Academic literature on the topic 'Erysipelothrix rhusiopathiae'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Erysipelothrix rhusiopathiae.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Erysipelothrix rhusiopathiae"
Kayal, Samer. "Erysipelothrix rhusiopathiae." EMC - Biologie Médicale 1, no. 2 (January 2006): 1–3. http://dx.doi.org/10.1016/s2211-9698(06)76474-3.
Full textWang, Qinning, Barbara J. Chang, and Thomas V. Riley. "Erysipelothrix rhusiopathiae." Veterinary Microbiology 140, no. 3-4 (January 2010): 405–17. http://dx.doi.org/10.1016/j.vetmic.2009.08.012.
Full textSharifuddin, Aasiah Ahmad, and Krishnalatha Buandasan. "A case of panophthalmitis with orbital cellulitis related to Erysipelothrix rhusiopathiae infection." Malaysian Journal of Ophthalmology 2, no. 1 (April 22, 2020): 48–54. http://dx.doi.org/10.35119/myjo.v2i1.39.
Full textNormann, Bengt, and Erik Kihlström. "Erysipelothrix rhusiopathiae Septicaemia." Archives Internationales de Physiologie 17, no. 1 (January 1985): 123–24. http://dx.doi.org/10.3109/13813458509070432.
Full textNormann, Bengt, and Erik Kihlström. "Erysipelothrix rhusiopathiae Septicaemia." Scandinavian Journal of Infectious Diseases 17, no. 1 (January 1985): 123–24. http://dx.doi.org/10.3109/00365548509070432.
Full textVan der beek, D., L. Machiels, R. Van Loon, and G. Coppens. "Erysipelothrix rhusiopathiae bacteremia." Clinical Microbiology Newsletter 27, no. 9 (May 2005): 72–73. http://dx.doi.org/10.1016/s0196-4399(05)80023-6.
Full textHILL, DAWN CRAIG, and JAFAR N. GHASSEMIAN. "Erysipelothrix rhusiopathiae Endocarditis." Southern Medical Journal 90, no. 11 (November 1997): 1147–48. http://dx.doi.org/10.1097/00007611-199711000-00019.
Full textWang, Taylor, Danyal Khan, and Neville Mobarakai. "Erysipelothrix rhusiopathiae endocarditis." IDCases 22 (2020): e00958. http://dx.doi.org/10.1016/j.idcr.2020.e00958.
Full textBibler, M. R. "Erysipelothrix rhusiopathiae Endocarditis." Clinical Infectious Diseases 10, no. 5 (September 1, 1988): 1062–63. http://dx.doi.org/10.1093/clinids/10.5.1062.
Full textGransden, W. R., and S. J. Eykyn. "Erysipelothrix rhusiopathiae Endocarditis." Clinical Infectious Diseases 10, no. 6 (November 1, 1988): 1228. http://dx.doi.org/10.1093/clinids/10.6.1228.
Full textDissertations / Theses on the topic "Erysipelothrix rhusiopathiae"
Wang, Qinning. "Erysipelothrix rhusiopathiae : epidemiology, virulence factors and neuraminidase studies." University of Western Australia. Microbiology Discipline Group, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0043.
Full textMerle, Francis. "Les septicémies à erysipelothrix rhusiopathiae sans endocardite : à propos d'une observation et revue de la littérature." Bordeaux 2, 1993. http://www.theses.fr/1993BOR2M054.
Full textDucassou, Eric. "L'endocardite à bacille du rouget du porc : à propos d'un cas et revue de la littérature." Bordeaux 2, 1999. http://www.theses.fr/1999BOR2M168.
