned baselines. Our results indicate the need for a continuous learning loop that can optimize efficiently by exploiting online knowledge of a program's performance. The results leave open the question of how to solve the online optimization problem on all cores, i.e. without racing.
by Maciej Pacula.
M.Eng.
Baruani, Atumbe Jules. "Network engineering using multi-objective evolutionary algorithms." Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/21548.
Full textENGLISH ABSTRACT: We use Evolutionary Multi-Objective Optimisation (EMOO) algorithms to optimise objective functions that reflect situations in communication networks. These include functions that optimise Network Engineering (NE) objective functions in core, metro and wireless sensor networks. The main contributions of this thesis are threefold. Routing and Wavelength Assignment (RWA) for IP backbone networks. Routing and Wavelength Assignment (RWA) is a problem that has been widely addressed by the optical research community. A recent interest in this problem has been raised by the need to achieve routing optimisation in the emerging generation multilayer networks where data networks are layered above a Dense Wavelength Division Multiplexing (DWDM) network. We formulate the RWA as both a single and a multi-objective optimisation problem which are solved using a two-step solution where (1) a set of paths are found using genetic optimisation and (2) a graph coloring approach is implemented to assign wavelengths to these paths. The experimental results from both optimisation scenarios reveal the impact of (1) the cost metric used which equivalently defines the fitness function (2) the algorithmic solution adopted and (3) the topology of the network on the performance achieved by the RWA procedure in terms of path quality and wavelength assignment. Optimisation of Arrayed Waveguide Grating (AWG) Metro Networks. An Arrayed Waveguide Grating (AWG) is a device that can be used as a multiplexer or demultiplexer in WDM systems. It can also be used as a drop-and-insert element or even a wavelength router. We take a closer look at how the hardware and software parameters of an AWG can be fine tuned in order to maximise throughput and minimise the delay. We adopt a multi-objective optimisation approach for multi-service AWG-based single hop metro WDM networks. Using a previously proposed multi-objective optimisation model as a benchmark, we propose several EMOO solutions and compare their efficiency by evaluating their impact on the performance achieved by the AWG optimisation process. Simulation reveals that (1) different EMOO algorithms can exhibit different performance patterns and (2) good network planning and operation solutions for a wide range of traffic scenarios can result from a well selected EMOO algorithm. Wireless Sensor Networks (WSNs) Topology (layout) Optimisation. WSNs have been used in a number of application areas to achieve vital functions in situations where humans cannot constantly be available for certain tasks such as in hostile areas like war zones, seismic sensing where continuous inspection and detection are needed, and many other applications such as environment monitoring, military operations and surveillance. Research and practice have shown that there is a need to optimise the topology (layout) of such sensors on the ground because the position on which they land may affect the sensing efficiency. We formulate the problem of layout optimisation as a multi-objective optimisation problem consisting of maximising both the coverage (area) and the lifetime of the wireless sensor network. We propose different algorithmic evolutionary multi-objective methods and compare their performance in terms of Pareto solutions. Simulations reveal that the Pareto solutions found lead to different performance patterns and types of layouts.
AFRIKAANSE OPSOMMING: Ons gebruik ”Evolutionary Multi-Objective Optimisation (EMOO)” algoritmes om teiken funksies, wat egte situasies in kommunikasie netwerke voorstel, te optimiseer. Hierdie sluit funksies in wat ”Network Engineering” teiken funksies in kern, metro en wireless sensor netwerke optimiseer. Die hoof doelwitte van hierdie tesis is dus drievuldig. RWA vir IP backbone netwerke ”Routing and Wavelength Assignment (RWA)” is ’n probleem wat al menigte kere in die optiese navorsings kringe aangespreek is. Belangstelling in hierdie veld het onlangs ontstaan a.g.v. die aanvraag na die optimisering van routering in die opkomende generasie van veelvuldige vlak netwerke waar data netwerke in ’n vlak ho¨er as ’n ”Dense Wavelength Division Multiplexing (DWDM)” netwerk gele is. Ons formuleer die RWA as beide ’n enkele and veelvuldige teiken optimiserings probleem wat opgelos word deur ’n 2-stap oplossing