Academic literature on the topic 'Eruptive fluxes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eruptive fluxes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Eruptive fluxes"
Linan, L., É. Pariat, G. Aulanier, K. Moraitis, and G. Valori. "Energy and helicity fluxes in line-tied eruptive simulations." Astronomy & Astrophysics 636 (April 2020): A41. http://dx.doi.org/10.1051/0004-6361/202037548.
Full textSegonne, Charlotte, Nathalie Huret, Sébastien Payan, Mathieu Gouhier, and Valéry Catoire. "A Spectra Classification Methodology of Hyperspectral Infrared Images for Near Real-Time Estimation of the SO2 Emission Flux from Mount Etna with LARA Radiative Transfer Retrieval Model." Remote Sensing 12, no. 24 (December 16, 2020): 4107. http://dx.doi.org/10.3390/rs12244107.
Full textCalvari, Sonia, Gaetana Ganci, Sónia Victória, Pedro Hernandez, Nemesio Perez, José Barrancos, Vera Alfama, et al. "Satellite and Ground Remote Sensing Techniques to Trace the Hidden Growth of a Lava Flow Field: The 2014–2015 Effusive Eruption at Fogo Volcano (Cape Verde)." Remote Sensing 10, no. 7 (July 12, 2018): 1115. http://dx.doi.org/10.3390/rs10071115.
Full textCox, Daniel, Sebastian F. L. Watt, Frances E. Jenner, Alan R. Hastie, Samantha J. Hammond, and Barbara E. Kunz. "Elevated magma fluxes deliver high-Cu magmas to the upper crust." Geology 48, no. 10 (June 10, 2020): 957–60. http://dx.doi.org/10.1130/g47562.1.
Full textParkhomov, Vladimir, Victor Eselevich, and Maksim Eselevich. "Geoeffectiveness of an Eruptive Prominence." System Analysis & Mathematical Modeling 4, no. 2 (October 26, 2022): 123–51. http://dx.doi.org/10.17150/2713-1734.2022.4(2).123-151.
Full textLiu, Yang, Brian T. Welsch, Gherardo Valori, Manolis K. Georgoulis, Yang Guo, Etienne Pariat, Sung-Hong Park, and Julia K. Thalmann. "Changes of Magnetic Energy and Helicity in Solar Active Regions from Major Flares." Astrophysical Journal 942, no. 1 (January 1, 2023): 27. http://dx.doi.org/10.3847/1538-4357/aca3a6.
Full textLayana, Susana, Felipe Aguilera, Germán Rojo, Álvaro Vergara, Pablo Salazar, Juan Quispe, Pablo Urra, and Diego Urrutia. "Volcanic Anomalies Monitoring System (VOLCANOMS), a Low-Cost Volcanic Monitoring System Based on Landsat Images." Remote Sensing 12, no. 10 (May 16, 2020): 1589. http://dx.doi.org/10.3390/rs12101589.
Full textDelle Donne, Dario, Alessandro Aiuppa, Marcello Bitetto, Roberto D’Aleo, Mauro Coltelli, Diego Coppola, Emilio Pecora, Maurizio Ripepe, and Giancarlo Tamburello. "Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data." Remote Sensing 11, no. 10 (May 20, 2019): 1201. http://dx.doi.org/10.3390/rs11101201.
Full textKazachenko, Maria D. "A Database of Magnetic and Thermodynamic Properties of Confined and Eruptive Solar Flares." Astrophysical Journal 958, no. 2 (November 16, 2023): 104. http://dx.doi.org/10.3847/1538-4357/ad004e.
Full textCorradini, Stefano, Lorenzo Guerrieri, Dario Stelitano, Giuseppe Salerno, Simona Scollo, Luca Merucci, Michele Prestifilippo, et al. "Near Real-Time Monitoring of the Christmas 2018 Etna Eruption Using SEVIRI and Products Validation." Remote Sensing 12, no. 8 (April 23, 2020): 1336. http://dx.doi.org/10.3390/rs12081336.
Full textDissertations / Theses on the topic "Eruptive fluxes"
Augustin, Thiebaut d'. "Les éléments halogènes dans les magmas, du traçage des conditions de stockage aux flux éruptifs." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS370.
