Academic literature on the topic 'Eutherians'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eutherians.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Eutherians"

1

Zhang, Xuzhe, Mihaela Pavlicev, Helen N. Jones, and Louis J. Muglia. "Eutherian-Specific Gene TRIML2 Attenuates Inflammation in the Evolution of Placentation." Molecular Biology and Evolution 37, no. 2 (October 9, 2019): 507–23. http://dx.doi.org/10.1093/molbev/msz238.

Full text
Abstract:
Abstract Evolution of highly invasive placentation in the stem lineage of eutherians and subsequent extension of pregnancy set eutherians apart from other mammals, that is, marsupials with short-lived placentas, and oviparous monotremes. Recent studies suggest that eutherian implantation evolved from marsupial attachment reaction, an inflammatory process induced by the direct contact of fetal placenta with maternal endometrium after the breakdown of the shell coat, and shortly before the onset of parturition. Unique to eutherians, a dramatic downregulation of inflammation after implantation prevents the onset of premature parturition, and is critical for the maintenance of gestation. This downregulation likely involved evolutionary changes on maternal as well as fetal/placental side. Tripartite-motif family-like2 (TRIML2) only exists in eutherian genomes and shows preferential expression in preimplantation embryos, and trophoblast-derived structures, such as chorion and placental disc. Comparative genomic evidence supports that TRIML2 originated from a gene duplication event in the stem lineage of Eutheria that also gave rise to eutherian TRIML1. Compared with TRIML1, TRIML2 lost the catalytic RING domain of E3 ligase. However, only TRIML2 is induced in human choriocarcinoma cell line JEG3 with poly(I:C) treatment to simulate inflammation during viral infection. Its knockdown increases the production of proinflammatory cytokines and reduces trophoblast survival during poly(I:C) stimulation, while its overexpression reduces proinflammatory cytokine production, supporting TRIML2’s role as a regulatory inhibitor of the inflammatory pathways in trophoblasts. TRIML2’s potential virus-interacting PRY/SPRY domain shows significant signature of selection, suggesting its contribution to the evolution of eutherian-specific inflammation regulation during placentation.
APA, Harvard, Vancouver, ISO, and other styles
2

V.R. Prasad, Guntupalli, Omkar Verma, Ashok Sahni, and Ashu Khosla. "Cretaceous mammals of India–Stratigraphic distribution, diversity and intercontinental affinities." Journal of Palaeosciences 70, no. (1-2) (September 10, 2021): 173–92. http://dx.doi.org/10.54991/jop.2021.14.

Full text
Abstract:
Extensive research carried out on the Cretaceous deposits of Laurasia has revealed an overwhelming presence of eutherian, metatherian and multituberculate groups of mammals in the Cretaceous ecosystems of Northern Hemisphere continents. In contrast, the relatively poorly documented fossil record of Cretaceous mammals from Gondwanan continents is represented by gondwanatherians, dryolestoids, and a few multituberculates and haramiyidans. Until now, no undoubted eutherian mammals have been reported from the Cretaceous strata of the southern continents except for India. In this context, Indian Cretaceous mammals assume great significance for understanding the origin and evolution of these mammals in Gondwana. Currently, the Cretaceous mammals of India include three groups, viz., eutherians, gondwanatherians, and haramiyidans. These three mammalian groups were recovered primarily from the Upper Cretaceous Deccan infra–and inter–trappean beds of peninsular India exposed near Bacharam, Naskal and Rangapur (Telengana), Upparhatti (Karnataka) and Kisalpuri (Madhya Pradesh) villages. Eutheria is by far the most diverse clade comprising three named genera (Deccanolestes, Sahnitherium, Kharmerungulatum) and one unnamed taxon (Eutheria incertae sedis). The gondwanatherians are known by Bharattherium bonapartei and Sudamericidae gen. et sp. indet. The third mammalian group, a possible haramiyidan, is represented by a solitary species Avashishta bacharamensis. Overall, the Cretaceous mammal fauna of India presents a complex biogeographic history with eutherians of Laurasian affinity, pan–Gondwanan gondwanatherians and a possible late surviving haramiyidan. Numerically abundant and speciose Deccanolestes, identified as an adapisoriculid, has been interpreted to have had originated in northward drifting Indian Plate in the Late Cretaceous and dispersed out of India into Africa and Europe over island arc systems (Oman–Kohistan–Dras) and the Ladakh magmatic arc at or near the Cretaceous–Paleogene boundary. A similar dispersal mode has also been visualized for Kharmerungulatum and Eutheria incertae sedis of Laurasian affinities.
APA, Harvard, Vancouver, ISO, and other styles
3

Dos Santos, Sandra E., Jairo Porfirio, Felipe B. da Cunha, Paul R. Manger, William Tavares, Leila Pessoa, Mary Ann Raghanti, Chet C. Sherwood, and Suzana Herculano-Houzel. "Cellular Scaling Rules for the Brains of Marsupials: Not as “Primitive” as Expected." Brain, Behavior and Evolution 89, no. 1 (2017): 48–63. http://dx.doi.org/10.1159/000452856.

Full text
Abstract:
In the effort to understand the evolution of mammalian brains, we have found that common relationships between brain structure mass and numbers of nonneuronal (glial and vascular) cells apply across eutherian mammals, but brain structure mass scales differently with numbers of neurons across structures and across primate and nonprimate clades. This suggests that the ancestral scaling rules for mammalian brains are those shared by extant nonprimate eutherians - but do these scaling relationships apply to marsupials, a sister group to eutherians that diverged early in mammalian evolution? Here we examine the cellular composition of the brains of 10 species of marsupials. We show that brain structure mass scales with numbers of nonneuronal cells, and numbers of cerebellar neurons scale with numbers of cerebral cortical neurons, comparable to what we have found in eutherians. These shared scaling relationships are therefore indicative of mechanisms that have been conserved since the first therians. In contrast, while marsupials share with nonprimate eutherians the scaling of cerebral cortex mass with number of neurons, their cerebella have more neurons than nonprimate eutherian cerebella of a similar mass, and their rest of brain has fewer neurons than eutherian structures of a similar mass. Moreover, Australasian marsupials exhibit ratios of neurons in the cerebral cortex and cerebellum over the rest of the brain, comparable to artiodactyls and primates. Our results suggest that Australasian marsupials have diverged from the ancestral Theria neuronal scaling rules, and support the suggestion that the scaling of average neuronal cell size with increasing numbers of neurons varies in evolution independently of the allocation of neurons across structures.
APA, Harvard, Vancouver, ISO, and other styles
4

Goswami, Anjali, Nick Milne, and Stephen Wroe. "Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals." Proceedings of the Royal Society B: Biological Sciences 278, no. 1713 (November 24, 2010): 1831–39. http://dx.doi.org/10.1098/rspb.2010.2031.

Full text
Abstract:
Carnivory has evolved independently several times in eutherian (including placental) and metatherian (including marsupial) mammals. We used geometric morphometrics to assess convergences associated with the evolution of carnivory across a broad suite of mammals, including the eutherian clades Carnivora and Creodonta and the metatherian clades Thylacoleonidae, Dasyuromorphia, Didelphidae and Borhyaenoidea. We further quantified cranial disparity across eutherians and metatherians to test the hypothesis that the marsupial mode of reproduction has constrained their morphological evolution. This study, to our knowledge the first to extensively sample pre-Pleistocene taxa, analysed 30 three-dimensional landmarks, focused mainly on the facial region, which were digitized on 130 specimens, including 36 fossil taxa. Data were analysed with principal components (PC) analysis, and three measures of disparity were compared between eutherians and metatherians. PC1 showed a shift from short to long faces and seemed to represent diet and ecology. PC2 was dominated by the unique features of sabre-toothed forms: dramatic expansion of the maxilla at the expense of the frontal bones. PC3, in combination with PC1, distinguished metatherians and eutherians. Metatherians, despite common comparisons with felids, were more similar to caniforms, which was unexpected for taxa such as the sabre-toothed marsupial Thylacosmilus . Contrary to previous studies, metatherian carnivores consistently exhibited disparity which exceeded that of the much more speciose eutherian carnivore radiations, refuting the hypothesis that developmental constraints have limited the morphological evolution of the marsupial cranium.
APA, Harvard, Vancouver, ISO, and other styles
5

Collet, C., R. Joseph, and K. Nicholas. "Cloning, cDNA analysis and prolactin-dependent expression of a marsupial alpha-lactalbumin." Reproduction, Fertility and Development 2, no. 6 (1990): 693. http://dx.doi.org/10.1071/rd9900693.

Full text
Abstract:
The gene for alpha-lactalbumin has been cloned from a tammar wallaby (Macropus eugenii) mammary gland cDNA library. Tammar alpha-lactalbumin has approximately 50 and 30% homology to the alpha-lactalbumins of eutherians at the levels of nucleotide and protein sequence respectively. Comparison of the inferred tammar polypeptide sequence with the sequence of the eutherian proteins reveals extensive divergence at almost all of the non-essential amino acid residues. However, the hydropathy plots of the tammar protein are almost identical to those of eutherian alpha-lactalbumins, suggesting that protein conformation is conserved. The tammar gene encodes a transcript of approximately 975 bases. Northern blot analysis of hormone-stimulated mammary gland explants shows that maximal induction of alpha-lactalbumin mRNA is dependent on prolactin and that expression is not modulated by other hormones that play a role in the initiation of lactation in eutherians.
APA, Harvard, Vancouver, ISO, and other styles
6

McKenzie, LM, and DW Cooper. "Low MHC class II variability in a marsupial." Reproduction, Fertility and Development 6, no. 6 (1994): 721. http://dx.doi.org/10.1071/rd9940721.

Full text
Abstract:
The major histocompatibility complex (MHC) loci have been shown to be highly polymorphic in most eutherian ('placental') species studied. Several hypotheses have been advanced for the maintenance of this exceptional level of genetic variation, one of which suggests that it is necessary for successful eutherian reproduction. Marsupials (metatherians) and eutherians are the only two groups of viviparous mammals, but their modes of reproduction are quite distinct. Although marsupials have placentae, they are generally shorter lived and less invasive than in eutherians. Other investigations have shown that genetic variation at marsupial MHC class I loci is probably high. Weak or non-existent mixed lymphocyte culture responses previously reported in several marsupial species have suggested a lack of class II variation. Data have therefore been collected on the level of restriction fragment length polymorphism at MHC class II beta-chain encoding loci of a marsupial, Macropus eugenii (the tammar wallaby). This level is shown to be low, between the level of MHC variation found in cheetahs and a population of lions with a restricted genetic base. Attention is drawn to the need to collect more data on the level of class II variability in both eutherians and marsupials, and to the potential of marsupials for understanding the relation, if any, between mode of reproduction and MHC variability.
APA, Harvard, Vancouver, ISO, and other styles
7

Gerkema, Menno P., Wayne I. L. Davies, Russell G. Foster, Michael Menaker, and Roelof A. Hut. "The nocturnal bottleneck and the evolution of activity patterns in mammals." Proceedings of the Royal Society B: Biological Sciences 280, no. 1765 (August 22, 2013): 20130508. http://dx.doi.org/10.1098/rspb.2013.0508.

Full text
Abstract:
In 1942, Walls described the concept of a ‘nocturnal bottleneck’ in placental mammals, where these species could survive only by avoiding daytime activity during times in which dinosaurs were the dominant taxon. Walls based this concept of a longer episode of nocturnality in early eutherian mammals by comparing the visual systems of reptiles, birds and all three extant taxa of the mammalian lineage, namely the monotremes, marsupials (now included in the metatherians) and placentals (included in the eutherians). This review describes the status of what has become known as the nocturnal bottleneck hypothesis, giving an overview of the chronobiological patterns of activity. We review the ecological plausibility that the activity patterns of (early) eutherian mammals were restricted to the night, based on arguments relating to endothermia, energy balance, foraging and predation, taking into account recent palaeontological information. We also assess genes, relating to light detection (visual and non-visual systems) and the photolyase DNA protection system that were lost in the eutherian mammalian lineage. Our conclusion presently is that arguments in favour of the nocturnal bottleneck hypothesis in eutherians prevail.
APA, Harvard, Vancouver, ISO, and other styles
8

Edwards, Carol A., Nozomi Takahashi, Jennifer A. Corish, and Anne C. Ferguson-Smith. "The origins of genomic imprinting in mammals." Reproduction, Fertility and Development 31, no. 7 (2019): 1203. http://dx.doi.org/10.1071/rd18176.

Full text
Abstract:
Genomic imprinting is a process that causes genes to be expressed according to their parental origin. Imprinting appears to have evolved gradually in two of the three mammalian subclasses, with no imprinted genes yet identified in prototheria and only six found to be imprinted in marsupials to date. By interrogating the genomes of eutherian suborders, we determine that imprinting evolved at the majority of eutherian specific genes before the eutherian radiation. Theories considering the evolution of imprinting often relate to resource allocation and recently consider maternal–offspring interactions more generally, which, in marsupials, places a greater emphasis on lactation. In eutherians, the imprint memory is retained at least in part by zinc finger protein 57 (ZFP57), a Kruppel associated box (KRAB) zinc finger protein that binds specifically to methylated imprinting control regions. Some imprints are less dependent on ZFP57invivo and it may be no coincidence that these are the imprints that are found in marsupials. Because marsupials lack ZFP57, this suggests another more ancestral protein evolved to regulate imprints in non-eutherian subclasses, and contributes to imprinting control in eutherians. Hence, understanding the mechanisms acting at imprinting control regions across mammals has the potential to provide valuable insights into our understanding of the origins and evolution of genomic imprinting.
APA, Harvard, Vancouver, ISO, and other styles
9

Frankenberg, S., A. J. Pask, and M. B. Renfree. "259. Pluripotency genes in a marsupial, the tammar wallaby." Reproduction, Fertility and Development 20, no. 9 (2008): 59. http://dx.doi.org/10.1071/srb08abs259.

Full text
Abstract:
Markers of pluripotency and early differentiation in the early embryo have been extensively characterised in eutherian species, most notably the mouse. By comparison, mechanisms controlling pluripotency and early lineage specification have received surprisingly little attention in marsupials, which represent the second major infraclass of mammals. Early marsupial embryogenesis exhibits overt morphological differences to that of eutherians, however the underlying developmental mechanisms may be conserved. In order to characterise early marsupial development at the molecular level, we have identified, cloned and analysed expression of orthologueues of several eutherian genes encoding transcription factors and signalling molecules involved in regulating pluripotency and early lineage specification. These genes include POU5F1 (OCT4), SOX2, NANOG, FGF4, FGFR2, CDX2, EOMES, TEAD4, GATA6 and KITL and are all expressed at early stages of development in the tammar. In addition, we have identified and cloned tammar POU2, which has orthologueues in non-mammalian vertebrates. POU2 is a paralogue of POU5F1 – a master regulator of pluripotency in eutherians. Genomic analysis indicates that POU5F1 arose via gene duplication of POU2 before the monotreme-therian divergence. Both genes have persisted in marsupials and monotremes, while POU2 was lost early during eutherian evolution. Similar expression profiles of tammar POU5F1 and POU2 in early embryos and gonadal tissues suggest possible overlapping roles in the maintenance of pluripotency.
APA, Harvard, Vancouver, ISO, and other styles
10

Messer, M., D. C. Shaw, A. S. Weiss, P. Rissmiller, and M. Griffiths. "Estimation of Divergence Dates for Monotremes From Comparisons of A-Lactalbumin Amino Acid Sequences." Australian Mammalogy 20, no. 2 (1998): 310. http://dx.doi.org/10.1071/am98323.

Full text
Abstract:
cx-Lactalbumins were isolated from milk of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus). Their amino acid sequences were determined and compared with those of the cx- lactalbumins often eutherian and two marsupial species, using the computer programme ("Distances") to calculate the number of differences (substitutions) between a total of 36 pairs of cx-lactalbumins. As expected, the amino acid sequences of the monotreme cx-lactalbumins were more similar to each other than to those of other mammals, as were the sequences of the marsupial and the eutherian cx-lactalbumins. If one makes the common assumption that marsupials and eutherians diverged from each other 135 Myr ago then simple calculations from the data would suggest that the platypus and echidna lineages diverged 56 ± 8 (SD) Myr ago and that monotremes diverged from the other mammals 152 ± 29 Myr ago. These values are not inconsistent with the little that is known about the palaeontology of the monotremes and are very similar to those derived from previous studies on globin sequences. If, however, monotreme cx-lactalbumins evolved more slowly than the cx-lactalbumins of eutherians and marsupials, these dates could be underestimates.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Eutherians"

1

Hore, Timothy Alexander, and timothy hore@anu edu au. "THE EVOLUTION OF GENOMIC IMPRINTING AND X CHROMOSOME INACTIVATION IN MAMMALS." The Australian National University. Research School of Biological Sciences, 2008. http://thesis.anu.edu.au./public/adt-ANU20081216.152553.