waar (1) ’n stel roetes gevind word deur genetiese optimisering te gebruik en (2) ’n grafiek kleuring benadering geimplementeer word om golflengtes aan hierdie roetes toe te ken. Die eksperimentele resultate van beide optimiserings gevalle vertoon die impak van (1) die koste on wat gebruik word wat die ekwalente fitness funksie definieer , (2) die algoritmiese oplossing wat gebruik word en (3) die topologie van die netwerk op die werkverrigting van die RWA prosedure i.t.v. roete kwaliteit en golflengte toekenning. Optimisering van AWG Metro netwerk ’n ”Arrayed Waveguide Grating (AWG)” is ’n toestel wat gebruik kan word as ’n multipleksor of demultipleksor in WDM sisteme. Dit kan ook gebruik word as ’n val-en-inplaas element of selfs ’n golflengte router. Kennis word ingestel na hoe die hardeware en sagteware parameters van ’n AWG ingestel kan word om die deurset tempo te maksimeer en vertragings te minimiseer. Ons neem ’n multi-teiken optimiserings benadering vir multi diens, AWG gebaseerde, enkel skakel, metro WDM netwerke aan. Deur ’n vooraf voorgestelde multi teiken optimiserings model as ”benchmark” te gebruik, stel ons ’n aantal EMOO oplossings voor en vergelyk ons hul effektiwiteit deur hul impak op die werkverrigting wat deur die AWG optimiserings proses bereik kan word, te vergelyk. Simulasie modelle wys dat (1) verskillende EMOO algoritmes verskillende werkverrigtings patrone kan vertoon en (2) dat goeie netwerk beplanning en werking oplossings vir ’n wye verskeidenheid van verkeer gevalle kan plaasvind a.g.v ’n EMOO algoritme wat reg gekies word. ”Wireless Sensor Network” Topologie Optimisering WSNs is al gebruik om belangrike funksies te verrig in ’n aantal toepassings waar menslike beheer nie konstant beskikbaar is nie, of kan wees nie. Voorbeelde van sulke gevalle is oorlog gebiede, seismiese metings waar aaneenlopende inspeksie en meting nodig is, omgewings meting, militˆere operasies en bewaking. Navorsing en praktiese toepassing het getoon dat daar ’n aanvraag na die optimisering van die topologie van sulke sensors is, gebaseer op gronde van die feit dat die posisie waar die sensor beland, die effektiwiteit van die sensor kan affekteer. Ons formuleer die probleem van uitleg optimisering as ’n veelvuldige vlak optimiserings probleem wat bestaan uit die maksimering van beide die bedekkings area en die leeftyd van die wireless sensor netwerk. Ons stel verskillende algoritmiese, evolutionˆere, veelvuldige vlak oplossings voor en vergelyk hul werkverrigting i.t.v Pareto oplossings. Simulasie modelle wys dat die Pareto oplossings wat gevind word lei na verskillende werkverrigtings patrone en uitleg tipes.
Kruger, Markus Gustav. "On evolutionary algorithms for effective quantum computing." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20095.
Full textENGLISH ABSTRACT: The goal of this thesis is to present evolutionary algorithms, and demonstrate their applicability in quantum computing. As an introduction to evolutionary algorithms, it is applied to the simple but still challenging (from a computational viewpoint) Travelling Salesman Problem (TSP). This example is used to illustrate the e ect of various parameters like selection method, and maximum population size on the accuracy and e ciency of the evolutionary algorithms. For the sample problem, the 48 continental state capitals of the USA, solutions are evolved and compared to the known optimal solution. From this investigation tournament selection was shown to be the most e ective selection method, and that a population of 200 individuals per generation gave the most e ective convergence rates. In the next part of the thesis, evolutionary algorithms are applied to the generation of optimal quantum circuits for the following cases: The identity transformation : Picked for its simplicity as a test of the correct implementation of the evolutionary algorithm. The results of this investigation showed that the solver program functions correctly and that evolutionary algorithms can indeed nd valid solutions for this kind of problem. The work by Ding et al. [16] on optimal circuits for the two-qubit entanglement gate, controlled-S gate as well as the three qubit entanglement gate are solved by means of EA and the results compared. In all cases similar circuits are produced in fewer generations than the application of Ding et al. [16]. The three qubit quantum Fourier transform gate was also attempted, but no convergence was attained. The quantum teleportation algorithm is also investigated. Firstly the nature of the transformation that leads to quantum teleportation is considered. Next an e ective circuit is sought using evolutionary algorithms. The best result is one gate longer than Brassard [11], and seven gates longer than Yabuki [61].
