Academic literature on the topic 'Ethanol; Lignocellulosic residues'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ethanol; Lignocellulosic residues.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ethanol; Lignocellulosic residues"
Yadav, Ram Kailash P., Arbindra Timilsina, Rupesh K. Yadawa, and Chandra P. Pokhrel. "Potential Cellulosic Ethanol Production from Organic Residues of Agro-Based Industries in Nepal." ISRN Renewable Energy 2014 (January 20, 2014): 1–6. http://dx.doi.org/10.1155/2014/305695.
Full textKotarska, Katarzyna, Wojciech Dziemianowicz, and Anna Świerczyńska. "Study on the Sequential Combination of Bioethanol and Biogas Production from Corn Straw." Molecules 24, no. 24 (December 12, 2019): 4558. http://dx.doi.org/10.3390/molecules24244558.
Full textHoa, Doan Thai, Tran Dinh Man, and Ngo Viet Hau. "PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS." ASEAN Journal on Science and Technology for Development 25, no. 2 (November 22, 2017): 341–46. http://dx.doi.org/10.29037/ajstd.264.
Full textEvangelista, Igor Vieira, Adam Gonçalves Arruda, Larissa Soares de Menezes, Janaína Fischer, and Carla Zanella Guidini. "Physicochemical characterization of agro-industrial residues for second-generation ethanol production." Research, Society and Development 10, no. 8 (July 13, 2021): e33110817151. http://dx.doi.org/10.33448/rsd-v10i8.17151.
Full textCavalaglio, Gianluca, Mattia Gelosia, Silvia D’Antonio, Andrea Nicolini, Anna Pisello, Marco Barbanera, and Franco Cotana. "Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues." Energies 9, no. 8 (August 12, 2016): 634. http://dx.doi.org/10.3390/en9080634.
Full textAlcívar-Mendoza, Pablo, José Muñoz-Murillo, Christhel Andrade-Díaz, and Alex Dueñas-Rivadeneira. "Saccharification and fermentation of the lignocellulosic residues of the orange to obtain bioalcohol." Revista de la Facultad de Agronomía, Universidad del Zulia 38, no. 3 (July 13, 2021): 718–32. http://dx.doi.org/10.47280//revfacagron(luz).v38.n3.14.
Full textRahimi, Vajiheh, Marzieh Shafiei, and Keikhosro Karimi. "Techno-Economic Study of Castor Oil Crop Biorefinery: Production of Biodiesel without Fossil-Based Methanol and Lignoethanol Improved by Alkali Pretreatment." Agronomy 10, no. 10 (October 10, 2020): 1538. http://dx.doi.org/10.3390/agronomy10101538.
Full textBroda, Magdalena, Daniel J. Yelle, and Katarzyna Serwańska. "Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions." Molecules 27, no. 24 (December 9, 2022): 8717. http://dx.doi.org/10.3390/molecules27248717.
Full textLiu, Na, Jienan Chen, Peng Zhan, Lin Zhang, Xiaoxun Zhou, Baiquan Zeng, Zhiping Wu, and Hui Wang. "Optimization of mixed enzymolysis of acid-exploded poplar wood residues for directional bioconversion." BioResources 15, no. 1 (January 30, 2020): 1945–58. http://dx.doi.org/10.15376/biores.15.1.1945-1958.
Full textAzmi, Intan Suhada, Amizon Azizan, Ruzitah Mohd Salleh, Rafidah Jalil, Tengku Elida Tengku Zainal Mulok, Nadzeerah Idris, Sandra Ubong, and Aimi Liyana Sihab. "Biomaterials Availability: Potential for Bioethanol Production." Advanced Materials Research 701 (May 2013): 243–48. http://dx.doi.org/10.4028/www.scientific.net/amr.701.243.
Full textDissertations / Theses on the topic "Ethanol; Lignocellulosic residues"
Dong, Jie. "Butanol Production from Lignocellulosic Biomass and Agriculture Residues by Acetone-Butanol-Ethanol Fermentation." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1404312445.
Full textLopes, Daiane Dias, and Ronald E. Hector. "Estudos fenotípicos e genotípicos do mecanismo de transporte de xilose em leveduras selvagens para a produção de etanol de segunda geração." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/168801.
Full textThe yeast Saccharomyces cerevisiae, which efficiently ferments glucose and fructose to ethanol, is unable to ferment xylose present in lignocellulosic biomass of agroindustrial residues. Although the introduction of xylose metabolic pathways in S. cerevisiae strains has been described in the literature, the simultaneous fermentation of xylose and glucose in these modified strains is still very inefficient. The aim of this study was to increase the xylose consumption efficiency of S. cerevisiae by introduction of exogenous genes identified in wild yeast that naturally ferment pentose. The xylose metabolism pathway was integrated into the genome of a Brazilian industrial strain of S. cerevisiae used for the production of ethanol, which was then used to obtain isogenic modified strains. The isogenic strains showed to be more effective in xylose metabolism in synthetic medium and able to co-ferment glucose and xylose in the presence of high concentrations of inhibitors resulting hydrolysis of lignocellulosic biomass. The transporters identified were inserted into genetically modified industrial strains of S. cerevisiae created in this study and also in laboratory strains. It was not possible to confirm the transporters efficiency in laboratory strains but the results showed differences in the growth curves of the industrial strains expressing the transporters. This work was the beginning of a study of the factors involved in xylose metabolism and it will help to prepare future work to obtain an efficient strain for lignocellulosic ethanol production.
Lennartsson, Patrik. "Zygomycetes and cellulose residuals : hydrolysis, cultivation and applications." Doctoral thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3608.
Full textAkademisk avhandling som för avläggande av teknologie doktorsexamen vid Chalmers tekniska högskola försvaras vid offentlig disputation den 9 februari 2012, klockan 10.00 i KS101, Kemigården 4, Göteborg.
Pimenta, Rodrigo João Oliveira Travassos. "Produção de açúcares fermentáveis a partir de fibras residuais de uma fábrica de papel kraft." Master's thesis, 2020. http://hdl.handle.net/10316/90197.
Full textO estudo de novos tipos de energia e seus processos de produção tem sido encorajada devido ao elevado consumo energético global. A biomassa lenhocelulósica, devido à sua ubiquidade, tem sido alvo de extensos estudos com vista à produção de açúcares fermentáveis, produtos intermédios em diversos processos industriais, ou etanol. Adicionalmente, a nível industrial, são produzidas quantidades elevadas de lamas primárias que ainda podem ser reaproveitadas para a obtenção de produtos com valor acrescentado.Os processos biotecnológicos são processos de baixo custo energético e manutenção, o que os torna especialmente interessantes para aplicações e processos industriais. Dentro desses processos, encontra-se a hidrólise enzimática, um processo que recorre a enzimas, como a celulase, para transformar celulose em glucose, um açúcar fermentável, e a sacarificação e fermentação simultâneas, ou SSF, um processo que se foca na produção de bioetanol com recurso a leveduras, como a levedura Saccharomyces cerevisiae, que consomem os açúcares simples na sua atividade metabólica.O principal objetivo deste trabalho foi estudar a viabilidade das lamas primárias, provenientes de uma fábrica de papel kraft, às quais foram adicionadas fibras recicladas, para a produção direta de açúcares fermentáveis, através do processo de hidrólise enzimática e para a produção de bioetanol, através da metodologia SSF.Observou-se que a partir do processo de hidrólise enzimática, a concentração máxima de glucose obtida para as lamas primárias foi de 15,2 g L-1, resultando num rendimento teórico de hidrólise de 64,6%. Posteriormente estudou-se a aplicação de um tratamento alcalino com fosfato monopotássico, um agente que permite remover tintas, onde se obteve uma concentração de açúcares de 19,6 g L-1 ao fim de 24 h de reação.Na metodologia SSF obtiveram-se concentrações máximas de etanol de 6,2 g L-1 para as lamas primárias sem tratamento e de 6,9 g L-1 para as lamas primárias com tratamento alcalino, para uma consistência de 3% de massa de suspensão. No entanto, para as lamas com o tratamento mencionado anteriormente, e para uma consistência superior, 6%, obteve-se uma concentração máxima de etanol de 11,8 g L-1.
The study of new types of energy and their production processes has been encouraged due to the high global energy consumption. Lignocellulosic biomass, due to its ubiquity, has been the subject of extensive studies considering the production of fermentable sugars, intermediate compounds in various chemical processes, and ethanol production. Additionally, at an industrial level, high quantities of sludge are produced that can still be used to generate products with greater value.Biotechnological processes are processes with a low energy and maintenance cost, which make them especially valued for industrial applications and processes. Within these processes, enzymatic hydrolysis is a process that uses enzymes, like cellulose, to transform cellulose into glucose, a fermentable sugar, and simultaneous saccharification and fermentation (SSF) is a process that produces bioethanol with the utilization of yeasts, like Saccharomyces cerevisiae, who consume simple sugars for their metabolism to produce ethanol.The primary objective of this work was to study the viability of the primary sludge, given by a kraft paper facility, to which were added recycled fibres, for the direct production of fermentable sugars, by the use of the enzymatic hydrolysis process, and for bioethanol production, by the use of the SSF methodology.The maximum sugar concentration observed in the enzymatic hydrolysis, for the primary non-treated sludge was 15,2 g L-1, which represents a theoretical hydrolysis yield of 64,6%. Meanwhile, by applying an alkaline treatment with the aid of monopotassium phosphate, an additive that allows ink removal, a maximum sugar concentration of 19,6 g L-1 was obtained, after 24 h.In the SSF methodology, the maximum ethanol concentration was 6,2 g L-1 for the non-treated primary sludge and 6,6 g L-1 for the treated sludge, both for a mass concentration of 3%. However, for a higher consistency, 6%, a maximum ethanol concentration of 11,8 g L-1 was obtained for the treated primary sludge.
Book chapters on the topic "Ethanol; Lignocellulosic residues"
Panchal, Hitesha J., and Krishan Kumar. "Pretreatment of Lignocellulosic Biomass and 2G Ethanol." In Biomass and Bioenergy Solutions for Climate Change Mitigation and Sustainability, 322–39. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-5269-1.ch018.
Full textGIEHL, Anderson, Thamarys SCAPINI, Helen TREICHEL, and Sérgio L. ALVES JR. "PRODUCTION OF VOLATILE ORGANIC COMPOUNDS BY YEASTS IN BIOREFINERIES: ECOLOGICAL, ENVIRONMENTAL, AND BIOTECHNOLOGICAL OUTLOOKS." In CIÊNCIAS AMBIENTAIS E DA SAÚDE NA ATUALIDADE: Insights para alcançar os Objetivos para o Desenvolvimento Sustentável, 64–78. Instituto de Inteligência em Pesquisa e Consultoria Cientifica Ltda, 2022. http://dx.doi.org/10.56041/9786599841804-4.
Full textGalbe, M., O. Wallberg, and G. Zacchi. "Techno-Economic Aspects of Ethanol Production from Lignocellulosic Agricultural Crops and Residues." In Comprehensive Biotechnology, 615–28. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-08-088504-9.00298-1.
Full textGalbe, M., O. Wallberg, and G. Zacchi. "Techno-Economic Aspects of Ethanol Production From Lignocellulosic Agricultural Crops and Residues." In Comprehensive Biotechnology, 519–31. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-64046-8.00380-3.
Full text