Dissertations / Theses on the topic 'ERYTHROPOIETIC DIFFERENTIATION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'ERYTHROPOIETIC DIFFERENTIATION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Ji. "Mechanisms of erythroid proliferation and differentiation analysis of the role of erythropoietin receptor in the friend virus model /." View the abstract Download the full-text PDF version (on campus access only), 2008. http://etd.utmem.edu/ABSTRACTS/2008-025-JiZhang-index.html.
Full textTitle from title page screen (viewed on October 7, 2008 ). Research advisor: Paul A. Ney, M.D. Document formatted into pages (xi, 122 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 78-110).
Dobocan, Monica Crisanti. "Chaperonin 10: an endothelial-derived, erythropoietin- dependent differentiation factor." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40690.
Full textL’érythropoïétine (EPO) stimule les cellules endothéliales à produire différents facteurs qui soutiennent la formation des érythrocytes. En effectuant une électrophorèse-2D / spectrométrie de masse, on a identifié la chapéronine10 (cpn10) comme étant un de ces facteurs. Cpn10 est secrétée par les cellules endothéliales HUVEC après un ajout d’EPO; elle diminue la prolifération des cellules érythroleucémiques K562 et elle stimule la différentiation des érythrocytes TF-1 et des fibroblastes. On a observé qu’une des actions immédiates initiées par cpn10 dans les cellules K562 et TF-1 était de changer significativement la phosphorylation de GSK-3 (glycogen synthase kinase 3) et cofilin-1. Des inhibiteurs de GSK-3 utilisés en présence de cpn10 ou seuls ont altéré le processus de prolifération et différentiation observés auparavant avec les cellules TF-1, en suggérant ainsi que GSK-3 puisse jouer un rôle dans la différentiation cellulaire déclenchée par cpn10. C’est la première fois qu’un lien est décrit entre cpn10 et l’érythropoïèse.
Raimbault, Anna. "Le ribosome au cours de l'érythropoïèse." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB251.
Full textRibosome biogenesis is a key event allowing cell growth before division. Defective RB recognized in ribosomopathyinherited Diamond-Blackfan anemia and 5q- syndrom. In this study, we aimed at investigating the regulatory role of RB during the erythroid precursor maturation which is characterized by a cell size reduction during 2 to 3 rapid cell divisions. We used two in vitro systemsé of expansion and differentiation of erythroblasts (E.) derived of immature hematopoietic progenitors from human mobilized peripheral blood or mouse fetal liver. The expansion step is supported by the Stem Cell Factor (SCF) and the second step depends on erythropoietin (EPO). The structure of the nucleolus was studied by electron microscopy. Compared to immature proerythroblasts (proE), a dramatic size reduction and change in nucleolar structure (ie. the disappearance of fibrillar and dense fibrillar components) is observed at the stage of mature polychromatophilic E. suggesting a loss of functionality. RB was measured by a pulsed SILAC (Stable Isotopic Labeling by Amino acids in Culture cell) proteomic assay that quantified the incorporation of newly synthesized ribosomal proteins in the ribosome. Both in mouse and human models, immature proE expanded upon SCF and EPO demonstrate a maximal RB with a renewal rate of 60% and 50% every 14h and 24h, respectively. By contrast, RB rapidly interrupted with the disappearance of proE and basophilic E after the switch to EPO alone. Consistently, the quantities of ribosomal RNA (rRNA) 45S precursor estimated by qPCR are maximal in proE and almost null in orthochromatophilic E. Inhibition of RB at proE stage by RNApol I specific inhibitor (CX-5461) accelerates the onset of terminal erythroid differentiation suggesting that RB is a rate limiting factor for final maturation. We then hypothesize that degree of signaling intensity in response to SCF and EPO may control the level of RB. To address this question, we investigated the mTORC1 (mechanistic Target Of Rapamycin Complex 1) pathway which is directly involved in RB through its substrate p70S6Kinase. Activation of P-p70S6Kinase and P-Rps6, as well as ribosome renewal, are twice more elevated in response to SCF and EPO than to EPO alone. Furthermore, inhibition of mTORC1/p70S6K/Rps6 pathway by rapamycin disrupts RB and leads to an acceleration of terminal erythroid differentiation.This study demonstrates that the collapse of RB promotes erythroid cell terminal maturation and shows the regulatory role of mTORC1 pathway on RB during erythropoiesis
Bin, Sofia <1990>. "Erythropoietin reduces pathogenic humoral immunity by inhibiting T Follicular Helper cell differentiation and function." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9694/1/TesiPhD_SofiaBin_Final.pdf.
Full textVieillevoye, Maud. "Role and expression of transferrin receptor 2 in erythropoiesis." Thesis, Paris 5, 2013. http://www.theses.fr/2013PA05S020.
Full textErythropoiesis is the differentiation process of a multipotent erythroid progenitor into red blood cells. Erythroid differentiation is primarily controlled by the erythropoietin receptor (EPOR). We showed that the Transferrin receptor 2 (TFR2) is an important member of the EPOR complex. TFR2 has like EPOR a lineage-restricted expression and can solely be detected in the liver, erythron and small intestine. TFR2 function has been explored in hepatocytes where it plays the role of an iron sensor and contributes to iron homeostasis. We determined the role of TFR2 in erythroblasts and showed that TFR2 is an escort protein for EPOR that contributes to optimal erythropoiesis in vitro and in vivo. Moreover we evidenced that TFR2 is absolutely required for the production of Growth differentiation factor 15 (GDF15) in erythroblasts. We further demonstrated that GDF15 production is increased by EPO levels, by intracellular iron depletion as well as by P53 trans-activation activity. The inhibition of P53 expression, realized for the study of its role in GDF15 production, revealed its implication in normal erythropoiesis. We evidenced that TFR2 is expressed under several forms, two of which result from the utilization of distinct translational initiation sites. These two isoforms are differently regulated during erythroid maturation. The third form called soluble TFR2 (sTFR2) is released in the plasma after TFR2 cleavage. We showed that sTFR2 production is inhibited in the presence of TFR2 ligand, iron loaded transferrin (holoTF) whereas cell surface TFR2 expression is stabilized by holoTF. The specific roles of the three forms of TFR2 expressed by erythroblasts remain to be elucidated
Penglong, Tipparat. "Molecular Basis of Erythroid Cell Proliferation and Differentiation." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA11T022.
Full textTo ensure the generation of billions of erythrocytes daily, erythropoiesis must be well controlled by proliferation and differentiation processes. These two processes are regulated by expressions of specific genes, coordinated by transcription factors (TFs) and epigenetic factors, such as bromodomain proteins. This study focused on the effects of the binding and dissociation of a key erythroid TF, GATA-1, to the crucial cell cycle TFs, pRb and E2F. In the first part of this thesis, the role of GATA-1 and FOG-2 binding to pRb/E2F in a control balances between cell proliferation and differentiation was studied. Mice bearing a GATA-1 mutation (GATA-1S310A) displayed higher levels of E2F2 sequestration and suffered from fatal anemia when the compensatory pathway of E2F2 production via IGF-1 signaling was also inhibited. The properties described for GATA-1 were found to be common to FOG-2, and the abolition of FOG-2 binding to pRb led to obesity resistance in FOG-2pRb- mice. In the second part of this work, as c-Myc is regulated by GATA-1 and E2F, the first chemical epigenetic inhibitor repressing c-Myc expression to be described, JQ1, was investigated to see if it could control erythropoiesis. The UT7 erythroleukemia cell line, which proliferates without differentiating was used. This cell line stops differentiation at the proerythroblast stage, in response to erythropoietin. JQ1 treatment inhibited UT7 proliferation and restored terminal erythroid differentiation. The molecular mechanism underlying this regulation by JQ1 was shown that the inhibition of c-Myc expression was associated with the inhibition of STAT5 transcription, with no change in the phosphorylation of this protein. It was found that JQ1 had a putative TGF--like activity, which did not involve the Smad pathway. It was shown in the ex vivo studies that JQ1 increased the viability of erythroid cells and accelerated the maturation of these cells in both WT and thalassemic mice. The observed differences between leukemic and normal erythropoiesis involved differential epigenetic modifications that could be at the basis of new strategies regarding cancer treatment.The key role of the association of GATA-1 or FOG-2 had with pRb/E2F, and the dissociation of these factors, in erythropoiesis and adipogenesis, respectively, led us to investigate, in vivo, the physiological consequences of E2F sequestration by pRb. As a result, transgenic mice displaying conditional expression of a peptide containing the N-terminal part of GATA-1 that binds to pRb (GATA-1Nter) were developed. In vitro, this peptide traps E2F in a GATA-1Nter/pRb complex, resulting in the irreversible inhibition of cell proliferation. The yield of transgenic mice expressing the GATA-1Nter peptide in vivo was unsuccessful, as this expression lead to lethality at the embryonic stage. Using an alternative approach, based on the inducible expression of the peptide in adults, chimeric mice with a high frequency of recombination of the GATA-1Nter transgene were obtained for this study. The establishment of a stable mouse line expressing the GATA-1Nter peptide should make it possible to determine the pathophysiological consequences of E2F sequestration in the GATA-1Nter/pRb complex
Oburoglu, Leal. "Metabolic fueling of hematopoietic stem cell differentiation to the erythroid lineage." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20122.
Full textHematopoietic stem cells (HSCs) possess two fundamental characteristics; self-renewal capacity and the ability to give rise to all blood cell lineages. Before their commitment to a specific lineage, these cells are maintained in a quiescent state in the bone marrow. Asymmetric division is essential for the maintenance of the stem cell compartment while symmetric division results in HSC differentiation. The hypoxic environment of the bone marrow is conducive to anaerobic glycolysis and fatty acid oxidation, preserving stem cell quiescence and asymmetric division, respectively. However, it is not known whether the commitment of an HSC to a lymphoid, myeloid or erythroid lineage fate, is regulated by a metabolic switch. Indeed, while much research has shown a critical role for cytokines and cell-cell contacts in the commitment of HSCs to distinct hematopoietic lineages, the possibility that nutrient entry and metabolism may contribute to this process was not considered until very recently. Cell differentiation is associated with proliferation resulting in increased metabolic requirements that can be met by energy sources such as glucose, fatty acids, lactate, or glutamine, amongst others. While glucose and glutamine are both precursors for the production of ATP, lipids and nucleotides, their relative contributions to metabolic pathways driving HSC lineage commitment have not been evaluated. Interestingly, we and others previously found that the Glut1 glucose transporter is highly upregulated only during the final mitoses of HSC-driven erythroid differentiation, suggesting that other nutrients may regulate early stages of erythroid lineage commitment. During my PhD, I was interested in determining whether nutrient availability and utilization regulate HSC differentiation to the erythroid lineage. Interestingly, I found that the ASCT2 glutamine transporter is expressed at high levels on HSCs. Downregulation of ASCT2 or blocking glutamine metabolism abrogated erythroid differentiation of HSCs and diverted erythropoietin-signaled HSCs towards a myeloid fate. Under conditions where glutamine utilization was blocked, erythroid differentiation was not restored by directly replenishing the tricarboxylic acid cycle but rather, was dependent on de novo nucleotide biosynthesis. Surprisingly, 2-deoxyglucose, a glucose analogue that inhibits glycolysis, enhanced erythropoiesis. Glutamine and glucose catabolism also differentially modulated erythropoiesis in vivo, under stress conditions. To better elucidate the mechanism(s) via which glutamine supports the erythroid lineage specification of HSCs, we evaluated the metabolic pathways fueled by glutamine. Carbon/nitrogen-labeled glutamine tracing experiments showed that the rate-limiting step in EPO-induced erythroid differentiation is glutamine-dependent de novo nucleotide biosynthesis while glutamine entry into the TCA cycle (anaplerosis) is not required. Furthermore, the accelerated erythroid differentiation in the presence of 2-DG was associated with a striking increase in pentose phosphates, precursors of nucleotides. Notably, the shunting of glucose into the pentose phosphate pathway (PPP), rather than glycolysis, was essential for erythropoiesis. In conclusion, my research shows that the coordinated redirection of glucose and glutamine into the production of nucleotides is the sine qua non condition for the erythroid differentiation of HSCs
Romano, Manuela. "Stage-specific changes in the Krebs cycle network regulate human erythroid differentiation." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTT077.
Full textHematopoiesis is the process whereby hematopoietic stem cells (HSCs) proliferate and differentiate to all blood cell lineages. While HSC commitment is known to be regulated by cytokines, transcription factors, epigenetic modifiers and the HSC niche, our group found that specification of HSCs to the red cell lineage is dependent on glutamine metabolism. Glutaminolysis contributes to de novo nucleotide biosynthesis and to the generation of the alpha-ketoglutarate (αKG) TCA cycle metabolite (Oburoglu et al. 2014). Importantly though, erythroid differentiation is a unique process as each daughter cell is structurally and functionally different from its parent cell. Each division defines a stage of differentiation with the final division cycle resulting in the production of an enucleated reticulocyte which further matures to a biconcave erythrocyte. Thus, we hypothesized that progenitor metabolic networks change as a function of the erythroid differentiation stage and moreover, that they regulate the transition of progenitors from one stage of differentiation to the next.During my PhD, I assessed the metabolic alterations that occur as a function of the erythroid differentiation stage. We showed that at early stages of human red cell development, prior to terminal differentiation, hematopoietic progenitors exhibited an increased metabolic activity with a significantly higher level of oxidative phosphorylation (OXPHOS). This correlated with the increased generation of αKG and indeed, we found that ectopic αKG directly augmented OXPHOS in these progenitors. However, the terminal differentiation of erythroid precursors, characterized by the loss of mitochondrial mass and membrane potential, was associated with a decreased level of OXPHOS. Notably, ectopic αKG, which did not alter pro-erythroblast erythroid differentiation, severely attenuated terminal differentiation and enucleation. Conversely, an αKG antagonist (dimethyloxalyl glycine, DMOG) did not negatively impact on terminal differentiation or enucleation despite abrogating OXPHOS in erythroblasts.These data suggested that the production of αKG and its subsequent contribution to oxidative phosphorylation perturb red cell enucleation. We therefore downregulated isocitrate dehydrogenase I (IDH1), the cytosolic enzyme that catalyzes the conversion of isocitrate to αKG, by an shRNA approach in an attempt to decrease αKG levels. However, because IDH1 can catalyze both the forward and reverse reactions, its downregulation could also increase αKG levels. Indeed, we found that IDH1 knockdown resulted in a severe attenuation of terminal erythroid differentiation and enucleation. This effect was likely due to an imbalance in substrate availability––both ectopic αKG as well as citrate further decreased polychromatic to orthochromatic erythroblast differentiation and the subsequent enucleation of IDH1-knockdown erythroid precursors. Thus, the present study identifies a crucial role for the αKG metabolite in regulating mitochondrial function and oxidative phosphorylation, processes that are a sine qua non for erythroid precursors at the pro-erythroblast stage. We further show that terminal erythroid differentiation and enucleation requires OXPHOS suppression and the IDH1-mediated enzymatic catalysis of its TCA substrates.To conclude, the results generated during my PhD highlight the dynamic nature of the metabolic networks that regulate the progression of erythroid precursors through the distinct stages of erythroid differentiation
Guimarães, Jacqueline da Silva. "Alterações do metabolismo do ferro nas talassemias." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/60/60135/tde-17042015-113612/.
Full textThe thalassemia syndromes (?- and ?-thalassemia) are the most common and frequent disorders associated with ineffective erythropoiesis. Imbalance of ?- or ?-globin chain production results in impaired red blood cell synthesis, anemia and more erythroid progenitors in the blood stream. While patients affected by these disorders show definitive altered parameters related to erythropoiesis, the relationship between the degree of anemia, altered erythropoiesis and dysfunctional iron metabolism have not been investigated in both carriers of ?-thalassemia and ?-thalassemia. 226 subjects (75 females and 151 males) were recruited to this study and divided in 5 groups: Control (n=28), repeat blood donors (DSR, n=23), ?+-thalassemia heterozygous carriers (TAT, n=14), ?+-thalassemia (?-thalassemia trait, TBT, n=20) and ?0-thalassemia, (?-thalassemia major, BTM, n=27). Samples were tested for hematological parameters (Micros ABX 60); serum iron, total iron binding capacity, and transferrin saturation by the colorimetric method (Pointe Scientific, Inc., Canton, MI, USA), ferritin and high sensitive C-reactive protein by immunoassay (Immulite 1000); soluble transferrin receptor, erythropoietin and growth differentiation factor 15 (R&D Systems) and hepcidin (Intrinsic LifeSciences, La Jolla, CA) by ELISA. Were calculated the ratios sTfR/log ferritin and (hepcidin/ferritin)/sTfR to evaluate iron metabolism. sTfR/log ferritin can distinguish storage iron depletion from iron-deficient erythropoiesis, while (hepcidin/ferritin)/sTfR can be utilized to explore and quantify the opposing forces (i.e. iron availability and erythropoietic activity) regulating hepcidin synthesis and iron absorption in absence of inflammatory stimuli. We demonstrate that TAT have a significantly reduced hepcidin and increased soluble transferrin receptor levels but relatively normal hematological findings. In contrast, TBT have all hematological parameters significantly different from controls, including increased soluble transferrin receptor, ferritin, erythropoietin and growth differentiation factor 15 levels. These changings in both groups suggest an altered balance between erythropoiesis and iron metabolism. The indexes sTfR/log ferritin and (hepcidin/ferritin)/sTfR are respectively increased and reduced relative to controls, proportional to the severity of each thalassemia group. In conclusion, we emphasize that, for the first time in the literature, subjects with heterozygous ?+-thalassemia have altered iron metabolism. Our data demonstrate that within the context of public health, identification and monitoring of patients with ?+-thalassemia are needed.
Fertrin, Kleber Yotsumoto 1980. "Aspectos da regulação do metabolismo do ferro nas hemoglobinopatias." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/309315.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-19T02:13:16Z (GMT). No. of bitstreams: 1 Fertrin_KleberYotsumoto_D.pdf: 1904934 bytes, checksum: a74beda8b565fcdc3f59ad37d66ca23e (MD5) Previous issue date: 2011
Resumo: As hemoglobinopatias são distúrbios hereditários em que uma mutação genética leva a alteração da produção normal de hemoglobina, tal como na anemia falciforme e nas talassemias ß. Na maioria dessas doenças, ocorre anemia com necessidade transfusional variável, o que pode acarretar sobrecarga corporal de ferro. Na talassemia ß intermediária, ocorre aumento espontâneo e desproporcional da absorção do ferro, com consequente excesso desse metal mesmo na ausência de transfusões. Com a evolução da terapia transfusional e o aumento da expectativa de vida desses pacientes, o conhecimento sobre a regulação do metabolismo do ferro tornou-se fundamental para melhor controle da sobrecarga de ferro. O principal regulador desse metabolismo é a hepcidina, um polipeptídeo produzido majoritariamente pelo fígado, porém também sintetizado por células do sistema fagocítico-mononuclear, em que seu papel é pouco conhecido. Uma citocina capaz de suprimir a produção de hepcidina é o GDF-15 (fator de crescimento e diferenciação 15). Neste estudo, com a avaliação de amostras de sangue de 103 pacientes com anemia falciforme, talassemia ß intermediária, anemia por deficiência de cobalamina ou outros tipos de anemia, constatou-se que o aumento dos níveis desse fator ocorre tanto em quadros de hemólise crônica quanto na presença de eritropoese ineficaz, constituindo um sinal da medula óssea modulador da absorção de ferro nos estados de aumento da eritropoese. Entretanto, evidenciou-se que a associação de supressão da hepcidina com altos níveis de GDF-15 ocorre nas hemoglobinopatias, mas não nas demais causas de anemia. Na anemia megaloblástica, a ausência de sobrecarga de ferro com níveis normais de hepcidina ao diagnóstico e sua queda durante o tratamento sugerem regulação da hepcidina independente de GDF-15 neste tipo de anemia. A análise da razão hepcidina/ferritina mostrou-se mais fidedigna que os níveis de hepcidina circulante na identificação dos estados em que há propensão a absorção aumentada de ferro por alta atividade eritropoética, e sugerem que o estado inflamatório crônico da anemia falciforme poderia exercer um fator protetor contra sobrecarga de ferro, quando comparados a talassemia intermediária, pela elevação relativa da produção de hepcidina. Além disso, observou-se uma correlação negativa entre a expressão gênica de hepcidina (gene HAMP) em monócitos humanos e os níveis de GDF-15, denotando um provável efeito regulatório semelhante ao descrito em hepatócitos. Não se identificou correlação entre essa expressão nos monócitos e marcadores de sobrecarga de ferro, corroborando a hipótese de a hepcidina ter outra função nessas células, não relacionada diretamente à absorção de ferro. Pacientes com anemia falciforme em uso de hidroxiureia apresentaram maiores níveis de expressão de hepcidina monocítica e obteve-se evidência in vitro de uma ação estimuladora dessa expressão por esse fármaco, caracterizando a hidroxiureia com potencial atividade agonista de hepcidina, de futuro interesse em estudos de sua aplicação clínica nos estados em que exista deficiência monocítica dessa proteína. Trata-se do primeiro estudo avaliando comparativamente hemoglobinopatias e outros tipos de anemia com e sem componente eritropoético ineficaz do ponto de vista dos reguladores da absorção de ferro, além de caracterizar, pela primeira vez, a expressão de hepcidina extra-hepática nos distúrbios da síntese de hemoglobina
Abstract: Hemoglobinopathies are inherited diseases in which a genetic mutation leads to abnormal production of hemoglobin, such as in sickle cell anemia or in the ß-thalassemias. In the majority of these disorders, anemia causes variable degrees of transfusion dependency, which may lead to iron overload. In ß-thalassemia intermedia, an increase in iron absorption occurs spontaneously and regardless from the total body iron stores, generating iron overload even in the absence of repeated transfusions. Owing to advances in transfusion medicine and to the improvement in the overall life expectancy of patients with hemoglobin disorders, further knowledge on the regulation of iron metabolism has become increasingly important for appropriate management of iron overload. The main regulator of iron metabolism is hepcidin, a polypeptide mainly produced by the liver, although its synthesis also occurs in phagocytic-mononuclear cells, in which its role is less known. Growth differentiation factor 15 (GDF-15) is a cytokine capable of downregulating hepcidin production. This study analyzed 103 blood samples from patients with sickle cell anemia, ß-thalassemia intermedia, cobalamin deficiency anemia and other types of anemia, showing elevation of GDF-15 plasmatic levels both in chronic hemolytic states and ineffective erythropoiesis, thus characterizing it as a signalling molecule produced by the bone marrow to stimulate iron absorption in the presence of increased erythropoietic activity. Nevertheless, hepcidin suppression was only associated with high levels of GDF- 15 in the hemoglobinopathies. In megaloblastic anemia, absence of iron overload with normal hepcidin levels, associated with their reduction during treatment, suggest that hepcidin regulation occurs independently from GDF-15 in thie type of anemia. Analysis of hepcidin/ferritin ratio proved to be more reliable to identify patients prone to increased iron absorption due to erythropoietic hyperactivity than hepcidin levels themselves and suggests that the chronic inflammatory state in sickle cell anemia may protect from iron overload by relatively increasing hepcidin levels in comparison to levels found in thalassemia intermedia. Moreover, we found a negative correlation between GDF-15 levels and HAMP monocytic expression, a regulatory mechanism similar to what has been observed in hepatic cell lines. In further analyses of the present study, no correlation between hepcidin expression and iron overload markers was observed in monocytes from patients with hemoglobinopathies, corroborating the hypothesis that the monocytic counterpart of hepcidin could have a different function, unrelated to iron regulation. Patients with sickle cell anemia under hydroxyurea treatment have been shown to present with higher levels of hepcidin expression in monocytes, and a cell culture model managed to demonstrate the upregulating effect of hydroxyurea in vitro, thus highlighting the possibility of exploring this drug in the future as a potential hepcidin agonist and, therefore, as a therapeutic intervention in diseases with impaired monocytic hepcidin production. This is the first study of molecules involved in iron metabolism regulation comparing hemoglobinopathies and other anemia types with and without ineffective erythropoiesis. Furthermore, this is the first characterization of extra-hepatic hepcidin expression in hemoglobin disorders
Doutorado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Doutor em Fisiopatologia Medica
Ghadie, Mohamed A. "Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree: A Linear Programming Approach for Gene Selection." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32048.
Full textPous, Camila. "Bases moléculaires du contrôle de l’équilibre entre autorenouvellement et différenciation." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10130/document.
Full textSelf-renewal is a key property of the stem cell concept. However, despite the recent advances in this field, the underlying molecular bases are not yet properly understood. We tackled this question by studying the balance between self-renewal and differentiation, in primary erythroid progenitors. Our work is twofold. First, by combining pharmacologic approaches and functional genetics, we have shown that the control of cellular cholesterol synthesis plays a central role in the regulation between self-renewal and differentiation. Second, we have studied the stochastic nature of gene expression along the transition from self-renewal to differentiation. Indeed, while gene expression was initially deemed to be deterministic, more and more data tend to show that it relies on stochastic processes. In particular, we participated to the design of an experimental method allowing to mesure gene expression in a single cell, in real-time. All in all, the work presented here brings new elements towards the understanding of molecular bases controlling self-renewal and cell fate choices
Mayeux, Patrick. "Recherches sur la regulation endocrine de l'erythropoiese." Reims, 1988. http://www.theses.fr/1988REIMS002.
Full textKretsovali, Androniki. "Etude de l'organisation genomique et de l'expression des genes globine aviaires." Paris 7, 1987. http://www.theses.fr/1987PA077218.
Full textImaizumi-Scherrer, Tereza. "Etudes sur la regulation de l'expression du gene globine au cours de la differenciation des cellules erythropoietiques aviaires." Paris 7, 1987. http://www.theses.fr/1987PA077119.
Full textSAINI, ABHISHEK. "STUDYING THE EFFECT OF GROWTH FACTORS ON EXPANSION AND ERYTHROPOIETIC DIFFERENTIATION OF HEMATOPOIETIC STEM CELLS." Thesis, 2019. http://dspace.dtu.ac.in:8080/jspui/handle/repository/17071.
Full text"The non-apoptotic role of caspase-3 activation and its modulation in erythroid differentiation of TF-1 cells." Thesis, 2006. http://library.cuhk.edu.hk/record=b6074279.
Full textAs a whole, we have illustrated that the activated caspase-3, mediated most likely by the mitochondrial pathway, is an essential component in the differentiation of TF-1 cells. Its activation was nevertheless not coupled with DNA fragmentation due to some protective mechanisms such as CAD downregulation, Hsp70 upregulation and overexpression of Bcl-XL. Our study therefore provides some insights in the understanding of the relationship between human erythropoiesis and apoptosis and a better understanding in this regard will undoubtedly facilitate the development of new drugs in the treatment of different hematopoietic diseases.
Caspases play a central role in apoptosis. Their activations during the process are accounted for different biochemical and morphological changes in apoptotic cells. Yet in recent years, increasing studies had shown that caspases were also involved in some non-apoptotic cellular events, including T and B-lymphocytes activation, as well as the terminal differentiation of lens cells, megakaryocytes and erythrocytes.
In order to find out other unknown cellular mechanisms in erythropoiesis, mRNA differential display was employed to compare the gene expression pattern of TF-1 cells at different stages of differentiation. Several differentially expressed genes were identified and subsequently confirmed by RT PCR. These genes include formin binding protein 3, destrin and T-complex protein-1 (TCP-1). Their involvement in erythroid differentiation was still not clear at the moment but would be investigated in the near future. Furthermore, aiming at identifying the interacting proteins or inhibitors of caspase-3 in the system, a pull down assay was developed by means of the bacterial expression of a recombinant human caspase-3 mutant protein. With the mutation in the active site, the binding of our recombinant caspase-3 mutant with two known partners ICAD and BIRII (Baculovirus Inhibitor of apoptosis protein Repeat II) domain has been demonstrated. We hope in the near future that it can be employed to fish out some novel caspase-3 substrates from the differentiating TF-1 cell lysate.
In the present study, the participation of caspase in in vitro erythropoiesis was investigated using a human erythroleukemia cell line TF-1. Erythropoietin (EPO) induced erythroid maturation of TF-1 as indicated by the expression of erythroid-lineage markers like glycophorin A (GPA), transferrin receptors (CD71) and synthesis of hemoglobin (Hb). Activation of caspase-3 was observed from day 6 to day 12 during TF-1 differentiation after EPO treatment. With the administration of caspase-3 specific inhibitor, expressions of GPA and CD71 were partially blocked, suggesting that caspase-3 activation is essential in erythropoiesis in our TF-1 model.
Possible involvement of the intrinsic and extrinsic apoptotic pathways was studied by investigating respectively the activation of pro-caspase-9 and -8. It was found that caspase-9, but not -8, was activated at the corresponding time point when caspase-3 was activated. Besides, a transient mitochondrial depolarization coupled with the release of cytochrome c and apoptosis inducing factor (AIF) were detected on day 6, strongly implying a role of mitochondria in triggering the activation of executioner caspase-3. On the other hand, GPA and CD71 expressions were blocked by the application of mitochondrial depolarization inhibitor cyclosporin A (CyA). Also, the recovery of mitochondrial membrane potential was found to be correlated with an overexpression of Bcl-XL at a late stage of TF-1 differentiation, and the role of Bcl-XL was subsequently manifested further by a significant retardation of erythroid differentiation in the siRNA Bcl-XL knocked down TF-1 cells.
The exact role of caspase-3 in erythroid differentiation is far from clear at this moment. Yet, its regulation in the process is equally intriguing. On the course of TF-1 maturation, activated caspase-3 was able to cleave and de-localize the Inhibitor of Caspase-activated DNase (ICAD) from the nucleus, but at the same time DNA fragmentation was not detected by TUNEL assay nor agarose electrophoresis. Furthermore, protection against DNA fragmentation was observed in the EPO-treated TF-1 cells when challenged with a potent apoptotic inducer staurosporine (STS). These observations are in contrast to our understanding that DNA is fragmented by CAD (Caspase-activated DNase) when ICAD in the ICAD-CAD complex is cleaved by caspase-3. For these apparently contradictory observations, we demonstrated that downregulation of CAD occurred at the mRNA and protein levels during the erythroid differentiation in TF-1. This provides a cell rescuing mechanism in non-apoptotic cells with activated caspases.
Lui Chun Kin Julian.
"September 2006."
Adviser: Siu Kai Kong.
Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1620.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (p. 239-253).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Lin, Yi-Huey, and 林怡慧. "The Differentiation Characteristics of Human Adult Peripheral Blood Hematopoietic Stem/ Progenitor Cells in Erythropoiesis." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/81892760216997906890.
Full text臺北醫學大學
細胞及分子生物研究所
92
Erythropoiesis is a multistep process of the pluripotent hematopoietic stem cells differentiate to the mature red blood cells, which is influenced by extrinsic and intracellular environmental elements. However, the molecular regulation mechanism remains to clarify. In this study, we applied an two-stage in vitro erythropoiesis culture system to probe the cytokine effect, such as EPO and SCF, on adult peripheral blood CD34+ hematopoietic stem/ progenitor cells. The culture system produced enriched erythroid progenitors and allowing us to evaluate the differentiation characteristics of human adult peripheral blood hematopoietic stem/ progenitor cells in compare to the cord blood ones. We found that in the first (expansion) stage of the culture system, the proliferation capacity of adult peripheral blood is rather diminished in compare to the new born cord blood. In the second (differentiation) stage of the culture system, the adult peripheral blood has better proliferation capacity than cord blood while stimulated with EPO and SCF. However, SCF retards both of adult peripheral blood and cord blood erythropoiesis and re-actives the synthesis of γ-globin with different extend. The data also shows that the erythropoiesis kinetics of adult peripheral blood is rather faster than the cord blood. In the other hand, the c-kit receptor (CD117) and CXCR4 expression of adult peripheral blood is higher than cord blood in the day0 of second stage and its expression duration is shorter. These results suggest that hematopoietic stem/ progenitor cells response differently to the same surrounding cytokine stimulation to fit the growth physiological requirement, during the growth of our body from fetus to adult. A further functional genomic study will be need for further understanding the molecular mechanism of erythropoiesis during the body growth.
Lo, Wei-Ching, and 羅偉菁. "Role of the Differentiation-Associated Intracellular Glutathione Contents and Oxidative Stress Status on the Regulation of Erythropoietin Gene Expression in Human Hepatocellular Carcinoma cell lines." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/43330936511581781071.
Full text國立中山大學
生物科學系研究所
90
Erythropoietin (EPO) is produced in the kidney and in fetal liver in response to hypoxia as well as to CoCl2. The EPO protein and mRNA can be induced in response to both stimuli in the human hepatoma cell (HCC) lines Hep 3B and Hep G2. An oxygen sensing mechanism in which a ligand dependent conformational change in the heme protein produces H2O2 in respone to either hypoxia or Cobalt has been demonstrated. However, an intriguing question can be raised as to why some HCC sublines, such as Hep G2 and Hep 3B are capable of expressing EPO gene, whereas in other HCC sublines, such as J5 and SK-Hep-I are completely devoid of the ability to express EPO gene. Along this line, does “differentiation status” of these HCC cells play a pivotal role in regulating the expression of EPO gene? Next in line, how a differentiation-associated upregulation of g-glutemylcysteine synthetase (g-GCS), which tightly regulating the biosynthesis of endogenous glutathione(GSH) can modulate the expression of EPO. The objective of this research project was designed to address all these questions. Reported herein are several lines of evidence to demonstrate that endogenous GSH contents do play a pivotal role in the control and regulation of the expression of EPO gene. Firstly, using a group of five HCC lines with varying degrees of differentiation as the experimental model, we demonstrated that the endogenous GSH contents of these HCC cells were differentially upregulated depending on the degree of differentiation with an order of abundance being Hep G2> Hep 3B> J5> Mahlavu> SK-Hep-I. Coincidently, we also found that g-GCS heavy subunit activities as well as its mRNA correlated precisely with this order. Among these HCC cell lines tested, only two well-differentiated sublines, Hep G2 and Hep 3B expressed EPO gene implying that the latter process was dependent upon GSH and suggested a notion that a threshold level might be required for its optimal reactivation. Secondly, to further obtain the evidence to substantiate this possible role of GSH, we then supplemented to the cell culture media with an excessive quantity of nonlethal N-acetylcysteine for the purpose of reinforcing the endogenous GSH biosynthesis. Interestingly, we found that this manipulation could revert the reactivation of EPO gene in cell lines, such as J5 and SK-Hep-I, in which their EPO gene expressions were ortherwise shut down under a normal circumstance. Finally, we were able to demonstrated using RT-PCR and western blotting that the expression of EPO gene was reverted in GCS30, a SK-Hep-I subline that was permanently transfected with g-GCSh and is capable of overly expressing endogenous GSH. Taken together, we demonstrated herein for the first time that, besides hypoxia and CoCl2, endogenous GSH contents can also act as a positive regulator for the expression of EPO gene. The underlying mechanism of how GSH exerts its action in the regulation of EPO expression awaits further clarification.
Páral, Petr. "Buněčný cyklus a diferenciace krvetvorných kmenových a progenitorových buněk." Doctoral thesis, 2019. http://www.nusl.cz/ntk/nusl-405192.
Full text