Full text
Abstract:
Genomic imprinting is responsible for monoallelic gene expression that depends on the sex of the parent from which the alleles (one active, one silent) were inherited. X-chromosome inactivation is also a form of monoallelic gene expression. One of the two X chromosomes is transcriptionally silenced in the somatic cells of females, effectively equalising gene dosage with males who have only one X chromosome that is not complemented by a gene poor Y chromosome. X chromosome inactivation is random in eutherian mammals, but imprinted in marsupials, and in the extraembryonic membranes of some placentals. Imprinting and X inactivation have been studied in great detail in placental mammals (particularly humans and mice), and appear to occur also in marsupial mammals. However, both phenomena appear to have evolved specifically in mammals, since there is no evidence of imprinting or X inactivation in non-mammalian vertebrates, which do not show parent of origin effects and possess different sex chromosomes and dosage compensation mechanisms to mammals.¶ In order to understand how imprinting and X inactivation evolved, I have focused on the mammals most distantly related to human and mouse. I compared the sequence, location and expression of genes from major imprinted domains, and genes that regulate genomic imprinting and X-chromosome inactivation in the three extant mammalian groups and other vertebrates. Specifically, I studied the evolution of an autosomal region that is imprinted in humans and mouse, the evolution of the X-linked region thought to control X inactivation, and the evolution of the genes thought to establish and control differential expression of various imprinted loci. This thesis is presented as a collection of research papers that examines each of these topics, and a review and discussion that synthesizes my findings.¶ The first paper reports a study of the imprinted locus responsible for the human Prader-Willi and Angelman syndromes (PWS and AS). A search for kangaroo and platypus orthologues of PWS-AS genes identified only the putative AS gene UBE3A, and showed it was in a completely different genomic context to that of humans and mice. The only PWS gene found in marsupials (SNRPN) was located in tandem with its ancient paralogue SNRPB, on a different chromosome to UBE3A. Monotremes apparently have no orthologue of SNRPN. The several intronless genes of the PWS-AS domain also have no orthologues in marsupials or monotremes or non-mammal vertebrates, but all have close paralogues scattered about the genome from which they evidently retrotransposed. UBE3A in marsupials and monotremes, and SNRPN in marsupials were found to be expressed from both alleles, so are not imprinted. Thus, the PWA-AS imprinted domain was assembled from many non-imprinted components relatively recently, demonstrating that the evolution of imprinting has been an ongoing process during mammalian radiation.¶ In the second paper, I examine the evolution of the X-inactivation centre, the key regulatory region responsible for X-chromosome inactivation in humans and mice, which is imprinted in mouse extraembryonic membranes. By sequencing and aligning flanking regions across the three mammal groups and non-mammal vertebrates, I discovered that the region homologous to the X-inactivation centre, though intact in birds and frogs, was disrupted independently in marsupial and monotreme mammals. I showed that the key regulatory RNA of this locus (X-inactive specific transcript or XIST) is absent, explaining why a decade-long search for marsupial XIST was unsuccessful. Thus, XIST is eutherian-specific and is therefore not a basic requirement for X-chromosome inactivation in all mammals.¶ The broader significance of the findings reported in these two papers is explored with respect to other current work regarding the evolution and construction of imprinted loci in mammals in the form of a review. This comparison enabled me to conclude that like the PWS-AS domain and the X-inactivation centre, many domains show unexpected construction from disparate genomic elements that correlate with their acquisition of imprinting.¶ The fourth and last paper examines the evolution of CCCTC-binding Factor (CTCF) and its parologue Brother Of Regulator of Imprinted Sites (BORIS) which contribute to the establishment and interpretation of genomic imprinting at the Insulin-Like Growth Factor 2/H19 locus. In this paper I show that the duplication of CTCF giving rise to BORIS occurred much earlier than previously recognised, and demonstrate that a major change in BORIS expression (restriction to the germline) occurred in concert with the evolution of genomic imprinting. The papers that form the bulk of this thesis show that the evolution of epigenetic traits such as genomic imprinting and X-chromosome inactivation is labile and has apparently responded rapidly to different selective pressures during the independent evolution of the three mammal groups. I have introduced these papers, and discussed them generally in terms of current theories of how and why these forms of monoallelic expression have evolved in mammals.
APA, Harvard, Vancouver, ISO, and other styles
2

Cox, P. G. "Functional morphology of the orbital region of eutherian mammals." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598097.

Full text
Abstract:
After an initial chapter introducing the orbital region and surveying the literature, Chapter Two addresses the scope of the variation in orbital construction with a comprehensive description of the orbits of placental mammals, order by order. This information is used to score 23 morphological characters from the orbital region in representatives from as many eutherian families as possible. These character states are then plotted on to existing phylogenies of the Eutheria in order to study the evolution of orbital characters throughout the group. This elucidates which characters are more plastic than others, which orbital features are characteristic of particular placental groups, and which species are anomalous within their family or order with regard to the orbit. Chapter Three focuses on the muscles of mastication and the variation in their relative proportions throughout the Eutheria. The nature of the stresses and strains generated by these muscles across the skull, and particularly in the orbital region, is considered using dissection and the split-line technique. Drawing on this information, Chapter Four seeks to characterise the variation in orbital structure in a quantitative fashion. The surface areas of orbital bones along with various cranial dimensions in a wide sample of eutherians are measured using a 3-D digitiser. These data are then subjected to a number of statistical techniques such as principal components analysis, analysis of variance and cluster analysis, in order to assess whether orbital structure can be correlated with arrangement of the jaw closing musculature. Finally, all the evidence is drawn together to see if the construction of the orbit can be used as a predictor of masticatory musculature.
APA, Harvard, Vancouver, ISO, and other styles
3

Dudley, Jessica Suzanne. "Uterine changes during mammalian pregnancy and the evolution of placentation." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18802.

Full text
Abstract:
Reproduction is a complex phenomenon that is fundamental to all living things. There is a plethora of strategies that animals utilise to reproduce. The uterine epithelium of viviparous mammals undergoes vast remodelling to accommodate the developing embryo. There are several levels of placental invasion in mammals that develop a placenta, based on the number of cell layers that separate the developing fetus and maternal blood stream. This thesis investigated whether there are common molecular changes to the uterine surface during pregnancy in Theria. I compared uterine remodelling across several phylogenetic groups with independent origins of endotheliochorial placentae to determine how this placenta type evolved. I tested the generality of uterine remodelling during pregnancy in the marsupial, Sminthopsis crassicaudata (Dasyuridae; the fat-tailed dunnart) and the eutherian, Felis catus (Felidae; the domestic cat) and Dipodomys merriami (Heteromyidae; Merriam’s kangaroo rat). I used Transmission and Scanning Electron Microscopy to study the ultrastructural changes to the uterine epithelium during pregnancy. I used immunofluorescence microscopy and Western blotting to show that there are common changes to the distribution of key lateral adhesion molecules, desmoglein-2 and E-cadherin to facilitate the formation of the placenta. I confirmed that desmosomes and the adherens junction redistribute and break down at attachment during marsupial pregnancy. I also showed that the same ultrastructural and molecular changes to the uterine epithelium are seen in eutherian species which represent separate lineages of endotheliochorial placentation. I was the first to identify a plasma membrane transformation during pregnancy in Dipodomys merriami, a rodent species which represent a recent evolution of endotheliochorial placentation within Rodentia. I determined the effect of the reproductive hormones, progesterone and 17β-oestradiol on the reproductive tract of Sminthopsis crassicaudata, concluding that the plasma membrane transformation is regulated by the same hormonal mechanisms among therian species. The conclusions from this thesis support the theory that uterine remodelling and the plasma membrane transformation are crucial for successful pregnancy in viviparous mammals with commonalities in molecular and morphological changes among species.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Xuzhe. "Eutherian-specific gene TRIML2 attenuates inflammation in the evolution of placentation." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573576401238203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weinstein, Deborah Lynn. "Phylogeny and Relationships of Taeniodonta, an Enigmatic Order of Eutherian Mammals (Paleogene, North America)." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1248301491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Klutzny, Simone. "Phylogenetic implications of the regio orbito-temporalis in embryonic mammals." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Julien-Laferriere, Didier. "Utilisation de l'espace et des ressources alimentaires chez Caluromys philander (Marsupialia, Didelphidae) : comparaison avec Potos Flavus (Eutheria, Procyonidae)." Paris 13, 1989. http://www.theses.fr/1989PA131011.

Full text
Abstract:
Les modalités d'utilisation de l'espace et des ressources alimentaires ont été étudiées chez Caluromys philander (Marsupialia, Didelphidae) en forêt primaire de Guyane française, en comparaison avec Potos Flavus (Eutheria, Procyonidae). L'organisation du domaine vital est analysée chez C. Philander. On montre que cette espèce est opportuniste et qu'il existe une influence du sexe, du stade reproducteur des femelles, ainsi que de la disponibilité des ressources alimentaires, sur certains caractères du domaine vital et du comportement des individus. Les régimes alimentaires des deux mammifères, les caractères morphologiques et chimiques des fruits consommés ainsi que les stratégies d'exploitation des arbres en fleurs et en fruits sont considérés. L'efficacité des deux espèces pour la dissémination des graines est discutée en fonction de leur taille et de leurs modalités d'utilisation de l'espace et bdes ressources tropiques. Ces deux espèces présentent des particularités dont certaines augmentent et d'autres réduisent l'efficacité de la dissémination.
APA, Harvard, Vancouver, ISO, and other styles
8

Sloan, Angela M. "Atypical molecular evolution of afrotherian and xenarthran [beta]-globin cluster genes with insights into the [beta]-globin cluster gene organization of stem eutherians." 2005. http://hdl.handle.net/1993/20868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hore, Tim. "The Evolution of Genomic Imprinting and X Chromosome Inactivation in Mammals." Phd thesis, 2008. http://hdl.handle.net/1885/49309.

