Dissertations / Theses on the topic 'Estuarine oceanography Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Estuarine oceanography Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
蔡景華 and King-wah Choi. "Finite difference modelling of estuarine hydrodynamics." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1985. http://hub.hku.hk/bib/B30425153.
Full textHudson, Austin Scott. "Applications of Remote Sensing to the Study of Estuarine Physics: Suspended Sediment Dynamics in the Columbia River Estuary." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/2093.
Full textWahl, Douglas Timothy. "Increasing range and lethality of Extended -Range Munitions (ERMS) using Numerical Weather Prediction (NWP) and the AUV workbench to compute a Ballistic Correction (BALCOR)." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FWahl.pdf.
Full textThesis Advisor(s): Wendell Nuss, Don Brutzmann. "December 2006." Includes bibliographical references (p. 107-116). Also available in print.
Sanabia, Elizabeth R. "Objective identification of environmental patterns related to tropical cyclone track forecast errors." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FSanabia.pdf.
Full textThesis Advisor(s): Patrick A. Harr, Russell L. Elsberry. "September 2006." Includes bibliographical references (p. 43). Also available in print.
Coutis, Peter F. School of Mathematics UNSW. "Currents, coasts and cays : a study of tidal upwelling and island wakes." Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/18207.
Full textHsieh, Chung-Ping. "Effect of internal solitary waves on mine detection in the western Philippine Sea east of Taiwan." Thesis, Monterey, Calif. : Naval Postgraduate School, 2006. http://bosun.nps.edu/uhtbin/hyperion.exe/06Dec%5FHsieh.pdf.
Full textThesis Advisor(s): Peter C. Chu. "December 2006." Includes bibliographical references (p.115-117). Also available in print.
Linde, Tamara Causer. "Relational Database Analysis of Dated Prehistoric Shorelines to Establish Sand Partitioning in Late Holocene Barriers and Beach Plains of the Columbia River Littoral Cell, Washington and Oregon, USA." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1696.
Full textWells, Judith R. (Judith Roberta). "A laboratory study of localized boundary mixing in a rotating stratified fluid." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/58062.
Full textIncludes bibliographical references (p. 145-148).
Oceanic observations indicate that abyssal mixing is localized in regions of rough topography. How locally mixed fluid interacts with the ambient fluid is an open question. Laboratory experiments explore the interaction of mechanically induced boundary mixing and an interior body of linearly stratified rotating fluid. Turbulence is generated by a vertically oscillating horizontal bar, located at middepth along the tank wall. The turbulence forms a region of mixed fluid which quickly reaches a steady state height and collapses into the interior. The mixed layer thickness ... is independent of the Coriolis frequency f. N is the buoyancy frequency, co is the bar frequency, and the constant, Y=1 cm, is empirically determined by bar mechanics. In initial experiments, the bar is exposed on three sides. Mixed fluid intrudes directly into the interior as a radial front of uniform height, rather than as a boundary current. Mixed fluid volume grows linearly with time ... The circulation patterns suggest a model of unmixed fluid being laterally entrained with velocity, e Nhm, into the sides of a turbulent zone with height hm and width Lf ... where Lf is an equilibrium scale associated with rotational control of bar-generated turbulence. In accord with the model, outflux is constant, independent of stratification and restricted by rotation ... Later experiments investigate the role of lateral entrainment by confining the sides of the mixing bar between two walls, forming a channel open to the basin at one end. A small percentage of exported fluid enters a boundary current, but the bulk forms a cyclonic circulation in front of the bar. As the recirculation region expands to fill the channel, it restricts horizontal entrainment into the turbulent zone. The flux of mixed fluid decays with time.
(cont.) ... The production of mixed fluid depends on the size of the mixing zone as well as on the balance between turbulence, rotation and stratification. As horizontal entrainment is shut down, longterm production of mixed fluid may be determined through much weaker vertical entrainment. Ultimately, the export of mixed fluid from the channel is restricted to the weak boundary current.
by Judith R. Wells.
Ph.D.
Arbic, Brian K. "Generation of mid-ocean eddies : the local baroclinic instability hypothesis." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/53047.
Full textIncludes bibliographical references (p. 284-290).
by Brian Kenneth Arbic.