Full textCamillo, Luciana. "Efeito da imunização com vacina do antígeno recombinante de superfície SpaA de Erysipelothrix rhusiopathiae : modelo murino." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7741.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T14:52:29Z (GMT) No. of bitstreams: 1 DissLC.pdf: 1362892 bytes, checksum: c909112bd0ccd7d43250543e0d7d4a5e (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-10T14:52:36Z (GMT) No. of bitstreams: 1 DissLC.pdf: 1362892 bytes, checksum: c909112bd0ccd7d43250543e0d7d4a5e (MD5)
Made available in DSpace on 2016-10-10T14:52:43Z (GMT). No. of bitstreams: 1 DissLC.pdf: 1362892 bytes, checksum: c909112bd0ccd7d43250543e0d7d4a5e (MD5) Previous issue date: 2015-03-03
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
The swine erysipelas is a disease caused by the bacterium Erysipelothrix rhusiopathiae, globally distributed. The pig farming is expanding, and pork is the most consumed in the world. Large investments have been made to increase these herds, especially in the search for vaccines. The disease is currently prevented by vaccination of flocks, but the existing formulations (inactive or attenuated pathogen) can aggravate problems of arthritis in these animals. For the development of new vaccines, free of E. rhusiopathiae cells, the protein SpaA (Surface protective antigen A) appears as a major antigen in studies. We evaluate, in mice, the immune response and the efficiency of two formulations based on SpaA antigen, and compared the results obtained with a commercial vaccine prepared with inactivated cells of the pathogen. The formulations used were: a) living cells of recombinant attenuated Salmonella typhimurium - SL3261 expressing SpaA; b) SpaA purified protein and aluminum hydroxide (v/v). After immunization and challenge of the animals, we evaluated production of antibodies (ELISA) and the inflammatory cells profile systemic infection by E. rhusiopathiae. The results showed that the purified antigen can promote 50% protection (with an over-dose challenge 50xDL50) of a virulent E. rhusiopathiae. In the DL50 challenge, we analyze the cellular profile, antibody production, and interleukin dosage. The purified protein vaccine promoted negative modulation of the output inflammatory cells from bone marrow into the blood, compared to only infected group. There was a specific IgG production against rSpaA, and the most antigenic vaccine was the purified protein, compared to commercial vaccine and recombinant Salmonella vaccine. By analysis of interleukins (IL-4 and IL-12) and IgG1 and IgG2a subclasses, we found that vaccines stimulate both the Th1 response as Th2, being observed more likely to Th2 response. Thus, these data suggest that SpaA purified protein is capable of stimulating an immune response with protective character, reducing the risk of secondary impairments like those occurring with the use of inactivated vaccines to pathogens.
A erisipela suína é uma enfermidade causada pela bactéria Erysipelothrix rhusiopathiae, distribuída de forma global. A criação de suínos está em expansão, e a carne suína é a mais consumida no mundo. Grandes investimentos têm sido realizados para o aumento destes rebanhos, com destaque para a busca por vacinas. A doença é prevenida atualmente pela vacinação de parte dos rebanhos, porém as formulações existentes (patógeno inativado ou atenuado) podem agravar problemas de artrite nesses animais. Para as novas vacinas em desenvolvimento, livres das células de E. rhusiopathiae, a proteína SpaA (Surface protective antigen A) aparece como principal antígeno em estudo. Neste trabalho, avaliamos, em modelo murino, a resposta imunológica e a eficiência de duas formulações baseadas no antígeno SpaA, e comparamos os resultados obtidos com uma vacina comercial preparada com células inativadas do patógeno. As formulações usadas foram: a) células vivas de Salmonella typhimurium– SL3261 recombinante atenuada, expressando SpaA; b) proteína SpaA purificada + hidróxido de alumínio (v/v). Após imunização e desafio dos animais, foi avaliada a produção de anticorpos (método ELISA) e o perfil inflamatório frente à infecção por E. rhusiopathiae de forma sistêmica.Os resultados obtidos mostraram que o antígeno purificado foi capaz de promover 50 % de proteção (desafio com uma super-dose de 50xDL50) de uma cepa virulenta de E. rhusiopathiae. No desafio com a DL50, foi feita análise do perfil celular, da produção de anticorpos, além de dosagem de interleucinas. A vacina de proteína purificada promoveu modulação negativa da saída das células inflamatórias da medula óssea para o sangue, em relação ao grupo apenas infectado. Houve produção de IgG específicos contra rSpaA, sendo a vacina de proteína purificada mais antigênica quando comparada a vacina comercial e a de Salmonella recombinante. Pela análise de interleucinas (IL-4 e IL-12) e das subclasses IgG1 e IgG2a, observamos que as vacinas estimulam tanto a resposta Th1 quanto a Th2, sendo observada maior tendência de resposta Th2. Assim, esses dados sugerem que, apenas a proteína purificada SpaA é capaz de estimular uma resposta imune de caráter protetor, diminuindo o risco de comprometimentos secundários como os que ocorrem com a utilização de vacinas com patógenos apenas inativados.