Full textHalogen elements have a characteristic S2P5 electronic configuration which gives them a very high electronegativity. Hence, they form highly reactive halide ions (X-, where X is a halogen element). Because of their volatile and incompatible behaviour in most of the minerals crystallising in magma reservoirs, their concentration increases in the residual liquid phase during fractional crystallisation. As the magma rises to the surface, the solubility of the volatile elements (including the halogen elements) decreases and they exsolve from the magma as gases. The gases emitted during plinian eruptions are propelled several kilometres into the atmosphere and, depending on the size of the eruption, they may reach the stratosphere. Once the halogen elements injected into the stratosphere, their residence time depend on the element and the compound it forms, and can reach several years. The halogen elements destabilise chemical balances in the stratosphere and cause the destruction of stratospheric ozone. The method used in this thesis consists in an estimate of the total volume of a given volatile element that is emitted during an eruption, from the difference in concentration of the element in the magma before and after eruption. The degassing thus corresponds to the difference in concentration of the element before and after eruption. This method has the double advantage of allowing to measure the total concentration of the element in the magma, in a non-specific way, and of not requiring direct observation at the time of the eruption
Yardley, S. L. "The role of flux cancellation in the formation of filaments and eruptive structures." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1539954/.
Full textGibb, Gordon P. S. "The formation and eruption of magnetic flux ropes in solar and stellar coronae." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7069.
Full textGho, Inzunza Rayen Alina. "Determinación de parámetros eruptivos de flujos de lava del complejo volcánico Lonquimay (38°S), Andes del Sur." Tesis, Universidad de Chile, 2013. http://www.repositorio.uchile.cl/handle/2250/115551.
Full textEl Complejo Volcánico Lonquimay (CVL) se encuentra en la Zona Volcánica Sur (38°). Ha estado activo principalmente durante el Holoceno, y ha generado productos esencialmente andesíticos. El CVL está compuesto por un estratovolcán principal, de un volumen cercano a los 20 km3, que se encuentra dividido en cinco unidades, donde las lavas más antiguas presentan longitudes de hasta 15 km, con morfologías de tipo aa, mientras que las coladas más jóvenes, tienen longitudes de hasta solo 3 km, y morfologías de tipo bloques. El Cordón Fisural Oriental (CFO, 10 km de largo), corresponde un sistema de fisuras ubicado en sector este del CVL, compuesto por numerosos conos piroclásticos en orientación NE. Las coladas del CFO presentan longitudes de hasta 10 km de largo, con morfologías de tipo bloques. En esta zona es donde han ocurrido las erupciones históricas del complejo. La petrografía de todas las unidades del CVL, se mantiene muy uniforme en el tiempo. Los parámetros eruptivos que controlaron la formación de estas coladas de lava no históricas fueron determinados gracias a un estudio detallado de sus morfologías, dimensiones y petrografía, obteniendo variaciones de estos valores en el tiempo a partir de mediciones y muestreos a diferentes distancias de la fuente de emisión. Esto se realizó con análisis dimensional de las coladas de lava, basado en un flujo de tipo Herschel-Bulkley, Los resultados obtenidos indican que las coladas de lava más antiguas del cono principal presentaron altas tasas eruptivas (hasta 433 m3 s-1), lo que junto al alto volumen emitido (~0,1 km3), permitieron la formación de largas coladas; estos valores habrían ido disminuyendo, a medida que se formó el estratovolcán, hasta el punto en que las últimas coladas solo alcanzan un par de kilómetros de largo, con tasas eruptivas del orden de 2 m3 s-1, y volúmenes de solo 0,01 km3. De acuerdo a las variaciones observadas, las dimensiones de las coladas estarían estrictamente ligadas a la tasa eruptiva y a los volúmenes emitidos. Estos parámetros estarían, a su vez, determinados por la presión que ejerce la masa de material acumulado sobre la cámara magmática, debido a la formación del estratovolcán: cuando mayor es el volumen del volcán, menores serán las tasas eruptivas y volúmenes generados. Por lo que luego de la superposición de las últimas unidades en el estratovolcán, los magmas habrían perdido la capacidad de ascender por el conducto principal, por lo que la actividad volcánica reciente se estaría llevando a cabo en el CFO, por las facilidades que presenta el sistema de fallas.