Ph.D.
Simmons, Scott R. "Modification of a vortex-panel method to include surface effects and allow finite-element interface." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-05022009-040717/.
Full textKaspi, Yohai. "Turbulent convection in the anelastic rotating sphere : a model for the circulation on the giant planets." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45780.
Full textIncludes bibliographical references (p. 207-221).
This thesis studies the dynamics of a rotating compressible gas sphere, driven by internal convection, as a model for the dynamics on the giant planets. We develop a new general circulation model for the Jovian atmosphere, based on the MITgcm dynamical core augmenting the nonhydrostatic model. The grid extends deep into the planet's interior allowing the model to compute the dynamics of a whole sphere of gas rather than a spherical shell (including the strong variations in gravity and the equation of state). Different from most previous 3D convection models, this model is anelastic rather than Boussinesq and thereby incorporates the full density variation of the planet. We show that the density gradients caused by convection drive the system away from an isentropic and therefore barotropic state as previously assumed, leading to significant baroclinic shear. This shear is concentrated mainly in the upper levels and associated with baroclinic compressibility effects. The interior flow organizes in large cyclonically rotating columnar eddies parallel to the rotation axis, which drive upgradient angular momentum eddy fluxes, generating the observed equatorial superrotation. Heat fluxes align with the axis of rotation, contributing to the observed flat meridional emission. We show the transition from weak convection cases with symmetric spiraling columnar modes similar to those found in previous analytic linear theory, to more turbulent cases which exhibit similar, though less regular and solely cyclonic, convection columns which manifest on the surface in the form of waves embedded within the superrotation. We develop a mechanical understanding of this system and scaling laws by studying simpler configurations and the dependence on physical properties such as the rotation period, bottom boundary location and forcing structure. These columnar cyclonic structures propagate eastward, driven by dynamics similar to that of a Rossby wave except that the restoring planetary vorticity gradient is in the opposite direction, due to the spherical geometry in the interior.
(cont.) We further study these interior dynamics using a simplified barotropic annulus model, which shows that the planetary vorticity radial variation causes the eddy angular momentum flux divergence, which drives the superrotating equatorial flow. In addition we study the interaction of the interior dynamics with a stable exterior weather layer, using a quasigeostrophic two layer channel model on a beta plane, where the columnar interior is therefore represented by a negative beta effect. We find that baroclinic instability of even a weak shear can drive strong, stable multiple zonal jets. For this model we find an analytic nonlinear solution, truncated to one growing mode, that exhibits a multiple jet meridional structure, driven by the nonlinear interaction between the eddies. Finally, given the density field from our 3D convection model we derive the high order gravitational spectra of Jupiter, which is a measurable quantity for the upcoming JUNO mission to Jupiter.
by Yohai Kaspi.
Ph.D.
Zhang, Fan. "Changing seasonality of convective events in the Labrador Sea." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51896.
Full textRamondenc, Pierre. "Effect of seismicity and diking on hydrothermal circulation at mid-ocean ridges." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22619.
Full textCommittee Chair: Germanovich, Leonid; Committee Co-Chair: Lowell, Robert; Committee Member: Di Iorio, Daniela; Committee Member: Huang, Haiying; Committee Member: Rix, Glenn; Committee Member: Xu, Wenyue.
Craft, Kathleen L. "Boundary layer models of hydrothermal circulation on Earth and Mars." Thesis, Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26574.
Full textMoftakhari, Rostamkhani Hamed. "A Novel Approach to Flow and Sediment Transport Estimation in Estuaries and Bays." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2185.
Full textMazloff, Matthew R. "Production and analysis of a Southern Ocean state estimate." Thesis, Online version, 2006. http://hdl.handle.net/1912/1282.
Full text"September 2006." Bibliography: p. 97-106.
Alves, Jose Henrique Gomes de Mattos Mathematics UNSW. "A Saturation-Dependent Dissipation Source Function for Wind-Wave Modelling Applications." Awarded by:University of New South Wales. Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17786.
Full textShyu, Esther. "Evolutionary demography of structured two-sex populations and sex ratios." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101354.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Males and females may differ in stage-specific survival, maturation, fertility, or mating availability. These demographic differences, in turn, affect population growth rates, equilibrium structure, and evolutionary trajectories. Models considering only a single sex cannot capture these effects, motivating the use of demographic two-sex models for sexually reproducing populations. I developed a new two-sex modeling framework that incorporates population structure and multiple life cycle processes through transition rate matrices. These models can be applied to a variety of life histories to address both ecological and evolutionary questions. Here, I apply the model to the effects of sex-biased harvest on populations with various mating systems. Demographic considerations also affect evolutionary projections. I derived matrix calculus expressions for key evolutionary quantities in my two-sex models, including the invasion fitness, selection gradient, and second derivatives of growth rates (which have many applications, including the classification of evolutionary singular strategies). I used these quantities to analyze the evolution of the primary sex ratio, under various sex- and stage-specific offspring costs and maternal conditions. Demographic two-sex models lend insight into complex, and sometimes counterintuitive, results that are not captured by models lacking population structure. These findings highlight the importance of demographic structure in ecology and evolution.
by Esther Shyu.
Ph. D.
Dail, Holly Janine. "Atlantic Ocean circulation at the last glacial maximum : inferences from data and models." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
Zhai, Ping Ph D. Massachusetts Institute of Technology. "Buoyancy-driven circulation in the Red Sea." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95561.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 175-180).
This thesis explores the buoyancy-driven circulation in the Red Sea, using a combination of observations, as well as numerical modeling and analytical method. The first part of the thesis investigates the formation mechanism and spreading of Red Sea Overflow Water (RSOW) in the Red Sea. The preconditions required for open-ocean convection, which is suggested to be the formation mechanism of RSOW, are examined. The RSOW is identified and tracked as a layer with minimum potential vorticity and maximum chlorofluorocarbon-12. The pathway of the RSOW is also explored using numerical simulation. If diffusivity is not considered, the production rate of the RSOW is estimated to be 0.63 Sv using Walin's method. By comparing this 0.63 Sv to the actual RSOW transport at the Strait of Bab el Mandeb, it is implied that the vertical diffusivity is about 3.4 x10-5 m 2 s-1. The second part of the thesis studies buoyancy-forced circulation in an idealized Red Sea. Buoyancy-loss driven circulation in marginal seas is usually dominated by cyclonic boundary currents on f-plane, as suggested by previous observations and numerical modeling. This thesis suggests that by including [beta]-effect and buoyancy loss that increases linearly with latitude, the resultant mean Red Sea circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In mid-basin, the northward surface flow crosses from the western boundary to the eastern boundary. The observational support is also reviewed. The mechanism that controls the crossover of boundary currents is further explored using an ad hoc analytical model based on PV dynamics. This ad hoc analytical model successfully predicts the crossover latitude of boundary currents. It suggests that the competition between advection of planetary vorticity and buoyancy-loss related term determines the crossover latitude. The third part of the thesis investigates three mechanisms that might account for eddy generation in the Red Sea, by conducting a series of numerical experiments. The three mechanisms are: i) baroclinic instability; ii) meridional structure of surface buoyancy losses; iii) cross-basin wind fields.
by Ping Zhai.
Ph. D.
Moulton, Melissa (Melissa Root). "Hydrodynamic and morphodynamic responses to surfzone seafloor perturbations." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104594.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Holes and channels were excavated in the surf zone on an ocean beach near Duck, NC, and observations of the subsequent evolution of waves, currents, and the modified seafloor were used to investigate nearshore dynamics. In one set of seafloor perturbation experiments, deep holes with steeply sloping sides were excavated in the inner surfzone seafloor. Observations of the infilling holes were used to make the first field estimates of the surfzone morphological diffusivity, which describes the rate of seafloor smoothing by downslope sediment transport. To improve the temporal resolution of bathymetric estimates, a mapping method was developed to combine infrequent, spatially dense watercraft surveys with continuous, spatially sparse in situ altimeter estimates of the seafloor location. In another set of seafloor perturbation experiments, channels were dredged across the surf zone with the propellers of a landing craft. Alongshore variations in wave breaking caused by the perturbed bathymetry resulted in strong rip currents in the channels under some conditions, whereas alongshore currents bypassed the channels under other conditions. The dynamics of the circulation response for changing wave forcing, bathymetry, and tidal elevation are investigated using the observations, a numerical model, and a parameter based on wave properties and bathymetry.
by Melissa Moulton.
Ph. D.
Verdy, Ariane. "Dynamics of marine zooplankton : social behavior, ecological interactions, and physically-induced variability." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43158.
Full textIncludes bibliographical references (p. [221]-232).
Marine ecosystems reflect the physical structure of their environment and the biological processes they carry out. This leads to spatial heterogeneity and temporal variability, some of which is imposed externally and some of which emerges from the ecological mechanisms themselves. The main focus of this thesis is on the formation of spatial patterns in the distribution of zooplankton arising from social interactions between individuals. In the Southern Ocean, krill often assemble in swarms and schools, the dynamics of which have important ecological consequences. Mathematical and numerical models are employed to study the interplay of biological and physical processes that contribute to the observed patchiness. The evolution of social behavior is simulated in a theoretical framework that includes zooplankton population dynamics, swimming behavior, and some aspects of the variability inherent to fluid environments. First, I formulate a model of resource utilization by a stage-structured predator population with density-dependent reproduction. Second, I incorporate the predator-prey dynamics into a spatially-explicit model, in which aggregations develop spontaneously as a result of linear instability of the uniform distribution. In this idealized ecosystem, benefits related to the local abundance of mates are offset by the cost of having to share resources with other group members. Third, I derive a weakly nonlinear approximation for the steady-state distributions of predator and prey biomass that captures the spatial patterns driven by social tendencies. Fourth, I simulate the schooling behavior of zooplankton in a variable environment; when turbulent flows generate patchiness in the resource field, schools can forage more efficiently than individuals.
(cont.) Taken together, these chapters demonstrate that aggregation/ schooling can indeed be the favored behavior when (i) reproduction (or other survival measures) increases with density in part of the range and (ii) mixing of prey into patches is rapid enough to offset the depletion. In the final two chapters, I consider sources of temporal variability in marine ecosystems. External perturbations amplified by nonlinear ecological interactions induce transient ex-cursions away from equilibrium; in predator-prey dynamics the amplitude and duration of these transients are controlled by biological processes such as growth and mortality. In the Southern Ocean, large-scale winds associated with ENSO and the Southern Annular Mode cause convective mixing, which in turn drives air-sea fluxes of carbon dioxide and oxygen. Whether driven by stochastic fluctuations or by climatic phenomena, variability of the biogeochemical/physical environment has implications for ecosystem dynamics.
by Ariane Verdy.
Ph.D.
Horwitz, Rachel Mandy. "The effect of stratification on wind-driven, cross-shelf circulation and transport on the inner continental shelf." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77779.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 209-215).
Observations from a three-year field program on the inner shelf south of Martha's Vineyard, MA and a numerical model are used to describe the effect of stratification on inner shelf circulation, transport, and sediment resuspension height. Thermal stratification above the bottom mixed layer is shown to cap the height to which sediment is resuspended. Stratification increases the transport driven by cross-shelf wind stresses, and this effect is larger in the response to offshore winds than onshore winds. However, a one-dimensional view of the dynamics is not sufficient to explain the relationship between circulation and stratification. An idealized, cross-shelf transect in a numerical model (ROMS) is used to isolate the effects of stratification, wind stress magnitude, surface heat flux, cross-shelf density gradient, and wind direction on the inner shelf response to the cross-shelf component of the wind stress. In well mixed and weakly stratified conditions, the cross-shelf density gradient can be used to predict the transport efficiency of the cross-shelf wind stress. In stratified conditions, the presence of an along-shelf wind stress component makes the inner shelf response to cross-shelf wind stress strongly asymmetric.
by Rachel Mandy Horwitz.
Ph.D.
Verdy, Ariane. "Variability of zooplankton and sea surface temperature in the Southern Ocean." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39197.
Full textIncludes bibliographical references (p. 69-74).
Interactions between physical and biological processes in the Southern Ocean have significant impacts on local ecosystems as well as on global climate. In this thesis, I present evidence that the Southern Ocean circulation affects the variability of zooplankton and sea surface temperature, both of which are involved in air-sea exchanges of carbon dioxide. First, I examine the formation of spatial patterns in the distribution of Antarctic krill (Euphausia superba) resulting from social behavior. Turbulence of the flow is found to provide favorable conditions for the evolution social behavior in an idealized biological-physical model. Second, I analyze observations of sea surface temperature variability in the region of the Antarctic circumpolar current. Results suggest that propagating anomalies can be explained as a linear response to local atmospheric forcing by the Southern Annular Mode and remote forcing by El-Nifio southern oscillation, in the presence of advection by a mean flow.
by Ariane Verdy.
S.M.
Link, Shmuel G. "Field measurements of a swell band, shore normal, flux divergence reversal." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/67625.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 55-56).
Throughout this thesis we will discuss the theoretical background and empirical observation of a swell band shore normal flux divergence reversal. Specifically, we will demonstrate the existence and persistence of the energy flux divergence reversal in the nearshore region of Atchafalaya Bay, Gulf of Mexico, across storms during the March through April 2010 deployment. We will show that the swell band offshore component of energy flux is rather insignificant during the periods of interest, and as such we will neglect it during the ensuing analysis. The data presented will verify that the greatest flux divergence reversal is seen with winds from the East to Southeast, which is consistent with theories which suggest shoreward energy flux as well as estuarine sediment transport and resuspension prior to passage of a cold front. Employing the results of theoretical calculations and numerical modeling we will confirm that a plausible explanation for this phenomena can be found in situations where temporally varying wind input may locally balance or overpower bottom induced dissipation, which may also contravene the hypothesis that dissipation need increase shoreward due to nonlinear wave-wave interactions and maturation of the spectrum. Lastly, we will verify that the data presented is consistent with other measures collected during the same deployment in the Atchafalaya Bay during March - April 2010.
by Shmuel G. Link.
S.M.
Nadakuditi, Rajesh Rao. "A channel subspace post-filtering approach to adaptive equalization." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87613.
Full textIncludes bibliographical references (p. 151-154).
by Rajesh Rao Naduditi.
S.M.
Wortham, Cimarron James Lemuel IV. "A multi-dimensional spectral description of ocean variability with applications." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79296.
Full text"February 2013." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 175-184).
Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200-10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal [omega] -² power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies.
by Cimarron James Lemuel Wortham, IV.
Ph.D.
Li, Weichang 1972. "Estimation and tracking of rapidly time-varying broadband acoustic communication channels." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/39205.
Full textIncludes bibliographical references (p. 197-206).
This thesis develops methods for estimating wideband shallow-water acoustic communication channels. The very shallow water wideband channel has three distinct features: large dimension caused by extensive delay spread; limited number of degrees of freedom (DOF) due to resolvable paths and inter-path correlations; and rapid fluctuations induced by scattering from the moving sea surface. Traditional LS estimation techniques often fail to reconcile the rapid fluctuations with the large dimensionality. Subspace based approaches with DOF reduction are confronted with unstable subspace structure subject to significant changes over a short period of time. Based on state-space channel modeling, the first part of this thesis develops algorithms that jointly estimate the channel as well as its dynamics. Algorithms based on the Extended Kalman Filter (EKF) and the Expectation Maximization (EM) approach respectively are developed.
(cont.) Analysis shows conceptual parallels, including an identical second-order innovation form shared by the EKF modification and the suboptimal EM, and the shared issue of parameter identifiability due to channel structure, reflected as parameter unobservability in EKF and insufficient excitation in EM. Modifications of both algorithms, including a two-model based EKF and a subspace EM algorithm which selectively track dominant taps and reduce prediction error, are proposed to overcome the identifiability issue. The second part of the thesis develops algorithms that explicitly find the sparse estimate of the delay-Doppler spread function. The study contributes to a better understanding of the channel physical constraints on algorithm design and potential performance improvement. It may also be generalized to other applications where dimensionality and variability collide.
by Weichang Li.
Ph.D.
Schanze, Julian J. (Julian Johannes). "The production of temperature and salinity variance and covariance : implications for mixing." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79294.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 187-195).
Large-scale thermal forcing and freshwater fluxes play an essential role in setting temperature and salinity in the ocean. A number of recent estimates of the global oceanic freshwater balance as well as the global oceanic surface net heat flux are used to investigate the effects of heat- and freshwater forcing at the ocean surface. Such forcing induces changes in both density and density-compensated temperature and salinity changes ('spice'). The ratio of the relative contributions of haline and thermal forcing in the mixed layer is maintained by large-scale surface fluxes, leading to important consequences for mixing in the ocean interior. In a stratified ocean, mixing processes can be either along lines of constant density (isopycnal) or across those lines (diapycnal). The contribution of these processes to the total mixing rate in the ocean can be estimated from the large-scale forcing by evaluating the production of thermal variance, salinity variance and temperature-salinity covariance. Here, I use new estimates of surface fluxes to evaluate these terms and combine them to generate estimates of the production of density and spice variance under the assumption of a linear equation of state. As a consequence, it is possible to estimate the relative importance of isopycnal and diapycnal mixing in the ocean. While isopycnal and diapycnal processes occur on very different length scales, I find that the surface-driven production of density and spice variance requires an approximate equipartition between isopycnal and diapycnal mixing in the ocean interior. In addition, consideration of the full nonlinear equation of state reveals that surface fluxes require an apparent buoyancy gain (expansion) of the ocean, which allows an estimate of the amount of contraction on mixing due to cabbeling in the ocean interior.
by Julian J. Schanze.
Ph.D.
Verspecht, Florence. "Temporal dynamics of the coastal water column." University of Western Australia. School of Environmental Systems Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0097.
Full textDevlin, Adam Thomas. "On the variability of Pacific Ocean tides at seasonal to decadal time scales| Observed vs modelled." Thesis, Portland State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10128376.
Full textOcean tides worldwide have exhibited secular changes in the past century, simultaneous with a global secular rise in mean sea level (MSL). The combination of these two factors contributes to higher water levels, and may increase threats to coastal regions and populations over the next century. Equally as important as these long-term changes are the short-term fluctuations in sea levels and tidal properties. These fluctuations may interact to yield locally extreme water level events, especially when combined with storm surge. This study, presented in three parts, examines the relationships between tidal anomalies and MSL anomalies on yearly and monthly timescales, with a goal of diagnosing dynamical factors that may influence the long-term evolution of tides in the Pacific Ocean. Correlations between yearly averaged properties are denoted tidal anomaly trends (TATs), and will be used to explore interannual behavior. Correlations of monthly averaged properties are denoted seasonal tidal anomaly trends (STATs), and are used to examine seasonal behavior. Four tidal constituents are analyzed: the two largest semidiurnal (twice daily) constituents, M2 and S2, and the two largest diurnal (once daily) constituents, K1 and O1.
Part I surveys TATs and STATs at 153 Pacific Ocean tide gauges, and discusses regional patterns within the entire Pacific Ocean. TATs with statistically significant relations between MSL and amplitudes (A-TATs) are seen at 89% of all gauges; 92 gauges for M2, 66 for S2, 82 for K1, and 59 for O1. TATs with statistically significant relations between tidal phase (the relative timing of high water of the tide) and MSL (P-TATs) are observed at 55 gauges for M2, 47 for S2, 42 for K1, and 61 for O1. Significant seasonal variations (STATs) are observed at about a third of all gauges, with the largest concentration in Southeast Asia. The effect of combined A-TATs was also considered. At selected stations, observed tidal sensitivity with MSL was extrapolated forward in time to the predicted sea level in 2100. Results suggest that stations with large positive combined A-TATs produce total water levels that are greater than those predicted by an increase in MSL alone, increasing the chances of high-water events.
Part II examines the mechanisms behind the yearly (TAT) variability in the Western Tropical Pacific Ocean. Significant amplitude TATs are found at more than half of 26 gauges for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). For the lesser constituents analyzed (O1 and S2), significant trends are observed at ten gauges.
Part III analyzes the seasonal behavior of tides (STATs) at twenty tide gauges in the Southeast Asian waters, which exhibit variation by 10 – 30% of mean tidal amplitudes. A barotropic ocean tide model that considers the seasonal effects of MSL, stratification, and geostrophic and Ekman velocity is used to explain the observed seasonal variability in tides due to variations in monsoon-influenced climate forcing, with successful results at about half of all gauges. The observed changes in tides are best explained by the influence of non-tidal velocities (geostrophic and Ekman), though the effect of changing stratification is also an important secondary causative mechanism.
From the results of these surveys and investigations, it is concluded that short-term fluctuations in MSL and tidal properties at multiple time scales may be as important in determining the state of future water levels as the long-term trends. Global explanations for the observed tidal behavior have not been found in this study; however, significant regional explanations are found at the yearly time scale in the Solomon Sea, and at the seasonal time scale in Southeast Asia. It is likely that tidal sensitivity to annual and seasonal variations in MSL at other locations also are driven by locally specific processes, rather than factors with basin-wide coherence. (Abstract shortened by ProQuest.)
Zang, Xiaoyun 1971. "Spectral description of low frequency oceanic variability." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/59094.
Full textIncludes bibliographical references (p. 179-187).
A simple dynamic model is used with various observations to provide an approximate spectral description of low frequency oceanic variability. Such a spectrum has wide application in oceanography, including the optimal design of observational strategy for the deployment of floats, the study of Lagrangian statistics and the estimate of uncertainty for heat content and mass flux. Analytic formulas for the frequency and wavenumber spectra of any physical variable, and for the cross spectra between any two different variables for each vertical mode of the simple dynamic model are derived. No heat transport exists in the model. No momentum flux exists either if the energy distribution is isotropic. It is found that all model spectra are related to each other through the frequency and wavenumber spectrum of the stream-function for each mode, ... , where ... represent horizontal wavenumbers, w stands for frequency, n is vertical mode number, and ... are latitude and longitude, respectively. Given ... , any model spectrum can be estimated. In this study, an inverse problem is faced: ... is unknown; however, some observational spectra are available. I want to estimate ... if it exists. Estimated spectra of the low frequency variability are derived from various measurements: (i) The vertical structure of and kinetic energy and potential energy is inferred from current meter and temperature mooring measurements, respectively. (ii) Satellite altimetry measurements produce the geographic distributions of surface kinetic energy magnitude and the frequency and wavenumber spectra of sea surface height. (iii) XBT measurements yield the temperature wavenumber spectra and their depth dependence. (v) Current meter and temperature mooring measurements provide the frequency spectra of horizontal velocities and temperature. It is found that a simple form for ... does exist and an analytical formula for a geographically varying ... is constructed. Only the energy magnitude depends on location. The wavenumber spectral shape, frequency spectral shape and vertical mode structure are universal. This study shows that motion within the large-scale low-frequency spectral band is primarily governed by quasigeostrophic dynamics and all observations can be simplified as a certain function of ... The low frequency variability is a broad-band process and Rossby waves are particular parts of it. Although they are an incomplete description of oceanic variability in the North Pacific, real oceanic motions with energy levels varying from about 10-40% of the total in each frequency band are indistinguishable from the simplest theoretical Rossby wave description. At higher latitudes, as the linear waves slow, they disappear altogether. Non-equatorial latitudes display some energy with frequencies too high for consistency with linear theory; this energy produces a positive bias if a lumped average westward phase speed is computed for all the motions present.
by Xiaoyun Zang.
Ph.D.
Zelenke, Brian Christopher. "An empirical statistical model relating winds and ocean surface currents : implications for short-term current forecasts." Thesis, Connect to the title online, 2005. http://hdl.handle.net/1957/2166.
Full textLuderer, Gunnar. "Modeling and application of multispectral oceanic sun glint observations." Thesis, 2003. http://hdl.handle.net/1957/28762.
Full textGraduation date: 2004
Wortmann, Joanne. "A modelling approach for determining the freshwater requirements of estuarine macrophytes." Thesis, 1998. http://hdl.handle.net/10413/6310.
Full textThesis (Ph.D.)-University of Natal, Pietermaritzburg, 1998.
Kelly, Samuel M. "Tide-topography coupling on a continental slope." Thesis, 2010. http://hdl.handle.net/1957/19917.
Full textGraduation date: 2011
Jaaback, Kathryn Margaret. "A two-dimensional hydrodynamic model for the St Lucia Estuary mouth." Thesis, 1993. http://hdl.handle.net/10413/5907.
Full textThesis (M.Sc.)-University of Natal, 1993.