AFRIKAANSE OPSOMMING: Die doel van hierdie tesis is om evolusionêre algoritmes te ondersoek en hulle toepaslikheid op kwantumkomputasie te demonstreer. As 'n inleiding tot evolusionêre algoritmes is die eenvoudige, maar steeds komputasioneel uitdagende handelsreisigerprobleem ondersoek. Die invloed van die keuse van 'n seleksie metode, sowel as die invloed van die maksimum aantal individue in 'n generasie op die akkuraatheid en e ektiwiteit van die algoritmes is ondersoek. As voorbeeld is die 48 kontinentale hoofstede van die state van die VSA gekies. Die oplossings wat met evolusionêre algoritmes verkry is, is met die bekende beste oplossings vergelyk. Die resultate van hierdie ondersoek was dat toernooi seleksie die mees e ektiewe seleksie metode is, en dat 200 individue per generasie die mees e ektiewe konvergensie tempo lewer. Evolusionêre algoritmes word vervolgens toegepas om optimale oplossings vir die volgende kwantumalgoritmes te genereer: Die identiteitstransformasie: Hierdie geval is gekies as 'n eenvoudige toepassing met 'n bekende oplossing. Die resultaat van hierdie toepassing van die program was dat dit korrek funksioneer, en vinnig by die korrekte oplossings uitkom. Vervolgens is daar ondersoek ingestel na vier van die gevalle wat in Ding et al. [16] bespreek word. Die spesi eke transformasies waarna gekyk is, is 'n optimale stroombaan vir twee kwabis verstrengeling, 'n beheerde-S hek, 'n drie kwabis verstrengelings hek, en 'n drie kwabis kwantum Fourier transform hek. In die eerste drie gevalle stem die oplossings ooreen met die van Ding et al. [16], en is die konvergensie tempo vinniger. Daar is geen oplossing vir die kwantum Fourier transform verkry nie. Laastens is daar na die kwantumteleportasiealgoritme gekyk. Die eerste stap was om te kyk na die transformasie wat in hierdie geval benodig word, en daarna is gepoog om 'n e ektiewe stroombaan te evolueer. Die beste resultaat was een hek langer as Brassard [11], en sewe hekke langer as Yabuki [61].
Kirkland, Oliver. "Multi-objective evolutionary algorithms for data clustering." Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/51331/.
Full textKhan, Wali. "Hybrid multiobjective evolutionary algorithms based on decomposition." Thesis, University of Essex, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549297.
Full textSmiley, Aref. "EVOLUTIONARY OPTIMIZATION OF ATRIAL FIBRILLATION DIAGNOSTIC ALGORITHMS." Cleveland State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=csu1407025535.
Full textJalalian, Hamid Reza. "Decomposition evolutionary algorithms for noisy multiobjective optimization." Thesis, University of Essex, 2016. http://repository.essex.ac.uk/16828/.
Full textUtamima, Amalia. "Evolutionary Algorithms to Solve Agricultural Routing Planning." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82468.
Full textYang, Jing. "Designing Superior Evolutionary Algorithms via Insights From Black-Box Complexity Theory." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX054/document.
Full textIt has been observed that the runtime of randomized search heuristics depend on one or more parameters. A number of results show an advantage of dynamic parameter settings, that is, the parameters of the algorithm are changed during its execution. In this work, we prove that the unary unbiased black-box complexity of the OneMax benchmark function class is $n ln(n) - cn pm o(n)$ for a constant $c$ which is between $0.2539$ and $0.2665$. This runtime can be achieved with a simple (1+1)-type algorithm using a fitness-dependent mutation strength. When translated into the fixed-budget perspective, our algorithm finds solutions which are roughly 13% closer to the optimum than those of the best previously known algorithms.Based on the analyzed optimal mutation strength for OneMax, we show that a self-adjusting choice of the number of bits to be flipped attains the same runtime (apart from $o(n)$ lower-order terms) and the same (asymptotic) 13% fitness-distance improvement over RLS. The adjusting mechanism is to adaptively learn the currently optimal mutation strength from previous iterations. This aims both at exploiting that generally different problems may need different mutation strengths and that for a fixed problem different strengths may become optimal in different stages of the optimization process.We then extend our self-adjusting strategy to population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the $(1+lambda)$ evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the $(1+lambda)$~EA finds the optimum in an expected optimization time (number of fitness evaluations) of $O(nlambda/loglambda+nlog n)$. This time is asymptotically smaller than the optimization time of the classic $(1+lambda)$ EA. Previous work shows that this performance is best-possible among all $lambda$-parallel mutation-based unbiased black-box algorithms.We also propose and analyze a self-adaptive version of the $(1,lambda)$ evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time of the best possible $O(nlambda/loglambda+nlog n)$. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate can be replaced by our simple endogenous scheme