WICKAERT, LUDOVIC. "Les endocardites et autres manifestations a erysipelothrix rhusiopathiae : revue de la litterature a propos d'un cas." Lille 2, 1993. http://www.theses.fr/1993LIL2M115.
Full textLemaire, Philippe. "L'endocardite a erysipelothrix rhusiopathiae : interet des fluoroquinolones ; a propos de deux observations." Lille 2, 1994. http://www.theses.fr/1994LIL2M329.
Full textLADIER, DOMINIQUE. "Les septicemies a erysipelothrix rhusiopathiae (germe de la maladie du rouget du porc) sans endocardite : a propos d'un cas, revue de la litterature." Reims, 1988. http://www.theses.fr/1988REIMM024.
Full textSilva, Adilson José da. "Otimização das condições de cultivo de Erysipelothrix rhusiopathiae para produção de vacina contra erisipela suína." Universidade Federal de São Carlos, 2007. https://repositorio.ufscar.br/handle/ufscar/6943.
Full textValée S.A.
Swine erysipelas is one of the diseases responsible for the great economic losses in swine-producing areas of the world. The bacteria Erysipelothrix rhusiopathiae is the causative agent of erysipelas, and the vaccines currently available for prevention of this disease are produced with the whole broth culture containing the inactivated microorganism or its live-attenuated form. A surface protein was identified as the main antigen. It can be found in the culture supernatant or attached to the cell wall through interactions with the choline residues from the teichoic and lipoteichoic acids of this structure. Considering the lack of information in the scientific literature about studies concerning the growth pattern of this pathogen, the company Vallèe S.A, a Brazilian industry of veterinary pharmaceutical products, established a partnership with researchers form the Chemical Engineering Department of UFSCar with the purpose of developing the technology required for the production of the cited vaccine. In this context, the objective of this work was to optimize the growing conditions of E. rhusiopathiae to establish a protocol for production of high cellular concentrations, enough to prepare a vaccine against swine erysipelas offering the same or a higher protection level compared to the commercially available formulations. To achieve this goal, the growth kinetics of this microorganism was investigated under different aeration conditions (aerobiosis, anaerobiosis and microaerophilic condition), changes in the medium nutrient s concentration were analyzed, and mice protection tests using the prepared vaccines were performed. The studies about the aeration influence on the microorganism growth and the antigen expression were made using a 4.0 L stirred-tank bioreactor, with an agitation frequency kept between 100 and 400 rpm and air or N2 flow rate of 1.0 L/min. The studies for the improvement of the medium formulation were carried out in flasks incubated at static condition or under agitation of 200 rpm. The vaccines were prepared using medium harvested in both conditions. The temperature was set at 37°C and the initial pH at 8,0 in all experiments. Samples of culture supernatant and from cell extracts made with choline chloride were analyzed by electrophoresis under denaturating conditions (SDS-PAGE) to evaluate the antigen expression. The preliminary electrophoresis results indicated that the antigen production is associated to the cell growth and its expression is favored in the presence of oxygen. Cellular concentrations around 1,8 g/L were reached, in all different aeration conditions employed, using the stirred-tank bioreactor operating with pH automatic control and using the culture medium with nutrients concentrations increased in 50 % from the Feist medium described in literature. The vaccines prepared in aerobic and microaerophilic condition led to higher protection levels in the challenge-exposure tests, and a formulation made from an aerobic culture in bioreactor having a cellular concentration over 2,0 x 109 CFU/mL showed the same immunizing power as the three commercial vaccines used for comparison purposes. Observations about the inhibitory effects of metabolites accumulation and substrate saturation on the microorganism growth pointed the fed-batch as a promising operation mode to produce larger amounts of biomass. Cellular concentrations reached in the experiment ran under these condition were increased around five times.
A erisipela suína está entre as enfermidades que causam os maiores prejuízos na suinocultura mundial. O agente patogênico associado a esta doença é a bactéria Erysipelothrix rhusiopathiae, e as vacinas disponíveis atualmente para a prevenção da erisipela são produzidas com o caldo de cultivo deste microrganismo inativado ou atenuado. O principal antígeno identificado é uma proteína de superfície da bactéria encontrada no sobrenadante do caldo de cultivo ou aderida à parede celular através de interações com resíduos de colina dos ácidos teicóico e lipoteicóico desta estrutura. Diante da escassez de informações na literatura científica sobre estudos a respeito do crescimento deste patógeno, a empresa Vallèe S.A, indústria brasileira de produtos farmacêuticos de uso veterinário, firmou uma parceria com pesquisadores do Departamento de Engenharia Química da UFSCar para o desenvolvimento da tecnologia de produção dessa vacina. Assim, o presente trabalho teve como objetivo otimizar as condições de cultivo de E. rhusiopathiae de forma a estabelecer um protocolo de produção de altas concentrações celulares deste microrganismo, suficientes para produzir uma vacina contra a erisipela suína que oferecesse grau de proteção igual ou superior às formulações disponíveis no mercado. Para tanto, o crescimento do microrganismo foi estudado em diferentes condições de aeração (aerobiose, microaerofilia e anaerobiose), foram avaliadas alterações nas concentrações dos nutrientes do meio de cultivo e foram realizados testes de imunização em camundongos com as vacinas preparadas. Os estudos sobre o efeito da aeração no crescimento do microrganismo e na expressão do antígeno foram realizados em biorreator de 4,0 L, com uma faixa de agitação entre 100 e 400 rpm e vazão de ar ou N2 de 1,0 L/min. Os experimentos de aprimoramento do meio de cultivo foram conduzidos em câmara incubadora estática ou com agitação de 200 rpm. Já as vacinas foram preparadas em ambas as condições. A temperatura utilizada foi de 37°C e o pH inicial foi de 8,0 em todos os ensaios realizados. A expressão do antígeno foi avaliada por eletroforese em condições desnaturantes (SDS-PAGE) utilizando amostras do sobrenadante dos cultivos ou a partir de extratos das células preparados com solução de cloreto de colina. Os resultados destas análises revelaram que a produção do antígeno acompanha o crescimento celular e sua expressão é favorecida na presença de oxigênio. Concentrações celulares de até 1,8 g/L foram atingidas, nas três diferentes condições de aeração empregadas, nos cultivos realizados em biorreator com controle automático de pH e utilizando o meio de cultivo com as concentrações de nutrientes aumentadas em 50% em relação ao meio Feist modificado descrito na literatura. As vacinas preparadas com os cultivos aeróbio e microaerófilo proporcionaram um maior grau de proteção nos testes de imunização realizados, e a formulação preparada a partir de um cultivo aeróbio realizado em biorreator com concentração celular superior a 2,0 x 109 UFC/mL conferiu o mesmo nível de proteção que três vacinas comerciais utilizadas para fins de comparação. Observações sobre os efeitos de inibição do crescimento provocadas por acúmulo de metabólitos ou excesso de substrato, indicaram o modo de operação do biorreator em batelada alimentada como promissor para obtenção de maior concentração celular. Em um experimento realizado nesta condição a biomassa foi aproximadamente quintuplicada em relação aos ensaios em batelada simples.
Ingebritson, Alaina Louise. "The significance of spa-type represented in swine Erysipelothrix rhusiopathiae bacterins for cross-protection against erysipelas." [Ames, Iowa : Iowa State University], 2009.
Find full textMachado, Maria Manuela Pereira. "Inovação nas condições de cultivo visando o melhoramento da produção de vacina contra erisipela suína." Universidade Federal de São Carlos, 2010. https://repositorio.ufscar.br/handle/ufscar/4043.
Full textUniversidade Federal de Sao Carlos
Pork is one of the most widely eaten meats in the world and pig farming is an economic activity booming in Brazil and the world. Several efforts have been made to develop more effective vaccines for major diseases that are affecting livestock such as swine erysipelas, caused by the bacterium Erysipelothrix rhusiopathiae. The currently available vaccines for the prevention of erysipelas are produced with culture broth of this microorganism inactivated or attenuated. The main antigenic agent identified is an protein fraction of 64-69 kDa, present in cell wall of bacteria and the supernatant of the culture. Given the accumulated knowledge of the studies conducted by Silva (2007), this study aimed to: i) study the conditions employed in the preparation of cell suspension for freezing and formation of culture stocks in crytubes and the stage of their activation; ii) studying the growth of E. rhusiopathiae, the formation of lactic acid and expression of antigen in culture media containing carbon sources alternative to glucose and in culture media containing nitrogen sources of plant origin; iii) to study the behavior of the microorganism in the new culture medium, animal-free, in a bioreactor. The studies for the improvement of the medium formulation were carried out in flasks incubated at static condition or under agitation of 200 rpm. The temperature was set at 37°C and the initial pH at 8,0 in all experiments. The studies in bioreactor were made using a 4.0 L stirred-tank bioreactor, with an agitation frequency kept between 100 and 700 rpm and air flow rate of 1.0 L/min. Samples of cell extracts made with choline chloride were analyzed by electrophoresis under denaturating conditions (SDS-PAGE) to evaluate the antigen expression. Studies of activation of the criotubes containing frozen cell suspensions led to the standardization of this step, with high reproducibility, and reduced activation time by 50%. The studies were grew with different carbon sources, showing that E. rhusiopathiae is able to assimilate galactose, lactose, and glucose. However, there was no assimilation of glycerol. The replacement of proteose peptone, a nitrogen source animal widely used in the cultivation of E. rhusiopathiae to produce bacterins, by Soytone, a soy peptone, animal-free, was a promising alternative for the production of the inactivated vaccine, helping to increase the specific growth rate and substrate conversion of cells in relation to values obtained in conventional medium. In batch cultivation performed in a bioreactor with medium containing glucose and Soytone, it was reached a biomass concentration of 10 g / L at 5 hours of cultivation. For the conventional medium, containing proteose peptone, the maximum cell concentration reported for the test batch in a bioreactor was approximately 2 g / L, which was reached after 7 hours of culture. Note also that a higher level of expression of antigenic protein in relation to those observed with peptone of animal origin was achieved in cultures performed with medium containing soytone.This result shows that could be incorporate the best practices of manufacturing practices for pharmaceutical and veterinary products, subject to the productivity of the process and with significant cost reduction.
A carne suína é a mais consumida no mundo e a suinocultura é uma atividade econômica em franca expansão no Brasil e no mundo. Diversos esforços vêm sendo realizados para o desenvolvimento de vacinas mais eficientes para as principais doenças que afetam os rebanhos, como a erisipela suína, causada pela bactéria Erysipelothrix rhusiopathiae. As vacinas disponíveis atualmente para a prevenção da erisipela são produzidas com o caldo de cultivo deste microrganismo inativado ou atenuado. O principal agente antigênico identificado é uma fração protéica de 64-69 kDa, presente tanto na parede celular da bactéria quanto no sobrenadante do cultivo. Diante do conhecimento acumulado ao longo dos estudos conduzidos por Silva (2007), o presente trabalho teve como objetivos: i) estudar as condições empregadas na preparação das suspensões celulares para armazenamento na forma de cultura estoque em criotubos assim como a etapa de ativação dos mesmos; ii) estudar o crescimento de E. rhusiopathiae, a formação de ácido lático e a expressão do antígeno SpaA em meios de cultivo contendo fontes de carbono alternativas à glicose e fontes de nitrogênio de origem vegetal; iii) estudar o comportamento do microrganismo no meio de cultura novo, livre de substratos de origem animal, em biorreator. Os experimentos foram conduzidos em câmara incubadora, em cultivos estáticos ou com agitação de 50 ou de 200 rpm. A temperatura utilizada foi de 37°C e o pH inicial foi de 8,0 em todos os ensaios realizados. Os estudos em biorreator foram realizados em biorreator de 5,0 L, com agitação entre 100 a 700 rpm e vazão de ar de 1,0 a 2 L/min. Amostras retiradas durante os cultivos foram empregadas para análise da densidade ótica (a 420 nm) e das concentrações de glicose, biomassa e metabólitos. A expressão do antígeno foi avaliada por eletroforese em condições desnaturantes (SDS-PAGE) a partir de extratos das células preparados com solução de cloreto de colina. Os estudos envolvendo a ativação dos criotubos contendo as suspensões celulares congeladas levaram à padronização desta etapa, com alta reprodutibilidade, e à diminuição do tempo de ativação em 50 %. Os cultivos realizados com diferentes fontes de carbono, mostraram que E. rhusiopathiae é capaz de assimilar galactose e lactose, além de glicose. No entanto, não foi verificada assimilação de glicerol. A substituição da proteose peptona, fonte de nitrogênio de origem animal amplamente utilizada nos cultivos de E. rhusiopathiae para produção de bacterinas, pela peptona de soja hidrolisada Soytone, de origem vegetal, mostrou-se um alternativa promissora para a produção da vacina de células inativadas, contribuindo para aumento da velocidade específica de crescimento e da conversão de substrato em células em relação aos valores obtidos no meio convencional. Em cultivo descontínuo realizado em biorreator de bancada com o meio contendo glicose e Soytone, foi alcançada uma concentração de biomassa de 10 g/L em 5 horas de cultivo. Para o meio convencional, contendo proteose peptona, a máxima concentração celular relatada para ensaio em batelada em biorreator de bancada foi aproximadamente 2 g/L, a qual foi atingida após 7 horas de cultivo. Destaca-se ainda que um nível superior de expressão da proteína antigênica em relação aos observados com a peptona de origem animal foi alcançado nos cultivos realizados com o meio contendo soytone. Esse resultado mostra ser possível incorporar as boas práticas de manufatura recomendadas para produtos farmacêuticos e veterinários, sem prejuízo à produtividade do processo e com significativa redução do custo do meio.
Books on the topic "Erysipelothrix rhusiopathiae"
Smith, Robert M. Other bacterial diseasesErysipeloid. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198570028.003.0025.
Full textBook chapters on the topic "Erysipelothrix rhusiopathiae"
Hahn, H. "Erysipelothrix rhusiopathiae." In Springer-Lehrbuch, 404–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-08626-1_48.
Full textREBOLI, ANNETTE C. "Erysipelothrix rhusiopathiae." In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 2733–35. Elsevier, 2010. http://dx.doi.org/10.1016/b978-0-443-06839-3.00210-1.
Full textWang, Qinning, and Thomas V. Riley. "Erysipelothrix rhusiopathiae." In Molecular Medical Microbiology, 859–72. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-12-397169-2.00047-0.
Full textRILEY, T., C. BROOKE, and Q. WANG. "Erysipelothrix rhusiopathiae." In Molecular Medical Microbiology, 1057–64. Elsevier, 2002. http://dx.doi.org/10.1016/b978-012677530-3/50269-5.
Full textReboli, Annette C. "Erysipelothrix rhusiopathiae." In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 2415–17. Elsevier, 2015. http://dx.doi.org/10.1016/b978-1-4557-4801-3.00211-3.
Full textFisher, Randall G. "ERYSIPELOTHRIX RHUSIOPATHIAE." In Feigin and Cherry's Textbook of Pediatric Infectious Diseases, 1418–20. Elsevier, 2009. http://dx.doi.org/10.1016/b978-1-4160-4044-6.50110-2.
Full text"18.4 Erysipelothrix rhusiopathiae." In Mikrobiologische Diagnostik, edited by Birgid Neumeister, Heinrich K. Geiss, Rüdiger W. Braun, and Peter Kimmig. Stuttgart: Georg Thieme Verlag, 2009. http://dx.doi.org/10.1055/b-0034-69258.
Full textJordan, Frank T. W., and Magne Bisgaard. "Erysipelothrix rhusiopathiae – erysipelas." In Poultry Diseases, 215–19. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-7020-2862-5.50024-6.
Full textConference papers on the topic "Erysipelothrix rhusiopathiae"
Turnpenny, Beth, Rashmi Dube, Catherine Houghton, and Reeta Burman. "Pulmonary Abscesses In Erysipelothrix Rhusiopathiae Bacteraemia." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a5696.
Full textReports on the topic "Erysipelothrix rhusiopathiae"
Middlebrooks, Bobby L. Evaluation of a DNA Vaccine Specific for the 54 kDa Protective Antigen of Erysipelothrix rhusiopathiae. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada495910.
Full textMiddlebrooks, Bobby L. Production of a DNA Vaccine Specific for the 64 kDa Protective Antigen of Erysipelothrix rhusiopathiae. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada462832.
Full text