Journal articles on the topic 'Eucryptite'

To see the other types of publications on this topic, follow the link: Eucryptite.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Eucryptite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xu, Hongwu, Peter J. Heaney, Douglas M. Yates, Robert B. Von Dreele, and Mark A. Bourke. "Structural mechanisms underlying near-zero thermal expansion in β-eucryptite: A combined synchrotron x-ray and neutron Rietveld analysis." Journal of Materials Research 14, no. 7 (July 1999): 3138–51. http://dx.doi.org/10.1557/jmr.1999.0421.

Full text
Abstract:
The structures of ordered and disordered β-eucryptite have been determined from Rietveld analysis of powder synchrotron x-ray and neutron diffraction data over a temperature range of 20 to 873 K. On heating, both materials show an expansion within the (001) plane and a contraction along the c axis. However, the anisotropic character of the thermal behavior of ordered β-eucryptite is much more pronounced than that of the disordered compound; the linear expansion coefficients of the ordered and disordered phases are αa = 7.26 × 10−6 K−1; αc = −16.35 × 10−6 K−1, and αa = 5.98 × 10−6 K−1; αc = −3.82 × 10−6 K−1, respectively. The thermal behavior of β-eucryptite can be attributed to three interdependent processes that all cause an increase in a but a decrease in c with increasing temperature: (i) Si/Al tetrahedral deformation, (ii) Li positional disordering, and (iii) tetrahedral tilting. Because disordered β-eucryptite does not exhibit tetrahedral tilting, the absolute values of its axial thermal coefficients are smaller than those for the ordered sample. At low temperatures, both ordered and disordered β-eucryptite exhibit a continuous expansion parallel to the c axis with decreasing temperature, whereas a remains approximately unchanged. Our difference Fourier synthesis reveals localization of Li ions below room temperature, and we suggest that repulsion between Li and Al/Si inhibits contraction along the a axes.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Jianzhong, Aaron Celestian, John B. Parise, Hongwu Xu, and Peter J. Heaney. "A new polymorph of eucryptite (LiAlSiO4), ε-eucryptite, and thermal expansion of α- and ε-eucryptite at high pressure." American Mineralogist 87, no. 4 (April 2002): 566–71. http://dx.doi.org/10.2138/am-2002-0421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pogrebenkov, Valeriy M., Kirill S. Kostikov, E. A. Sudarev, A. V. Elistratova, Ksenia S. Kamyshnaya, and T. V. Kolesova. "Low-Melting Glass-Ceramic Composites with Low Linear Thermal Expansion Coefficient for Radio-Electronics." Applied Mechanics and Materials 756 (April 2015): 313–18. http://dx.doi.org/10.4028/www.scientific.net/amm.756.313.

Full text
Abstract:
Glass-ceramic composite materials based on lead-borate glass and eucryptite – a compound with a negative coefficient of linear thermal expansion (CTE), along with the conditions for their production are studied in this paper. Effects of the amount and granulometric composition of the eucryptite as well as time/temperature processing conditions on the change of the linear thermal expansion coefficient of the sintered samples are also examined.
APA, Harvard, Vancouver, ISO, and other styles
4

Kenfack, Flaurance, and Siegfried Vieth. "Synthesis of eucryptite spheres." Journal of Materials Science 43, no. 13 (July 2008): 4644–51. http://dx.doi.org/10.1007/s10853-008-2658-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ghosh, N. N., and P. Pramanik. "Synthesis of eucryptite and eucryptite-zirconia composite powders using aqueous sol-gel technique." Materials Science and Engineering: B 49, no. 1 (September 1997): 79–83. http://dx.doi.org/10.1016/s0921-5107(97)00055-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Moo-Chin, Nan-Chung Wu, Sheng Yang, and Shaw-Bing Wen. "Effect of LiF addition on the phase transition of sinterable β-spodumene precursor powders prepared by a sol-gel process." Journal of Materials Research 17, no. 8 (August 2002): 1960–68. http://dx.doi.org/10.1557/jmr.2002.0290.

Full text
Abstract:
β-Spodumene (Li2O · Al2O · 4SiO2, LAS4) precursor powders were obtained through a sol-gel process using Si(OC2H5)4, Al(OC4H9)3, and LiNO3 as starting materials and LiF as a sintering aid. X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy with a wavelength dispersive spectrometer, and electron diffraction analysis were utilized to study the phase transition of the β-spodumene glass–ceramics prepared from the gel-derived precursor powders with LiF additive. For the LAS4 precursor powders containing no LiF, the only crystalline phase obtained was β-spodumene. For the pellets containing less than 4.0 wt% LiF and sintered at 1050 °C for 5 h, the crystalline phases were β-spodumene solid solution and β-eucryptite (Li2O · Al2O3 · 2SiO2, LAS2) solid solution. When the LiF content was 5.0 wt% and the sintering process was carried out at 1050 °C for 5 h, the crystalline phases were β-spodumene solid solution, β-eucryptite solid solution (triclinic), and eucryptite [rhombohedral (hex.)]. When the LiF addition attains 3.0 wt%, the fully densified grains are formed, accompanied with an increase in grain size for LiF addition. At the triple junction of grain boundaries a second phase segregates which is identified to be β-spodumene solid solution. In the sintering period of LAS4 precursor powders with LiF additive, the grains converted to β-eucryptite solid solution and β-spodumene solid solution remains at the grain boundaries.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhai, Ping, Xiao Feng Duan, Da Qian Chen, and Chong Hai Wang. "Preparation and Characterization of β-Eucryptite Glass Ceramics." Advanced Materials Research 624 (December 2012): 134–37. http://dx.doi.org/10.4028/www.scientific.net/amr.624.134.

Full text
Abstract:
In this paper, β-eucryptite glass ceramics were synthesized by using solid reaction method. Phase constitution, structure and properties of the material were studied by X-ray diffraction (XRD) and differential thermal analysis (DTA). Furthermore, the effects of heat treatment temperature and preservation time on the thermal expansion coefficient were also analyzed. The results showed that the crystallization temperature of β-eucryptite glass ceramics was in the range of 810-860 °C and the content was more than 90%. With the increase of heat treatment temperature, the material expansion coefficient decreased.
APA, Harvard, Vancouver, ISO, and other styles
8

Reimanis, I. E., C. Seick, K. Fitzpatrick, E. R. Fuller, and S. Landin. "Spontaneous Ejecta from ?-Eucryptite Composites." Journal of the American Ceramic Society 90, no. 8 (August 2007): 2497–501. http://dx.doi.org/10.1111/j.1551-2916.2007.01744.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Perthuis, H., and Ph Colomban. "Li+ eucryptite superionic conductors thick films." Journal of Materials Science Letters 4, no. 3 (March 1985): 344–46. http://dx.doi.org/10.1007/bf00719810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Donduft, Vera, Radovan Dimitrijević, and Nadežda Petranović. "Li+ ion mobility in eucryptite phases." Journal of Materials Science 23, no. 11 (November 1988): 4081–84. http://dx.doi.org/10.1007/bf01106839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

WANG, Li-dong, Ye CUI, Cong-tao YANG, Kang-peng WANG, and Wei-dong FEI. "Metastable phase of β-eucryptite and thermal expansion behavior of eucryptite particles reinforced aluminum matrix composite." Transactions of Nonferrous Metals Society of China 21 (August 2011): s280—s284. http://dx.doi.org/10.1016/s1003-6326(11)61591-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ghobarkar, Habib. "The Morphology of Some Hydrothermally Synthesized Li-Minerals: A-Zeolite, α-Eucryptite, β-Spodumene and β-Eucryptite." Crystal Research and Technology 27, no. 2 (1992): 181–85. http://dx.doi.org/10.1002/crat.2170270207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Maslennikova, G. N., N. P. Fomina, F. Ya Kharitonov, and 'E A. Sokolina. "An eucryptite-mullitic ceramic with apatite additions." Glass and Ceramics 42, no. 4 (April 1985): 210–12. http://dx.doi.org/10.1007/bf00697308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, L. D., Z. W. Xue, Y. Cui, K. P. Wang, Y. J. Qiao, and W. D. Fei. "Thermal mismatch induced disorder of beta-eucryptite and its effect on thermal expansion of beta-eucryptite/Al composites." Composites Science and Technology 72, no. 13 (August 2012): 1613–17. http://dx.doi.org/10.1016/j.compscitech.2012.06.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Li, Yong, Qi Hong Wei, Ling Li, Chong Hai Wang, Xiao Li Zhang, and Fang Gao. "Effects of Heat-Treatment Temperature on the Properties of Negative CTE Eucryptite Ceramics." Advanced Materials Research 105-106 (April 2010): 123–25. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.123.

Full text
Abstract:
In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.
APA, Harvard, Vancouver, ISO, and other styles
16

Narayanan, Badri, Ivar E. Reimanis, Hanchen Huang, and Cristian V. Ciobanu. "Radiation effects and tolerance mechanism in β-eucryptite." Journal of Applied Physics 113, no. 3 (January 21, 2013): 033504. http://dx.doi.org/10.1063/1.4775838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Choi, Dae Sun. "Characteristics of Thermionic Li+ Ion Emission from β-eucryptite." Applied Science and Convergence Technology 28, no. 4 (July 31, 2019): 82–87. http://dx.doi.org/10.5757/asct.2019.28.4.82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hesse, K. F. "Crystal structures of natural and synthetic α-eucryptite, LiAlSiO4." Zeitschrift für Kristallographie 172, no. 1-2 (January 1985): 147–51. http://dx.doi.org/10.1524/zkri.1985.172.1-2.147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Yachao, Sukriti Manna, Cristian V. Ciobanu, and Ivar E. Reimanis. "Thermal regimes of Li‐ion conductivity in β‐eucryptite." Journal of the American Ceramic Society 101, no. 1 (September 4, 2017): 347–55. http://dx.doi.org/10.1111/jace.15173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Grekov, F. F., and B. V. Chernovets. "Synthesis of α-eucryptite by the sol-gel method." Russian Journal of Applied Chemistry 87, no. 7 (July 2014): 853–60. http://dx.doi.org/10.1134/s1070427214070027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sata, Toshiyuki. "High-temperature vaporizations from eucryptite ceramics in various atmospheres." Ceramics International 16, no. 5 (January 1990): 263–72. http://dx.doi.org/10.1016/0272-8842(90)90038-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pelletant, A., H. Reveron, J. Chêvalier, G. Fantozzi, L. Blanchard, F. Guinot, and F. Falzon. "Grain size dependence of pure β-eucryptite thermal expansion coefficient." Materials Letters 66, no. 1 (January 2012): 68–71. http://dx.doi.org/10.1016/j.matlet.2011.07.107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pelletant, A., H. Reveron, J. Chevalier, G. Fantozzi, F. Guinot, L. Blanchard, and F. Falzon. "Thermal expansion of β-eucryptite in oxide-based ceramic composites." Journal of the European Ceramic Society 33, no. 3 (March 2013): 531–38. http://dx.doi.org/10.1016/j.jeurceramsoc.2012.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Narayanan, Badri, Ivar E. Reimanis, and Cristian V. Ciobanu. "Atomic-scale mechanism for pressure-induced amorphization of β-eucryptite." Journal of Applied Physics 114, no. 8 (August 28, 2013): 083520. http://dx.doi.org/10.1063/1.4819452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kryukova, O. N., A. G. Knyazeva, V. M. Pogrebenkov, K. S. Kostikov, and I. Sevostianov. "Effective thermal expansion coefficient of a sintered glass–eucryptite composite." Journal of Materials Science 52, no. 19 (July 5, 2017): 11314–25. http://dx.doi.org/10.1007/s10853-017-1298-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bruno, G., V. O. Garlea, J. Muth, A. M. Efremov, T. R. Watkins, and A. Shyam. "Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model." Acta Materialia 60, no. 12 (July 2012): 4982–96. http://dx.doi.org/10.1016/j.actamat.2012.04.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fedorova, Anna, Ulf Betke, and Michael Scheffler. "Polymer Derived Ceramics with β-Eucryptite Fillers: Filler-Matrix Interactions." Advanced Engineering Materials 19, no. 6 (March 24, 2017): 1700079. http://dx.doi.org/10.1002/adem.201700079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Benavente, Rut, María Dolores Salvador, Felipe L. Peñaranda-Foix, Olga García-Moreno, Ramon Torrecillas San Millan, and Amparo Borrell. "Microwave Technique: An Innovated Method for Sintering β-Eucryptite Ceramic Materials." Advances in Science and Technology 88 (October 2014): 43–48. http://dx.doi.org/10.4028/www.scientific.net/ast.88.43.

Full text
Abstract:
Microwave sintering has emerged in recent years as a new, fast, cheap and green technology for sintering a variety of materials. The main advantages of microwave heating can be summarized as follow: reduced processing times, energy costs and environmental benefits. Nevertheless, understanding how this specific heating drives to obtain ceramic materials with a combination of unique, structural and functional properties is the big challenge. The present work shows the different and improved properties achieved with β-eucryptite nanocomposite ceramic materials by microwave heating compared with the conventional method. Microcracking evolution in addition to the microstructure of the sintered materials along the several thermal cycles has been studied. Mechanical properties changes observed can be related to this process. Thus, the microwave technique is a promising tool for sintering new materials by controlling the composition of the phases, chemical reactivity and nanostructure, using up to 70% less energy in the whole sintering process than conventional heating. This technique becomes part of the new and innovative technologies "eco-green".
APA, Harvard, Vancouver, ISO, and other styles
29

Werner, M., Ghada El-Amir, and David A. Smith. "Dopants and Dielectric Properties of β-Eucryptite and β-Spodumene Porclain." Key Engineering Materials 206-213 (December 2001): 1373–76. http://dx.doi.org/10.4028/www.scientific.net/kem.206-213.1373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xue, Z. W., Z. Liu, L. D. Wang, and W. D. Fei. "Thermal properties of new copper matrix composite reinforced byβ-eucryptite particulates." Materials Science and Technology 26, no. 12 (December 2010): 1521–24. http://dx.doi.org/10.1179/174328409x428927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

García-Moreno, Olga, Adolfo Fernández, and Ramón Torrecillas. "Sintering of mullite–β-eucryptite ceramics with very low thermal expansion." International Journal of Materials Research 103, no. 4 (April 2012): 416–21. http://dx.doi.org/10.3139/146.110700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Daniels, Peter, and Colin A. Fyfe. "Al,Si order in the crystal structure of α-eucryptite (LiAlSiO4)." American Mineralogist 86, no. 3 (March 2001): 279–83. http://dx.doi.org/10.2138/am-2001-2-310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Singh, Baltej, Mayanak Kumar Gupta, Ranjan Mittal, Mohamed Zbiri, Stephane Rols, Sadequa Jahedkhan Patwe, Srungarpu Nagabhusan Achary, Helmut Schober, Avesh Kumar Tyagi, and Samrath Lal Chaplot. "Superionic conduction in β-eucryptite: inelastic neutron scattering and computational studies." Physical Chemistry Chemical Physics 19, no. 23 (2017): 15512–20. http://dx.doi.org/10.1039/c7cp01490b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dondur, V., N. Petranovic, A. Gutze, and R. Dimitrijevic. "Kinetics and mechanism of β-eucryptite crystallization in non-isothermal conditions." Thermochimica Acta 135 (October 1988): 365–70. http://dx.doi.org/10.1016/0040-6031(88)87410-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Benavente, Rut, María Dolores Salvador, Felipe L. Peñaranda-Foix, Olga García-Moreno, and Amparo Borrell. "High thermal stability of microwave sintered low-εr β-eucryptite materials." Ceramics International 41, no. 10 (December 2015): 13817–22. http://dx.doi.org/10.1016/j.ceramint.2015.08.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hu, An Min, Kai Ming Liang, Feng Zhou, Fei Peng, and Guoliang Wang. "Crystallization and Mechanical Properties of Spodumene-Diopside Glass Ceramics." Key Engineering Materials 280-283 (February 2007): 1639–42. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.1639.

Full text
Abstract:
The mechanical properties of spodumene-diopside glasses ceramics with 4-12% TiO2 were investigated. The main crystalline phases precipitated were eucryptite, β-spodumene and diopside. As TiO2 content increasing, the morphology of glass ceramics transformed from coarse to fine microstructure, then to reverse. The flexural strength, elastic moduli, Vickers hardness and fracture toughness of the glass-ceramics were measured. The flexural strength of glass–ceramics containing 9%TiO2 was 198MPa, the Young’s modulus and fracture toughness were 91.3GPa and 2.3 MPa·m1/2 respectively. It was indicated that the mechanical properties were correlated with crystallization and morphology of glass ceramics
APA, Harvard, Vancouver, ISO, and other styles
37

Khattab, R. M., H. E. H. Sadek, Mohammed A. Taha, and Amira M. EL-Rafei. "Recycling of silica fume waste in the manufacture of β-eucryptite ceramics." Materials Characterization 171 (January 2021): 110740. http://dx.doi.org/10.1016/j.matchar.2020.110740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, L. D., and W. D. Fei. "Microstructure and interfacial reactions of β-eucryptite particles in aluminum matrix composites." Materials Science and Engineering: A 433, no. 1-2 (October 2006): 291–97. http://dx.doi.org/10.1016/j.msea.2006.06.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Lidong, Zongwei Xue, Yingjie Qiao, and W. D. Fei. "Anisotropic thermal expansion behaviors of copper matrix in β-eucryptite/copper composite." Materials Science and Engineering: B 177, no. 11 (June 2012): 873–76. http://dx.doi.org/10.1016/j.mseb.2012.03.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shyam, Amit, Joseph Muth, and Edgar Lara-Curzio. "Elastic properties of β-eucryptite in the glassy and microcracked crystalline states." Acta Materialia 60, no. 16 (September 2012): 5867–76. http://dx.doi.org/10.1016/j.actamat.2012.07.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zaichuk, A. V., A. A. Amelina, Y. S. Khomenko, A. S. Baskevich, and Y. R. Kalishenko. "Heat-resistant ceramics of b-eucryptite composition: peculiarities of production, microstructure and properties." Voprosy Khimii i Khimicheskoi Tekhnologii, no. 2 (March 2020): 52–59. http://dx.doi.org/10.32434/0321-4095-2020-129-2-52-59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

García-Moreno, Olga, Amparo Borrell, Birgit Bittmann, Adolfo Fernández, and Ramón Torrecillas. "Alumina reinforced eucryptite ceramics: Very low thermal expansion material with improved mechanical properties." Journal of the European Ceramic Society 31, no. 9 (August 2011): 1641–48. http://dx.doi.org/10.1016/j.jeurceramsoc.2011.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

de Moraes Oliveira, Rogério, José Américo Neves Gonçalves, Mário Ueda, and Antônio Fernando Beloto. "Experimental Analysis of the Improved Emission Properties of Glassy β-eucryptite Ion Source." Japanese Journal of Applied Physics 43, no. 3 (March 10, 2004): 1154–58. http://dx.doi.org/10.1143/jjap.43.1154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Jochum, Timothy, Ivar E. Reimanis, Michael J. Lance, and Edwin R. Fuller. "In SituRaman Indentation of β-Eucryptite: Characterization of the Pressure-Induced Phase Transformation." Journal of the American Ceramic Society 92, no. 4 (April 2009): 857–63. http://dx.doi.org/10.1111/j.1551-2916.2009.02994.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, L. D., W. D. Fei, F. Zheng, and C. K. Yao. "Dynamic observation of phase transformation of β-eucryptite particles in aluminum matrix composite." Materials Chemistry and Physics 82, no. 3 (December 2003): 608–12. http://dx.doi.org/10.1016/s0254-0584(03)00325-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Marcial, José, Joey Kabel, Muad Saleh, Nancy Washton, Yaqoot Shaharyar, Ashutosh Goel, and John S. McCloy. "Structural dependence of crystallization in glasses along the nepheline (NaAlSiO4) ‐ eucryptite (LiAlSiO4) join." Journal of the American Ceramic Society 101, no. 7 (February 2018): 2840–55. http://dx.doi.org/10.1111/jace.15439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Narayanan, Badri, Adri C. T. van Duin, Branden B. Kappes, Ivar E. Reimanis, and Cristian V. Ciobanu. "A reactive force field for lithium–aluminum silicates with applications to eucryptite phases." Modelling and Simulation in Materials Science and Engineering 20, no. 1 (November 4, 2011): 015002. http://dx.doi.org/10.1088/0965-0393/20/1/015002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sartbaeva, Asel, Simon A. T. Redfern, and William T. Lee. "A neutron diffraction and Rietveld analysis of cooperative Li motion in beta-eucryptite." Journal of Physics: Condensed Matter 16, no. 29 (July 10, 2004): 5267–78. http://dx.doi.org/10.1088/0953-8984/16/29/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhao, Li-Min, Yong-Guang Cheng, Hao-Shan Hao, Jiao Wang, Shao-Hui Liu, and Bao-Sen Zhang. "Properties of negative thermal expansion β -eucryptite ceramics prepared by spark plasma sintering." Chinese Physics B 27, no. 9 (September 2018): 096501. http://dx.doi.org/10.1088/1674-1056/27/9/096501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, M., H. Xu, E. K. H. Salje, and P. J. Heaney. "Vibrational spectroscopy of beta-eucryptite (LiAlSiO 4 ): optical phonons and phase transition(s)." Physics and Chemistry of Minerals 30, no. 8 (September 1, 2003): 457–62. http://dx.doi.org/10.1007/s00269-003-0337-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography