Academic literature on the topic 'Euler's continuants'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Euler's continuants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Euler's continuants"

1

Ustinov, A. V. "A Short Proof of Euler's Identity for Continuants." Mathematical Notes 79, no. 1-2 (January 2006): 146–47. http://dx.doi.org/10.1007/s11006-006-0017-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huergo Ríos, Iván Francisco, and Hugo Hernández Barrios. "Control pasivo de vibraciones verticales inducidas por personas en puentes peatonales." Ingeniería Investigación y Tecnología 21, no. 2 (April 1, 2020): 1–14. http://dx.doi.org/10.22201/fi.25940732e.2020.21n2.017.

Full text
Abstract:
Los puentes peatonales actuales son estructuras cada vez más esbeltas y flexibles, lo que ocasiona que estos sean más propensos a las vibraciones verticales inducidas por personas. En México no existen normas de diseño para la revisión del estado límite de servicio de este tipo de estructuras, lo que ocasiona que muchos peatones dejen de utilizarlos para cruzar vialidades. En este artículo se estudian tres puentes peatonales existentes en México, los cuales son modelados mediante vigas continuas tipo Euler-Bernoulli sometidas a cargas verticales peatonales en movimiento. Se observa que estos puentes no cumplen con los límites de confort establecidos en las normas internacionales, por lo que se diseña un sistema de control de vibraciones verticales basado en amortiguadores de masa sintonizada (AMS) para cada uno de ellos.
APA, Harvard, Vancouver, ISO, and other styles
3

Beltrán, Franklin. "Un Principio de Certeza Máxima. Análisis Teórico de un Nuevo Invariante Probabilístico con Aplicaciones en el Estudio de Tormentas en Quito-Ecuador." Revista Politécnica 52, no. 2 (November 14, 2023): 47–58. http://dx.doi.org/10.33333/rp.vol52n2.05.

Full text
Abstract:
Se expone una nueva invariante de tipo probabilístico denominada Certeza Máxima (Nmax) maximizando el funcional Certeza (N) mediante cálculo variacional, equivalente al principio desarrollado por Euler-Lagrange en el campo determinístico conocido como Mínima Acción. Su aparición surge de manera natural al considerar la conservación de la Información que recibe y entrega un sistema probabilístico. El Invariante Nmax, asociado a una variable aleatoria continua T, equilibra la función de Conocimiento C(t); propia de cada función de densidad probabilística f(t)max, y la función de Información I(t)=-ln(f(t)max). Se inicia demostrando Nmax para la función de distribución acumulada exponencial truncada y se amplía como principio para otras familias de distribuciones de probabilidad, tanto continuas como discretas, tanto acotadas como no acotadas. Cuando la variable aleatoria t tiene unidad de tiempo truncada en DT, la función de distribución acumulada P(t)max obtenida es la curva en el tiempo más probable entre todas las posibles. La modelación de patrones de tormentas estocásticos en Quito-Ecuador mediante la Distribución Exponencial Cuadrática Truncada (con parámetro alfa=9,8) se presenta como ejemplo de uso, entre otros.
APA, Harvard, Vancouver, ISO, and other styles
4

Fairon, Maxime, and David Fernández. "Euler continuants in noncommutative quasi-Poisson geometry." Forum of Mathematics, Sigma 10 (2022). http://dx.doi.org/10.1017/fms.2022.76.

Full text
Abstract:
Abstract It was established by Boalch that Euler continuants arise as Lie group valued moment maps for a class of wild character varieties described as moduli spaces of points on $\mathbb {P}^1$ by Sibuya. Furthermore, Boalch noticed that these varieties are multiplicative analogues of certain Nakajima quiver varieties originally introduced by Calabi, which are attached to the quiver $\Gamma _n$ on two vertices and n equioriented arrows. In this article, we go a step further by unveiling that the Sibuya varieties can be understood using noncommutative quasi-Poisson geometry modelled on the quiver $\Gamma _n$ . We prove that the Poisson structure carried by these varieties is induced, via the Kontsevich–Rosenberg principle, by an explicit Hamiltonian double quasi-Poisson algebra defined at the level of the quiver $\Gamma _n$ such that its noncommutative multiplicative moment map is given in terms of Euler continuants. This result generalises the Hamiltonian double quasi-Poisson algebra associated with the quiver $\Gamma _1$ by Van den Bergh. Moreover, using the method of fusion, we prove that the Hamiltonian double quasi-Poisson algebra attached to $\Gamma _n$ admits a factorisation in terms of n copies of the algebra attached to $\Gamma _1$ .
APA, Harvard, Vancouver, ISO, and other styles
5

Bodzenta, A., and W. Donovan. "Root stacks and periodic decompositions." manuscripta mathematica, June 15, 2024. http://dx.doi.org/10.1007/s00229-024-01574-y.

Full text
Abstract:
AbstractFor an effective Cartier divisor D on a scheme X we may form an $${n}^{\text {th}}$$ n th root stack. Its derived category is known to have a semiorthogonal decomposition with components given by D and X. We show that this decomposition is $$2n$$ 2 n -periodic. For $$n=2$$ n = 2 this gives a purely triangulated proof of the existence of a known spherical functor, namely the pushforward along the embedding of D. For $$n > 2$$ n > 2 we find a higher spherical functor in the sense of recent work of Dyckerhoff et al. (N-spherical functors and categorification of Euler’s continuants. arXiv:2306.13350, 2023). We use a realization of the root stack construction as a variation of GIT, which may be of independent interest.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Euler's continuants"

1

Leclere, Ludivine. "q-analogues des nombres réels et des matrices unimodulaires : aspects algébriques, combinatoires et analytiques." Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS019.

Full text
Abstract:
Ce travail est consacré à l'étude des q-analogues de nombre réels. La q-déformation d'un nombre rationnel utilisée est une fraction rationnelle à coefficients entiers qui a été introduite par Sophie Morier-Genoud et Valentin Ovsienko en 2019. Il s'agit dans un premier temps de préciser les propriétés algébriques et de donner des interprétations combinatoires des q-rationnels. On manipule les différentes notions liées aux nombres rationnels: les fractions continues, les matrices de PSL(2,Z), les continuants d'Euler, les triangulations de polygones et le graphe de Farey, et leurs versions q-déformées. Les traces des q-matrices de PSL(2,Z) obtenues sont étudiées et interprétées dans le modèle combinatoire de triangulations d'anneaux. Dans un second temps, nous nous intéressons à la q-déformation des nombres irrationnels et plus particulièrement des irrationnels quadratiques. Nous obtenons une formule explicite permettant d'écrire les q-irrationnels quadratiques. On s'intéresse aux rayons de convergence des séries de Laurent obtenues à partir des q-déformations des nombres réels. Enfin, nous introduisons un second paramètre pour obtenir des (q,t)-déformations de nombres. Ces dernières sont étudiées sous un aspect combinatoire pour affiner les interprétations dans les modèles déjà présentes mais également dans les graphes en serpents
This work is devoted to the study of q-analogs of real numbers. The q-deformation of a rational number that we use is a rational funtion with integer coefficientswhich was introduced by Sophie Morier-Genoud and Valentin Ovsienko in 2019. The first step is to elaborate algebraic properties and to give combinatorial interpretations of the q-rationals. We use different notions linked to rational numbers: continued fractions, PSL(2,Z) matrices, Euler continuants, polygon's triangulations and the Farey graph, and their q-deformed versions.The traces of the q-matrices of PSL(2,Z) that we obtained are studied and interpreted in the combinatorial model of triangulation of annulus. In a second stage, we focus on the q-deformations of irrational real numbers, and more precisely on quadratic irrational real numbers. We obtain an explicit formula to describe q-deformed quadratic irrationals. We give estimate for the radii of convergence of the Laurent series obtained from the q-deformations of real numbers. Finally, we introduce a second parameter to obtain (q, t)-deformations of the rationals. The latter is studied in its combinatorial aspect, in the models already described but also in terms of snake graphs
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography