Academic literature on the topic 'Eukaryotic gene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eukaryotic gene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Eukaryotic gene"
Hofstatter, Paulo G., Alexander K. Tice, Seungho Kang, Matthew W. Brown, and Daniel J. G. Lahr. "Evolution of bacterial recombinase A ( recA ) in eukaryotes explained by addition of genomic data of key microbial lineages." Proceedings of the Royal Society B: Biological Sciences 283, no. 1840 (October 12, 2016): 20161453. http://dx.doi.org/10.1098/rspb.2016.1453.
Full textKu, Chuan, Shijulal Nelson-Sathi, Mayo Roettger, Sriram Garg, Einat Hazkani-Covo, and William F. Martin. "Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes." Proceedings of the National Academy of Sciences 112, no. 33 (March 2, 2015): 10139–46. http://dx.doi.org/10.1073/pnas.1421385112.
Full textHunter, Gary J. "Eukaryotic gene transcription." Biochemical Education 25, no. 3 (July 1997): 182. http://dx.doi.org/10.1016/s0307-4412(97)84456-1.
Full textChin, Jason W. "Eukaryotic gene regulation." Chemistry & Biology 7, no. 1 (January 2000): R26. http://dx.doi.org/10.1016/s1074-5521(00)00071-5.
Full textGarrard, William T. "Eukaryotic gene expression." Trends in Biochemical Sciences 10, no. 2 (February 1985): 86–87. http://dx.doi.org/10.1016/0968-0004(85)90247-6.
Full textKu, Chuan, and Arnau Sebé-Pedrós. "Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes." Philosophical Transactions of the Royal Society B: Biological Sciences 374, no. 1786 (October 7, 2019): 20190098. http://dx.doi.org/10.1098/rstb.2019.0098.
Full textBrueckner, Julia, and William F. Martin. "Bacterial Genes Outnumber Archaeal Genes in Eukaryotic Genomes." Genome Biology and Evolution 12, no. 4 (March 6, 2020): 282–92. http://dx.doi.org/10.1093/gbe/evaa047.
Full textLiapounova, Natalia A., Vladimir Hampl, Paul M. K. Gordon, Christoph W. Sensen, Lashitew Gedamu, and Joel B. Dacks. "Reconstructing the Mosaic Glycolytic Pathway of the Anaerobic Eukaryote Monocercomonoides." Eukaryotic Cell 5, no. 12 (October 27, 2006): 2138–46. http://dx.doi.org/10.1128/ec.00258-06.
Full textWhitaker, John W., Glenn A. McConkey, and David R. Westhead. "Prediction of horizontal gene transfers in eukaryotes: approaches and challenges." Biochemical Society Transactions 37, no. 4 (July 22, 2009): 792–95. http://dx.doi.org/10.1042/bst0370792.
Full textJohnson, Kristina M., Katherine Mitsouras, and Michael Carey. "Eukaryotic transcription: The core of eukaryotic gene activation." Current Biology 11, no. 13 (July 2001): R510—R513. http://dx.doi.org/10.1016/s0960-9822(01)00306-2.
Full textDissertations / Theses on the topic "Eukaryotic gene"
Kielbasa, Szymon M. "Bioinformatics of eukaryotic gene regulation." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=982693192.
Full textMarciniak, Jennifer Yuko. "Variability in eukaryotic gene expression /." Diss., Connect to a 24 p. preview or request complete full text in PDF formate. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3208639.
Full textKiełbasa, Szymon M. "Bioinformatics of eukaryotic gene regulation." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. http://dx.doi.org/10.18452/15562.