Full text
Abstract:
Genomic imprinting is responsible for monoallelic gene expression that depends on the sex of the parent from which the alleles (one active, one silent) were inherited. X-chromosome inactivation is also a form of monoallelic gene expression. One of the two X chromosomes is transcriptionally silenced in the somatic cells of females, effectively equalising gene dosage with males who have only one X chromosome that is not complemented by a gene poor Y chromosome. X chromosome inactivation is random in eutherian mammals, but imprinted in marsupials, and in the extraembryonic membranes of some placentals. Imprinting and X inactivation have been studied in great detail in placental mammals (particularly humans and mice), and appear to occur also in marsupial mammals. However, both phenomena appear to have evolved specifically in mammals, since there is no evidence of imprinting or X inactivation in non-mammalian vertebrates, which do not show parent of origin effects and possess different sex chromosomes and dosage compensation mechanisms to mammals.¶ In order to understand how imprinting and X inactivation evolved, I have focused on the mammals most distantly related to human and mouse. I compared the sequence, location and expression of genes from major imprinted domains, and genes that regulate genomic imprinting and X-chromosome inactivation in the three extant mammalian groups and other vertebrates. Specifically, I studied the evolution of an autosomal region that is imprinted in humans and mouse, the evolution of the X-linked region thought to control X inactivation, and the evolution of the genes thought to establish and control differential expression of various imprinted loci. This thesis is presented as a collection of research papers that examines each of these topics, and a review and discussion that synthesizes my findings.¶ ...
APA, Harvard, Vancouver, ISO, and other styles
10

Schraven, Andrea L. "Transcriptomic analysis of the gray short-tailed opossum (Monodelphis domestica) B-cell genes." Thesis, 2019. http://hdl.handle.net/1959.7/uws:56732.

Full text
Abstract:
Marsupials and eutherians are mammals that differ in their physiological traits, predominately their reproductive and developmental strategies; eutherians give birth to well-developed young, while marsupials are born highly altricial after a much shorter gestation. These developmental traits result in differences in the development of the immune system of eutherian and marsupial species. B-cells are key to humoral immunity, are found in multiple lymphoid organs, and have the unique ability to mediate the production of antigen-specific antibodies in the presence of pathogens. Marsupial B-cell investigations have become increasingly important in understanding an adaptive immune system that develops primarily ex utero. In comparison to eutherians and monotremes, marsupial B-cells have four Immunoglobulin (Ig) heavy (H) chain isotypes (IgA, IgG, IgM and IgE) and two light (L) chain isotypes; lambda (Igλ) and kappa (Igκ). The gray short-tailed opossum (Monodelphis domestica) is a well-established model marsupial species, with a well annotated genome. The B-cell transcriptome of an individual opossum was investigated by Next Generation RNA-Seq techniques at the single-cell level. A total of 273 single-cells and 575,721 contigs were generated, annotation of the transcriptome identified 14,654 unique genes. The first study of this thesis analysed the IgH and IgL usage in the opossum B-cell repertoire. Not surprisingly, IgM had the highest expression in the repertoire, followed by IgA, IgG, and very few cells expressing IgE. Despite Igκ being the most complex IgL isotype, the ratio of Igκ to Igλ was 35:65. IgL isotypes have been identified to have a greater contribution to antibody diversification than IgH isotypes, due to the complexity and abundance of IgL variable (V) gene segments. The second study of this thesis examined the whole opossum B-cell transcriptome and analysed the most highly expressed genes. The most abundant gene transcripts were Sydnecan-4, making up 0.66% of the entire transcriptome. IgM and IgG cells produced significantly more transcripts of the golgi glycoprotein 1 and ELMO domain-containing protein genes in comparison to IgA. Since IgE expressing cells were very low in number, a definitive comparison could not be made between all IgH cells. Highly expressed genes associated with the marsupial immune system included MHC class II DRα chain and MHC class II DAβ chain. The diverse array of genes identified in the opossum single-cell transcriptome reveals the importance of marsupial B-cells in producing endogenous antibody responses, and has allowed for a comparative analysis with other mammalian lineages.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Eutherians"

1

Novacek, Michael J. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. New York: American Museum of Natural History, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wible, John R. New data on the skull and dentition in the Mongolian late Cretaceous eutherian mammal Zalambdalestes. New York, NY: American Museum of Natural History, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

MacPhee, R. D. E. Morphology, adaptations, and relationships of Plesiorycteropus and a diagnosis of a new order of eutherian mammals. New York, N.Y: American Museum of Natural History, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kosco, Mark. Reproduction in Eutherian Mammals. Kosco Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tetz, Martin, and Eutherios von Eutherios von Tyana. Antilogie des Eutherios Von Tyana. de Gruyter GmbH, Walter, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Comparative Anatomy of the Gastrointestinal Tract in Eutheria: Taxonomy, Biogeography and Food. De Gruyter, Inc., 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schmidt-Rhaesa, Andreas, and Willy Kükenthal. Comparative Anatomy of the Gastrointestinal Tract in Eutheria II: Taxonomy, Biogeography and Food. Laurasiatheria. de Gruyter GmbH, Walter, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schmidt-Rhaesa, Andreas, and Willy Kükenthal. Comparative Anatomy of the Gastrointestinal Tract in Eutheria II: Taxonomy, Biogeography and Food. Laurasiatheria. de Gruyter GmbH, Walter, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmidt-Rhaesa, Andreas, and Willy Kükenthal. Comparative Anatomy of the Gastrointestinal Tract in Eutheria II: Taxonomy, Biogeography and Food. Laurasiatheria. de Gruyter GmbH, Walter, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Langer, Peter. Comparative Anatomy of the Gastrointestinal Tract in Eutheria I : Taxonomy, Biogeography and Food: Afrotheria, Xenarthra and Euarchontoglires. de Gruyter GmbH, Walter, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Eutherians"

1

Urashima, Tadasu, Michael Messer, and Olav T. Oftedal. "Comparative Biochemistry and Evolution of Milk Oligosaccharides of Monotremes, Marsupials, and Eutherians." In Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life, 3–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07623-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mossman, Harland W. "Types of Eutherian Placentation." In Vertebrate Fetal Membranes, 91–97. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09065-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Holliday, Robin. "Longevity and fecundity in eutherian mammals." In Genetics and Evolution of Aging, 217–25. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1671-0_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mossman, Harland W. "Principal Types of Eutherian Fetal Membrane Systems." In Vertebrate Fetal Membranes, 88–90. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09065-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mate, K. E., M. S. Harris, and J. C. Rodger. "Fertilization in Monotreme, Marsupial and Eutherian Mammals." In Fertilization in Protozoa and Metazoan Animals, 223–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58301-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cifelli, Richard L. "Theria of Metatherian-Eutherian Grade and the Origin of Marsupials." In Mammal Phylogeny, 205–15. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9249-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mossman, Harland W. "Morphogenesis of Eutherian Fetal Membranes as Evidence of Their Evolution and Phylogeny." In Vertebrate Fetal Membranes, 124–32. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09065-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mossman, Harland W. "Introduction to the Morphogenesis of the Fetal Membranes of Eutheria." In Vertebrate Fetal Membranes, 165–67. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09065-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mossman, Harland W. "Notes on Individual Membranes and Tissues of the Eutherian Fetal Membrane System and on the Decidua." In Vertebrate Fetal Membranes, 154–61. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09065-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shoshani, Jeheskel, Morris Goodman, John Czelusniak, and Gerhard Braunitzer. "A Phylogeny of Rodentia and Other Eutherian Orders: Parsimony Analysis Utilizing Amino Acid Sequences of Alpha and Beta Hemoglobin Chains." In Evolutionary Relationships among Rodents, 191–210. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-0539-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Eutherians"

1

Silviria, Jason. "Biogeography and Biostratigraphy of North American Eutherian Mammals During the Puercan Faunal Stage (paleocene, Earliest Danian)." In 2018 New Mexico Geological Society Annual Spring Meeting. Socorro, NM: New Mexico Geological Society, 2018. http://dx.doi.org/10.56577/sm-2018.757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Zhuyin, Jahandar Ramezani, Huaiyu He, and Samuel A. Bowring. "HIGH-PRECISION AGE CONSTRAINTS ON THE JURASSIC RISE OF FEATHERED DINOSAURS AND EUTHERIAN MAMMALS: U-PB GEOCHRONOLOGY OF THE YANLIAO BIOTA FROM JIANCHANG (WESTERN LIAONING PROVINCE, CHINA)." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-287253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography