Academic literature on the topic 'Eulerian RANS'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eulerian RANS.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Eulerian RANS"
Farrell, Kevin J. "Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception." Journal of Fluids Engineering 125, no. 1 (January 1, 2003): 46–52. http://dx.doi.org/10.1115/1.1522411.
Full textZhu, Shanglong, Dirk Roekaerts, Artur Pozarlik, and Theo van der Meer. "Eulerian–Lagrangian RANS Model Simulations of the NIST Turbulent Methanol Spray Flame." Combustion Science and Technology 187, no. 7 (February 26, 2015): 1110–38. http://dx.doi.org/10.1080/00102202.2015.1019616.
Full textHaran, Duaa Yaseen, and Ahmed Abed AL-Kadhem Majhool. "Application of LES/PDF and RANS/PDF approaches for simulation of spray combustion." Al-Qadisiyah Journal for Engineering Sciences 14, no. 2 (July 13, 2021): 109–16. http://dx.doi.org/10.30772/qjes.v14i2.752.
Full textAlawadhi, Khaled, Bashar Alzuwayer, Mosab Alrahmani, and Ahmed Murad. "Evaluation of the Erosion Characteristics for a Marine Pump Using 3D RANS Simulations." Applied Sciences 11, no. 16 (August 10, 2021): 7364. http://dx.doi.org/10.3390/app11167364.
Full textZhao, Zhong Liang, Hong Biao Wang, Yang Tao, and Yuan Jing Wang. "Predictions of Dynamic Damping Coefficients of Basic Finner Based on CFD." Applied Mechanics and Materials 380-384 (August 2013): 215–18. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.215.
Full textNakisa, Mehdi, Adi Maimun Abdul Malik, Yasser M. Ahmed, Sverre Steen, Fatemeh Behrouzi, Reza Hassanzadeh, and Ahmad F. Sabki. "Propeller Effect on 3D Flow at the Stern Hull of a LNG Carrier Using Finite Volume Method." Applied Mechanics and Materials 554 (June 2014): 566–70. http://dx.doi.org/10.4028/www.scientific.net/amm.554.566.
Full textWeber, L. J., R. A. Goodwin, S. Li, J. M. Nestler, and J. J. Anderson. "Application of an Eulerian–Lagrangian–Agent method (ELAM) to rank alternative designs of a juvenile fish passage facility." Journal of Hydroinformatics 8, no. 4 (December 1, 2006): 271–95. http://dx.doi.org/10.2166/hydro.2006.006.
Full textNgo, Son Ich, and Young-Il Lim. "Multiscale Eulerian CFD of Chemical Processes: A Review." ChemEngineering 4, no. 2 (March 31, 2020): 23. http://dx.doi.org/10.3390/chemengineering4020023.
Full textLarbi, Ahmed Amine, Abdelhamid Bounif, Mohamed Senouci, Iskender Gökalp, and Mohamed Bouzit. "RANS modelling of a lifted hydrogen flame using eulerian/lagrangian approaches with transported PDF method." Energy 164 (December 2018): 1242–56. http://dx.doi.org/10.1016/j.energy.2018.08.073.
Full textDeniz Canal, Cansu, Erhan Böke, and Ali Cemal Benim. "Numerical analysis of pulverized biomass combustion." E3S Web of Conferences 321 (2021): 01001. http://dx.doi.org/10.1051/e3sconf/202132101001.
Full textDissertations / Theses on the topic "Eulerian RANS"
Mahmoud, Rihab. "Development and Application of an Eulerian Density Function Methodology coupled to Flamelet Progress Variable Approach for the Simulation of Oxyfuel Combustion." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST019.
Full textIn the prevailing situation of unsustainable fossil fuel resources and the elevated levels of air pollutant emissions, the state-of-the-art of combustion investigations confronts primarily two challenges. These are on the one hand the optimization of the fossil fuel combustion efficiency and on the other hand the development and the application of robust strategies to reduce the amount of the released pollutant gases with respect to the new emission standards in accordance with the global energy policies.Within this context, the carbon dioxide capture and storage (CCS) technologies play an important role as an accepted strategy towards the mitigation of CO 2 emissions. One of the important aspects of the CCS techniques is the oxidation of natural gas under oxy-fuel combustion conditions. However, very few scientific contributions have been devoted to the research of these systems, so that there is a lack of understanding of the oxy-combustion processes.The present work aims at the development and the application of an advanced numerical approach for the simulation of oxy-fuel combustion in which the TCI is adequatelyaccounted for within non-premixed combustion regimes using the OpenFOAM platform.The suggested model which is designed for both RANS and LES applications consists of a combination of a transported probability density function approach following the Eulerian Stochastic field methodology and the flamelet progress variable (FPV) chemistry reduction mechanism. In the LES framework, the proposed method accurately represents the effect of the sub-grid fluctuations on the flame structure and on combustion characteristics along with the interaction between turbulence and chemistry.The implemented developed combustion model is first verified, and then validated and applied to different turbulent non-premixed combustion configurations featuring an increasing order of complexity. In particular, Sandia flame D which consists of a turbulent piloted methane-air jet flame is first employed for model validation in both RANS and LES contexts. The next flames are more challenging cases, namely the non-premixed Sandia oxy-flame series (A & B), which are operated under different Re numbers and characterized by various CO 2 and H 2 enrichments in the oxidizer and fuel streams, respectively. All investigated cases are well documented with available experimentalmeasurements.The comparison of the obtained results with experimental data in terms of temperature, scalar distributions, PDFs and scatter plots agree satisfactorily, essentially in the LES context.This work finally reveals that the hybrid ESF/FPV approach removes the weaknesses of the presumed probability density function based FPV modeling (β-PDF)
Belmar, Gil Mario. "Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/159882.
Full text[CA] El principal desafiament als motors turbina de gas utilitzats a la aviació resideix en augmentar l'eficiència del cicle termodinàmic mantenint les emissions contaminants per davall de les rigoroses restriccions. Aquest fet comporta la necessitat de dissenyar noves estratègies d'injecció/combustió que radiquen en punts d'operació perillosos per la seva aproximació al límit inferior d'apagat de flama. En aquest context, el concepte Lean Direct Injection (LDI) sorgeix com a eina innovadora a l'hora de reduir els òxids de nitrogen (NOx) emesos per les plantes propulsores dels avions de nova generació. Sota aquest context, aquesta tesis té com a objectius contribuir al coneixement dels mecanismes físics que regeixen el comportament d'un cremador LDI i proporcionar ferramentes d'anàlisi per a una profunda caracterització de les complexes estructures de flux turbulent generades a l'interior de la càmera de combustió. Per tal de dur-ho a terme s'ha desenvolupat una metodología numèrica basada en CFD capaç de modelar el flux bifàsic no reactiu a l'interior d'un cremador LDI acadèmic mitjançant els enfocaments de turbulència U-RANS i LES en un marc Eulerià-Lagrangià. La resolució numèrica d'aquest problema multiescala s'aborda mitjançant la resolució completa del flux al llarg de tots els elements que constitueixen la maqueta experimental, incloent el seu pas pel swirler i l'entrada a la càmera de combustió. Açò es duu a terme a través de dos codis CFD que involucren estratègies de mallat diferents: una basada en la generación automàtica de la malla i en l'algoritme de refinament adaptatiu (AMR) amb CONVERGE i l'altra que es basa en una tècnica de mallat estàtic més tradicional amb OpenFOAM. D'una banda, s'ha definit una metodologia per tal d'obtindre una estrategia de mallat òptima mitjançant l'ús de l'AMR i s'han explotat els seus beneficis front als enfocaments tradicionals de malla estàtica. D'aquesta forma, s'ha demostrat que l'aplicabilitat de les ferramente de control de malla disponibles en CONVERGE com el refinament fixe (fixed embedding) i l'AMR són una opció molt interessant per tal d'afrontar aquest tipus de problemes multiescala. Els resultats destaquen una optimització de l'ús dels recursos computacionals i una major precisió en les simulacions realitzades amb la metodologia presentada. D'altra banda, l'ús d'eines CFD s'ha combinat amb l'aplicació de tècniques de descomposició modal avançades (Proper Orthogonal Decomposition and Dynamic Mode Decomposition). La identificació numèrica dels principals modes acústics a la càmera de combustió ha demostrat el potencial d'aquestes ferramentes al permetre caracteritzar les estructures de flux coherents generades com a conseqüència del trencament dels vòrtex (VBB) i dels raigs fortament arremolinats presents al cremador LDI. A més, la implantació d'estos procediments matemàtics ha permès recuperar informació sobre les característiques de la dinàmica del flux i proporcionar un enfocament sistemàtic per tal d'identificar els principals mecanismes que sustenten les inestabilitats a la càmera de combustió. Finalment, la metodologia validada ha sigut explotada a traves d'un Diseny d'Experiments (DoE) per tal de quantificar la influència dels factors crítics de disseny en el flux no reactiu. D'aquesta manera, s'ha avaluat la contribución individual d'alguns paràmetres funcionals (el nombre de pales del swirler, l'angle de les pales, l'amplada de la càmera de combustió i la posició axial de l'orifici de l'injector) en els patrons del camp fluid, la distribució de la mida de gotes del combustible líquid i l'aparició d'inestabilitats en la càmera de combustió mitjançant una matriu ortogonal L9 de Taguchi. Aquest estudi estadístic és un bon punt de partida per a futurs estudis de injecció, atomització i combustió en cremadors LDI.
[EN] Aeronautical gas turbine engines present the main challenge of increasing the efficiency of the cycle while keeping the pollutant emissions below stringent restrictions. This has led to the design of new injection-combustion strategies working on more risky and problematic operating points such as those close to the lean extinction limit. In this context, the Lean Direct Injection (LDI) concept has emerged as a promising technology to reduce oxides of nitrogen (NOx) for next-generation aircraft power plants In this context, this thesis aims at contributing to the knowledge of the governing physical mechanisms within an LDI burner and to provide analysis tools for a deep characterisation of such complex flows. In order to do so, a numerical CFD methodology capable of reliably modelling the 2-phase nonreacting flow in an academic LDI burner has been developed in an Eulerian-Lagrangian framework, using the U-RANS and LES turbulence approaches. The LDI combustor taken as a reference to carry out the investigation is the laboratory-scale swirled-stabilised CORIA Spray Burner. The multi-scale problem is addressed by solving the complete inlet flow path through the swirl vanes and the combustor through two different CFD codes involving two different meshing strategies: an automatic mesh generation with adaptive mesh refinement (AMR) algorithm through CONVERGE and a more traditional static meshing technique in OpenFOAM. On the one hand, a methodology to obtain an optimal mesh strategy using AMR has been defined, and its benefits against traditional fixed mesh approaches have been exploited. In this way, the applicability of grid control tools available in CONVERGE such as fixed embedding and AMR has been demonstrated to be an interesting option to face this type of multi-scale problem. The results highlight an optimisation of the use of the computational resources and better accuracy in the simulations carried out with the presented methodology. On the other hand, the use of CFD tools has been combined with the application of systematic advanced modal decomposition techniques (i.e., Proper Orthogonal Decomposition and Dynamic Mode Decomposition). The numerical identification of the main acoustic modes in the chamber have proved their potential when studying the characteristics of the most powerful coherent flow structures of strongly swirled jets in a LDI burner undergoing vortex breakdown (VBB). Besides, the implementation of these mathematical procedures has allowed both retrieving information about the flow dynamics features and providing a systematic approach to identify the main mechanisms that sustain instabilities in the combustor. Last, this analysis has also allowed identifying some key features of swirl spray systems such as the complex pulsating, intermittent and cyclical spatial patterns related to the Precessing Vortex Core (PVC). Finally, the validated methodology is exploited through a Design of Experiments (DoE) to quantify the influence of critical design factors on the non-reacting flow. In this way, the individual contribution of some functional parameters (namely the number of swirler vanes, the swirler vane angle, the combustion chamber width and the axial position of the nozzle tip) into both the flow field pattern, the spray size distribution and the occurrence of instabilities in the combustion chamber are evaluated throughout a Taguchi's orthogonal array L9. Such a statistical study has supposed a good starting point for subsequent studies of injection, atomisation and combustion on LDI burners.
Belmar Gil, M. (2020). Computational study on the non-reacting flow in Lean Direct Injection gas turbine combustors through Eulerian-Lagrangian Large-Eddy Simulations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159882
TESIS
Book chapters on the topic "Eulerian RANS"
Fleischner, H., and B. Jackson. "Compatible Euler Tours In Eulerian Digraphs." In Cycles and Rays, 95–100. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0517-7_9.
Full textConference papers on the topic "Eulerian RANS"
Puggelli, Stefano, Lorenzo Palanti, Antonio Andreini, and François-Xavier Demoulin. "Development of an evaporation model for the dense spray region in Eulerian-Eulerian multiphase flow simulations." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4652.
Full textZhang, Peng, and Xu Hong. "A Large Eddy Simulation of the Bubbly Flow in Vertical Tube." In 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icone20-power2012-54362.
Full textLyras, Konstantinos, Siaka Dembele, C. Madhav Rao Vendra, and Jennifer Wen. "Numerical simulation of superheated jets using an Eulerian method." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4667.
Full textZheng, Z. C., Z. Wei, J. S. Bennett, and X. Yang. "Simulation and Comparison of Particle Injection in an Indoor Environment Using the Species Transport and Discrete Phase Models." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72014.
Full textBravo, Luis, Qingluan Xue, Sibendu Som, Christopher Powell, and Chol-Bum M. Kweon. "Fuel Effects on Nozzle Flow and Spray Using Fully Coupled Eulerian Simulations." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49554.
Full textEichler, Dominik, Philipp Pischke, and Reinhold Kneer. "Influence of Stokes Number on Collisional Interfacial Area Production Terms within the Σ-Y Eulerian Spray Atomization Model." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.5041.
Full textHoráček, Jaromír, and Petr Sváček. "Finite Element Simulation of a Gust Response of an Ultralight 2-DOF Airfoil." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28390.
Full textMoffat, Dominic L., and Alexey A. Burluka. "Modelling of a Turbulent Jet in a Gas Crossflow." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94309.
Full textWang, Qiuchen, Qiyu Huang, Xu Sun, Jun Zhang, Soroor Karimi, and Siamack A. Shirazi. "Large Eddy Simulation of Slurry Erosion in Submerged Impinging Jets." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20302.
Full textJiang, Minyee, Van Lien, Douglas Lesar, Allen Engle, and Richard Lewis. "A Validation of Various Codes Using Hydrodynamic Wedge Impact Data." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83863.
Full text