Full textUnderstanding the mechanisms which control gene expression is one of the fundamental problems of molecular biology. Detailed experimental studies of regulation are laborious due to the complex and combinatorial nature of interactions among involved molecules. Therefore, computational techniques are used to suggest candidate mechanisms for further investigation. This thesis presents three methods improving the predictions of regulation of gene transcription. The first approach finds binding sites recognized by a transcription factor based on statistical over-representation of short motifs in a set of promoter sequences. A succesful application of this method to several gene families of yeast is shown. More advanced techniques are needed for the analysis of gene regulation in higher eukaryotes. Hundreds of profiles recognized by transcription factors are provided by libraries. Dependencies between them result in multiple predictions of the same binding sites which need later to be filtered out. The second method presented here offers a way to reduce the number of profiles by identifying similarities between them. Still, the complex nature of interaction between transcription factors makes reliable predictions of binding sites difficult. Exploiting independent sources of information reduces the false predictions rate. The third method proposes a novel approach associating gene annotations with regulation of multiple transcription factors and binding sites recognized by them. The utility of the method is demonstrated on several well-known sets of transcription factors. RNA interference provides a way of efficient down-regulation of gene expression. Difficulties in predicting efficient siRNA sequences motivated the development of a library containing siRNA sequences and related experimental details described in the literature. This library, presented in the last chapter, is publicly available at http://www.human-sirna-database.net
Tang, Terry, and University of Lethbridge Faculty of Arts and Science. "Mathematical modeling of eukaryotic gene expression." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, 2010, 2010. http://hdl.handle.net/10133/2567.
Full textxi, 102 leaves ; 28 cm
Benovoy, David. "Ectopic gene conversions in eukaryotic genomes." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27111.
Full textSturm, Richard Alan. "Control mechanisms of higher eukaryotic gene transcription--divergent histone genes /." Title page, contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phs936.pdf.
Full textAbril, Ferrando Josep Francesc. "Comparative analysis of eukaryotic gene sequence features." Doctoral thesis, Universitat Pompeu Fabra, 2005. http://hdl.handle.net/10803/7108.
Full textl'increment del nombre de tècniques experimentals de les que es disposa,
permetrà obtenir el catàleg complet de les funcions cel.lulars de
diferents organismes, incloent-hi la nostra espècie. Aquest catàleg
definirà els fonaments sobre els que es podrà entendre millor com els
organismes funcionen a nivell molecular. Al mateix temps es tindran més
pistes sobre els canvis que estan associats amb les malalties. Per tant,
la seqüència en brut, tal i com s'obté dels projectes de seqüenciació de
genomes, no té cap valor sense les anàlisis i la subsegüent anotació de
les característiques que defineixen aquestes funcions. Aquesta tesi
presenta la nostra contribució en tres aspectes relacionats de
l'anotació dels gens en genomes eucariotes.
Primer, la comparació a nivell de seqüència entre els genomes humà i de
ratolí es va dur a terme mitjançant un protocol semi-automàtic. El
programa de predicció de gens SGP2 es va desenvolupar a partir
d'elements d'aquest protocol. El concepte al darrera de l'SGP2 és que
les regions de similaritat obtingudes amb el programa TBLASTX, es fan
servir per augmentar la puntuació dels exons predits pel programa
geneid, amb el que s obtenen conjunts d'anotacions més acurats
d'estructures gèniques. SGP2 té una especificitat que és prou gran com
per que es puguin validar experimentalment via RT-PCR. La validació de
llocs d'splicing emprant la tècnica de la RT-PCR és un bon exemple de
com la combinació d'aproximacions computacionals i experimentals
produeix millors resultats que per separat.
S'ha dut a terme l'anàlisi descriptiva a nivell de seqüència dels llocs
d'splicing obtinguts sobre un conjunt fiable de gens ortòlegs per humà,
ratolí, rata i pollastre. S'han explorat les diferències a nivell de
nucleòtid entre llocs U2 i U12, pel conjunt d'introns ortòlegs que se'n
deriva d'aquests gens. S'ha trobat que els senyals d'splicing ortòlegs
entre humà i rossegadors, així com entre rossegadors, estan més
conservats que els llocs no relacionats. Aquesta conservació addicional
pot ser explicada però a nivell de conservació basal dels introns.
D'altra banda, s'ha detectat més conservació de l'esperada entre llocs
d'splicing ortòlegs entre mamífers i pollastre. Els resultats obtinguts
també indiquen que les classes intròniques U2 i U12 han evolucionat
independentment des de l'ancestre comú dels mamífers i les aus. Tampoc
s'ha trobat cap cas convincent d'interconversió entre aquestes dues
classes en el conjunt d'introns ortòlegs generat, ni cap cas de
substitució entre els subtipus AT-AC i GT-AG d'introns U12. Al contrari,
el pas de GT-AG a GC-AG, i viceversa, en introns U2 no sembla ser inusual.
Finalment, s'han implementat una sèrie d'eines de visualització per
integrar anotacions obtingudes pels programes de predicció de gens i per
les anàlisis comparatives sobre genomes. Una d'aquestes eines, el
gff2ps, s'ha emprat en la cartografia dels genomes humà, de la mosca del
vinagre i del mosquit de la malària, entre d'altres. El programa
gff2aplot i els filtres associats, han facilitat la tasca d'integrar
anotacions de seqüència amb els resultats d'eines per la cerca
d'homologia, com ara el BLAST. S'ha adaptat també el concepte de
pictograma a l'anàlisi comparativa de llocs d splicing ortòlegs, amb el
desenvolupament del programa compi.
El aumento incesante del número de secuencias genómicas, junto con el
incremento del número de técnicas experimentales de las que se dispone,
permitirá la obtención del catálogo completo de las funciones celulares
de los diferentes organismos, incluida nuestra especie. Este catálogo
definirá las bases sobre las que se pueda entender mejor el
funcionamiento de los organismos a nivel molecular. Al mismo tiempo, se
obtendrán más pistas sobre los cambios asociados a enfermedades. Por
tanto, la secuencia en bruto, tal y como se obtiene en los proyectos de
secuenciación masiva, no tiene ningún valor sin los análisis y la
posterior anotación de las características que definen estas funciones.
Esta tesis presenta nuestra contribución a tres aspectos relacionados de
la anotación de los genes en genomas eucariotas.
Primero, la comparación a nivel de secuencia entre el genoma humano y el
de ratón se llevó a cabo mediante un protocolo semi-automático. El
programa de predicción de genes SGP2 se desarrolló a partir de elementos
de dicho protocolo. El concepto sobre el que se fundamenta el SGP2 es
que las regiones de similaridad obtenidas con el programa TBLASTX, se
utilizan para aumentar la puntuación de los exones predichos por el
programa geneid, con lo que se obtienen conjuntos más precisos de
anotaciones de estructuras génicas. SGP2 tiene una especificidad
suficiente como para validar esas anotaciones experimentalmente vía
RT-PCR. La validación de los sitios de splicing mediante el uso de la
técnica de la RT-PCR es un buen ejemplo de cómo la combinación de
aproximaciones computacionales y experimentales produce mejores
resultados que por separado.
Se ha llevado a cabo el análisis descriptivo a nivel de secuencia de los
sitios de splicing obtenidos sobre un conjunto fiable de genes ortólogos
para humano, ratón, rata y pollo. Se han explorado las diferencias a
nivel de nucleótido entre sitios U2 y U12 para el conjunto de intrones
ortólogos derivado de esos genes. Se ha visto que las señales de
splicing ortólogas entre humanos y roedores, así como entre roedores,
están más conservadas que las no ortólogas. Esta conservación puede ser
explicada en parte a nivel de conservación basal de los intrones. Por
otro lado, se ha detectado mayor conservación de la esperada entre
sitios de splicing ortólogos entre mamíferos y pollo. Los resultados
obtenidos indican también que las clases intrónicas U2 y U12 han
evolucionado independientemente desde el ancestro común de mamíferos y
aves. Tampoco se ha hallado ningún caso convincente de interconversión
entre estas dos clases en el conjunto de intrones ortólogos generado, ni
ningún caso de substitución entre los subtipos AT-AC y GT-AG en intrones
U12. Por el contrario, el paso de GT-AG a GC-AG, y viceversa, en
intrones U2 no parece ser inusual.
Finalmente, se han implementado una serie de herramientas de
visualización para integrar anotaciones obtenidas por los programas de
predicción de genes y por los análisis comparativos sobre genomas. Una
de estas herramientas, gff2ps, se ha utilizado para cartografiar los
genomas humano, de la mosca del vinagre y del mosquito de la malaria. El
programa gff2aplot y los filtros asociados, han facilitado la tarea de
integrar anotaciones a nivel de secuencia con los resultados obtenidos
por herramientas de búsqueda de homología, como BLAST. Se ha adaptado
también el concepto de pictograma al análisis comparativo de los sitios
de splicing ortólogos, con el desarrollo del programa compi.