MICHAUD, VALERIE. "L'enrichissement selectif en k, rb et cs des laves recentes de l'etna : role des fluides du systeme phreatique dans l'interaction magma encaissant sedimentaire et implications sur les dynamismes eruptifs." Paris 11, 1991. http://www.theses.fr/1991PA112182.
Full textWilson, James Adams. "A New Volcanic Event Recurrence Rate Model and Code For Estimating Uncertainty in Recurrence Rate and Volume Flux Through Time With Selected Examples." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6435.
Full textBook chapters on the topic "Eruptive fluxes"
Gaizauskas, V. "On driving the eruption of a solar filament." In Physics of Magnetic Flux Ropes, 331–35. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm058p0331.
Full textOlmos, Rodolfo, José Barrancos, Claudia Rivera, Francisco Barahona, Dina L. López, Benancio Henriquez, Agustín Hernández, et al. "Anomalous Emissions of SO2 During the Recent Eruption of Santa Ana Volcano, El Salvador, Central America." In Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II, 2489–506. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8720-4_8.
Full textHernández, P. A., N. M. Pérez, J. C. Varekamp, B. Henriquez, A. Hernández, J. Barrancos, E. Padrón, D. Calvo, and G. Melián. "Crater Lake Temperature Changes of the 2005 Eruption of Santa Ana Volcano, El Salvador, Central America." In Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume II, 2507–22. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8720-4_9.
Full textKralj, Polona. "Submarine Stratovolcano Peperite Syn-Formational Alteration - A Case Study of the Oligocene Smrekovec Volcanic Complex, Slovenia." In Updates in Volcanology - Transdisciplinary Nature of Volcano Science. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95480.
Full textChelle-Michou, Cyril, and Bertrand Rottier. "Transcrustal Magmatic Controls on the Size of Porphyry Cu Systems: State of Knowledge and Open Questions." In Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards (Volume I), 87–100. Society of Economic Geologists, 2021. http://dx.doi.org/10.5382/sp.24.06.
Full textOverbay, William J., Tench C. Page, Dennis J. Krasowski, Mark H. Bailey, and Thomas C. Matthews. "Geology, Structural Setting, and Mineralization of the Dolores District, Chihuahua, Mexico." In Northern Sierra Madre Occidental Gold-Silver Mines, Mexico, 29–43. Society of Economic Geologists, 2010. http://dx.doi.org/10.5382/gb.42.ch03.
Full textConference papers on the topic "Eruptive fluxes"
Fendley, Isabel, Tushar Mittal, Courtney J. Sprain, Mark Marvin-DiPasquale, Nicole Mizrahi, Paul R. Renne, Stephen Self, Thomas S. Tobin, and Lucas N. Weaver. "QUANTITATIVE ESTIMATES OF DECCAN FLOOD BASALT ERUPTIVE FLUXES AND CLIMATE CONSEQUENCES." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-338145.
Full textJeong, Dong Woon, Kwang Uoong Koh, and Sang Yong Lee. "Preliminary Consideration to Avoid Eruptive Flow Boiling in Microchannels." In ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1076.
Full textHaendler, Brenda E., Dorian Liepmann, and Albert P. Pisano. "The Dynamic Pressure Response of Phase Eruption in Micro Channels." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56595.
Full textTorabi, Mohsen, Ahmed A. Hemeda, Anupam Mishra, Ting Liu, and Yanbao Ma. "LIQUID BRIDGE ERUPTION FOR MESOSCALE GRAVURE PRINTING USING MULTI-BODY DISSIPATIVE PARTICLE DYNAMICS." In 4th Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/tfec2019.nmf.028350.
Full textSaito, T., H. Yamashita, and K. Takayama. "CFD Application to Construction of Hazard Maps of Volcanic Eruptions." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1599.
Full textWood, B. E., M. Karovska, J. Chen, G. E. Brueckner, J. W. Cook, and R. A. Howard. "Comparing the kinematic properties of CMEs observed by LASCO and EIT with models of erupting flux ropes." In The solar wind nine conference. AIP, 1999. http://dx.doi.org/10.1063/1.58708.
Full textSakurai, Hisashi, Yasuo Koizumi, and Hiroyasu Ohtake. "Critical Heat Flux by High Velocity Liquid Flow in Narrow Rectangular Channel." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67945.
Full text