The constantly increasing amount of available genome sequences, along
with an increasing number of experimental techniques, will help to
produce the complete catalog of cellular functions for different
organisms, including humans. Such a catalog will define the base from
which we will better understand how organisms work at the molecular
level. At the same time it will shed light on which changes are
associated with disease. Therefore, the raw sequence from genome
sequencing projects is worthless without the complete analysis and
further annotation of the genomic features that define those functions.
This dissertation presents our contribution to three related aspects of
gene annotation on eukaryotic genomes.
First, a comparison at sequence level of human and mouse genomes was
performed by developing a semi-automatic analysis pipeline. The SGP2
gene-finding tool was developed from procedures used in this pipeline.
The concept behind SGP2 is that similarity regions obtained by TBLASTX
are used to increase the score of exons predicted by geneid, in order to
produce a more accurate set of gene structures. SGP2 provides a
specificity that is high enough for its predictions to be experimentally
verified by RT-PCR. The RT-PCR validation of predicted splice junctions
also serves as example of how combined computational and experimental
approaches will yield the best results.
Then, we performed a descriptive analysis at sequence level of the
splice site signals from a reliable set of orthologous genes for human,
mouse, rat and chicken. We have explored the differences at nucleotide
sequence level between U2 and U12 for the set of orthologous introns
derived from those genes. We found that orthologous splice signals
between human and rodents and within rodents are more conserved than
unrelated splice sites. However, additional conservation can be
explained mostly by background intron conservation. Additional
conservation over background is detectable in orthologous mammalian and
chicken splice sites. Our results also indicate that the U2 and U12
intron classes have evolved independently since the split of mammals and
birds. We found neither convincing case of interconversion between these
two classes in our sets of orthologous introns, nor any single case of
switching between AT-AC and GT-AG subtypes within U12 introns. In
contrast, switching between GT-AG and GC-AG U2 subtypes does not appear
to be unusual.
Finally, we implemented visualization tools to integrate annotation
features for gene- finding and comparative analyses. One of those tools,
gff2ps, was used to draw the whole genome maps for human, fruitfly and
mosquito. gff2aplot and the accompanying parsers facilitate the task of
integrating sequence annotations with the output of homologybased tools,
like BLAST.We have also adapted the concept of pictograms to the
comparative analysis of orthologous splice sites, by developing compi.
Dickinson, P. "Fibronectin gene expression in higher eukaryotic cells." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378322.
Full textOuma, Zachary Wilberforce. "Topological Properties of Eukaryotic Gene Regulatory Networks." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512041623395438.
Full textClark, Francis. "A computational study of gene structure and splicing in model eukaryote organisms /." St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17395.pdf.
Full textBooks on the topic "Eukaryotic gene"
Gene regulation: A eukaryotic perspective. 2nd ed. London: Chapman & Hall, 1995.
Find full textGene regulation: A eukaryotic perspective. 5th ed. New York: Taylor & Francis, 2006.
Find full textLatchman, David S. Gene regulation: A eukaryotic perspective. London: Unwin Hyman, 1990.
Find full textGene regulation: A eukaryotic perspective. 4th ed. Cheltenham: Nelson Thornes, 2002.
Find full textPrivalsky, Martin L., ed. Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-10595-5.
Full textWingender, Edgar. Gene regulation in eukaryotes. Weinheim: VCH, 1993.
Find full textWajapeyee, Narendra, and Romi Gupta, eds. Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6518-2.
Full textBarrett, Lucy W. Untranslated gene regions and other non-coding elements: Regulation of eukaryotic gene expression. Basel: Springer, 2013.
Find full textJ, Kingsman A., ed. Genetic engineering: An introduction to gene analysis and exploitation in eukaryotes. Oxford, England: Blackwell Scientific Publications, 1988.
Find full textA, Broda P. M., Oliver S. G. 1949-, and Sims P, eds. The eukaryotic genome: Organisation and regulation. Cambridge: Cambridge University Press, 1993.
Find full textBook chapters on the topic "Eukaryotic gene"
Gromek, Jennifer H., and Arik Dvir. "Eukaryotic Gene Transcription." In Signal Transduction: Pathways, Mechanisms and Diseases, 257–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02112-1_14.
Full textKriegler, Michael. "Eukaryotic Control Elements." In Gene Transfer and Expression, 3–22. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-11891-5_1.
Full textWeber, Martin. "Gene Transfer into Eukaryotic Cells." In Manufacturing of Gene Therapeutics, 135–53. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1353-7_7.
Full textGupta, Naba K., Mir F. Ahmad, Debopam Chakrabarti, and Nargis Nasrin. "Roles of Eukaryotic Initiation Factor 2 and Eukaryotic Initiation Factor 2 Ancillary Protein Factors in Eukaryotic Protein Synthesis Initiation." In Translational Regulation of Gene Expression, 287–334. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_14.
Full textGehrke, Lee. "Differential Translation of Eukaryotic Messenger RNAs." In Translational Regulation of Gene Expression, 367–78. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5365-2_16.
Full textSolovyev, V. "Statistical Approaches in Eukaryotic Gene Prediction." In Handbook of Statistical Genetics, 97–159. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470061619.ch4.
Full textStanke, Mario. "Computational Gene Prediction in Eukaryotic Genomes." In Cellular Origin, Life in Extreme Habitats and Astrobiology, 291–306. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3795-4_16.
Full textWasylyk, B. "Promoter Elements of Eukaryotic Protein-Coding Genes." In Chromosomal Proteins and Gene Expression, 103–19. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7615-6_7.
Full textDurairaj, Geetha, Shivani Malik, and Sukesh R. Bhaumik. "Eukaryotic Gene Expression by RNA Polymerase II." In Gene Regulation, Epigenetics and Hormone Signaling, 1–28. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527697274.ch1.
Full textWalthers, Don, Alvin Go, and Linda J. Kenney. "Regulation of Porin Gene Expression by the Two-Component Regulatory System EnvZ/OmpR." In Bacterial and Eukaryotic Porins, 1–24. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603875.ch1.
Full textConference papers on the topic "Eukaryotic gene"
Hasty, Jeff. "Origins of extrinsic variability in eukaryotic gene expression." In 2006 Bio Micro and Nanosystems Conference. IEEE, 2006. http://dx.doi.org/10.1109/bmn.2006.330878.
Full textAkhtar, Mahmood, Eliathamby Ambikairajah, and Julien Epps. "Optimizing period-3 methods for eukaryotic gene prediction." In ICASSP 2008 - 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4517686.
Full textWu, Shinq-Jen, Cheng-Tao Wu, and Tsu-Tian Lee. "Computation Intelligent for Eukaryotic Cell-Cycle Gene Network." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.260339.
Full textWu, Shinq-Jen, Cheng-Tao Wu, and Tsu-Tian Lee. "Computation Intelligent for Eukaryotic Cell-Cycle Gene Network." In Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397830.
Full textEftestol, T., T. Ryen, S. O. Aase, C. Strassle, M. Boos, G. Schuster, and P. Ruoff. "Eukaryotic Gene Prediction by Spectral Analysis and Pattern Recognition Techniques." In Proceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006. IEEE, 2006. http://dx.doi.org/10.1109/norsig.2006.275214.
Full textGao, Meijun, and Kevin J. Liu. "Statistical analysis of GC-biased gene conversion and recombination hotspots in eukaryotic genomes." In BCB '21: 12th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3459930.3469509.
Full textTinghong Zhang, Zhenjie Zhang, Xie Zhao, and Weishan Chang. "Eukaryotic expression of Porcine BST-2 gene and identification of biological activity of BST-2." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5966124.
Full textPannekok, H., A. J. Van Zonneveid, C. J. M. de vries, M. E. MacDonald, H. Veerman, and F. Blasi. "FUNCTIONAL PROPERTIES OF DELETION-MUTANTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643724.
Full textMochalova, E. N. "Rational Design of Nanoparticle-Based Agents for Effective Targeted Drug and Gene Delivery to Eukaryotic Cells." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285548.
Full textHassan, H. J., L. Cianetti, P. M. Mannucci, V. Vicente, R. Cortese, and C. Peschle. "HEREDITARY THROMBOPHILIA CAUSED BY MISSENSE MUTATION IN PROTEIN C GENE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642944.
Full textReports on the topic "Eukaryotic gene"
Lee, Andrew Loyd. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/373861.
Full text