Academic literature on the topic 'Error-correcting codes (Informations theory)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Error-correcting codes (Informations theory).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Error-correcting codes (Informations theory)"

1

Conway, J., and N. Sloane. "Lexicographic codes: Error-correcting codes from game theory." IEEE Transactions on Information Theory 32, no. 3 (May 1986): 337–48. http://dx.doi.org/10.1109/tit.1986.1057187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Curto, Carina, Vladimir Itskov, Katherine Morrison, Zachary Roth, and Judy L. Walker. "Combinatorial Neural Codes from a Mathematical Coding Theory Perspective." Neural Computation 25, no. 7 (July 2013): 1891–925. http://dx.doi.org/10.1162/neco_a_00459.

Full text
Abstract:
Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Pengfei, Yi Liu, Xiaojie Zhang, Paul H. Siegel, and Erich F. Haratsch. "Syndrome-Coupled Rate-Compatible Error-Correcting Codes: Theory and Application." IEEE Transactions on Information Theory 66, no. 4 (April 2020): 2311–30. http://dx.doi.org/10.1109/tit.2020.2966439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Namba, Kazuteru, and Eiji Fujiwara. "Nonbinary single-symbol error correcting, adjacent two-symbol transposition error correcting codes over integer rings." Systems and Computers in Japan 38, no. 8 (2007): 54–60. http://dx.doi.org/10.1002/scj.10516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ben-Gal, Irad, and Lev B. Levitin. "An application of information theory and error-correcting codes to fractional factorial experiments." Journal of Statistical Planning and Inference 92, no. 1-2 (January 2001): 267–82. http://dx.doi.org/10.1016/s0378-3758(00)00165-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Namba, Kazuteru, and Eiji Fujiwara. "A class of systematicm-ary single-symbol error correcting codes." Systems and Computers in Japan 32, no. 6 (2001): 21–28. http://dx.doi.org/10.1002/scj.1030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shimada, Ryosaku, Ryutaro Murakami, Kazuharu Sono, and Yoshiteru Ohkura. "Arithmetic burst error correcting fire-type cyclic ST-AN codes." Systems and Computers in Japan 18, no. 7 (1987): 57–68. http://dx.doi.org/10.1002/scj.4690180706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

He, Xianmang. "Constructing new q-ary quantum MDS codes with distances bigger than q/2 from generator matrices." Quantum Information and Computation 18, no. 3&4 (March 2018): 223–30. http://dx.doi.org/10.26421/qic18.3-4-3.

Full text
Abstract:
The construction of quantum error-correcting codes has been an active field of quantum information theory since the publication of \cite{Shor1995Scheme,Steane1998Enlargement,Laflamme1996Perfect}. It is becoming more and more difficult to construct some new quantum MDS codes with large minimum distance. In this paper, based on the approach developed in the paper \cite{NewHeMDS2016}, we construct several new classes of quantum MDS codes. The quantum MDS codes exhibited here have not been constructed before and the distance parameters are bigger than q/2.
APA, Harvard, Vancouver, ISO, and other styles
9

Kuznetsov, Alexandr, Oleg Oleshko, and Kateryna Kuznetsova. "ENERGY GAIN FROM ERROR-CORRECTING CODING IN CHANNELS WITH GROUPING ERRORS." Acta Polytechnica 60, no. 1 (March 2, 2020): 65–72. http://dx.doi.org/10.14311/ap.2020.60.0065.

Full text
Abstract:
Abstract. This article explores the a mathematical model of the a data transmission channel with errors grouping. We propose an estimating method for energy gain from coding and energy efficiency of binary codes in channels with grouped errors. The proposed method uses a simplified Bennet and Froelich’s model and allows leading the research of the energy gain from coding for a wide class of data channels without restricting the way of the length distributing the error bursts. The reliability of the obtained results is confirmed by the information of the known results in the theory of error-correcting coding in the simplified variant.
APA, Harvard, Vancouver, ISO, and other styles
10

Haselgrove, H. L., and P. P. Rohde. "Trade-off between the tolerance of located and unlocated errors in nondegenrate quantum." Quantum Information and Computation 8, no. 5 (May 2008): 399–410. http://dx.doi.org/10.26421/qic8.5-3.

Full text
Abstract:
In a recent study [Rohde et al., quant-ph/0603130 (2006)] of several quantum error correcting protocols designed for tolerance against qubit loss, it was shown that these protocols have the undesirable effect of magnifying the effects of depolarization noise. This raises the question of which general properties of quantum error-correcting codes might explain such an apparent trade-off between tolerance to located and unlocated error types. We extend the counting argument behind the well-known quantum Hamming bound to derive a bound on the weights of combinations of located and unlocated errors which are correctable by nondegenerate quantum codes. Numerical results show that the bound gives an excellent prediction to which combinations of unlocated and located errors can be corrected {\em with high probability} by certain large degenerate codes. The numerical results are explained partly by showing that the generalized bound, like the original, is closely connected to the information-theoretic quantity the {\em quantum coherent information}. However, we also show that as a measure of the exact performance of quantum codes, our generalized Hamming bound is provably far from tight.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Error-correcting codes (Informations theory)"

1

Wang, Xuesong. "Cartesian authentication codes from error correcting codes /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?COMP%202004%20WANGX.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rudra, Atri. "List decoding and property testing of error correcting codes /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nenno, Robert B. "An introduction to the theory of nonlinear error-correcting codes /." Online version of thesis, 1987. http://hdl.handle.net/1850/10350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Palaniappan, Karthik. "Propagation of updates to replicas using error correcting codes." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=1915.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2001.
Title from document title page. Document formatted into pages; contains vi, 68 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 67-68).
APA, Harvard, Vancouver, ISO, and other styles
5

Corazza, Federico Augusto. "Analysis of graph-based quantum error-correcting codes." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23801/.

Full text
Abstract:
With the advent of quantum computers, there has been a growing interest in the practicality of this device. Due to the delicate conditions that surround physical qubits, one could wonder whether any useful computation could be implemented on such devices. As we describe in this work, it is possible to exploit concepts from classical information theory and employ quantum error-correcting techniques. Thanks to the Threshold Theorem, if the error probability of physical qubits is below a given threshold, then the logical error probability corresponding to the encoded data qubit can be arbitrarily low. To this end, we describe decoherence which is the phenomenon that quantum bits are subject to and is the main source of errors in quantum memories. From the cause of error of a single qubit, we then introduce the error models that can be used to analyze quantum error-correcting codes as a whole. The main type of code that we studied comes from the family of topological codes and is called surface code. Of these codes, we consider both the toric and planar structures. We then introduce a variation of the standard planar surface code which better captures the symmetries of the code architecture. Once the main properties of surface codes have been discussed, we give an overview of the working principles of the algorithm used to decode this type of topological code: the minimum weight perfect matching. Finally, we show the performance of the surface codes that we introduced, comparing them based on their architecture and properties. These simulations have been performed with different error channel models to give a more thorough description of their performance in several situations showing relevant results.
APA, Harvard, Vancouver, ISO, and other styles
6

Alabbadi, Mohssen. "Intergration of error correction, encryption, and signature based on linear error-correcting block codes." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/14959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shen, Bingxin. "Application of Error Correction Codes in Wireless Sensor Networks." Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/ShenB2007.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El, Rifai Ahmed Mahmoud. "Applications of linear block codes to the McEliece cryptosystem." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/16604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luna, Amjad A. "The design and implementation of trellis-based soft decision decoders for block codes." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blanchard, Bart. "Quantization effects and implementation considerations for turbo decoders." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1000107.

Full text
Abstract:
Thesis (M.S.)--University of Florida, 2002.
Title from title page of source document. Document formatted into pages; contains xiii, 91 p.; also contains graphics. Includes vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Error-correcting codes (Informations theory)"

1

Weldon, E. J. Jr, coaut, ed. Error-Correcting Codes. 2nd ed. Boston: Massachusetts Institute of Technology, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vera, Pless, ed. Fundamentals of error-correcting codes. Cambridge: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

MacWilliams, Florence Jessie. The theory of error correcting codes. 8th ed. Amsterdam: North-Holland Pub. Co., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Poli, Alain. Error correcting codes: Theory and applications. Hemel Hempstead: Prentice Hall, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Error-correcting coding theory. New York: McGraw-Hill, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Purser, Michael. Introduction to error-correcting codes. Boston: Artech House, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Error-correcting codes and finite fields. Oxford: Clarendon Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Error-correcting codes: A mathematical introduction. London: Chapman & Hall, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Block error-correcting codes: A computational primer. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1942-, Costello Daniel J., ed. Error control coding: Fundamentals and applications. 2nd ed. Upper Saddle River, N.J: Pearson-Prentice Hall, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Error-correcting codes (Informations theory)"

1

Guimarães, Dayan Adionel. "Notions of Information Theory and Error-Correcting Codes." In Digital Transmission, 689–840. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01359-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

van Lint, Jacobus H., and Gerard van der Geer. "Error-correcting codes." In Introduction to Coding Theory and Algebraic Geometry, 13–14. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-9286-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baylis, John. "Number theory — arithmetic for codes." In Error-correcting Codes, 25–47. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-3276-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Langford, John, and Alina Beygelzimer. "Sensitive Error Correcting Output Codes." In Learning Theory, 158–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11503415_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cancellieri, Giovanni. "Turbo Codes." In Polynomial Theory of Error Correcting Codes, 473–502. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01727-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spielman, Daniel A. "The complexity of error-correcting codes." In Fundamentals of Computation Theory, 67–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0036172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cancellieri, Giovanni. "LDPC Convolutional Codes." In Polynomial Theory of Error Correcting Codes, 581–622. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01727-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trevisan, Luca. "Error-Correcting Codes in Complexity Theory." In Lecture Notes in Computer Science, 4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44849-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hansen, Johan P. "Toric Surfaces and Error-correcting Codes." In Coding Theory, Cryptography and Related Areas, 132–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57189-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cancellieri, Giovanni. "Low Density Parity Check Codes." In Polynomial Theory of Error Correcting Codes, 503–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01727-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Error-correcting codes (Informations theory)"

1

Roth, Ron M. "Analog Error-Correcting Codes." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Qiwen, Sidharth Jaggi, and Shuo-Yen Robert Li. "Binary error correcting network codes." In 2011 IEEE Information Theory Workshop (ITW). IEEE, 2011. http://dx.doi.org/10.1109/itw.2011.6089511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yaakobi, Eitan, Paul H. Siegel, Alexander Vardy, and Jack K. Wolf. "Multiple error-correcting WOM-codes." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buzaglo, Sarit, Eitan Yaakobi, Tuvi Etzion, and Jehoshua Bruck. "Error-correcting codes for multipermutations." In 2013 IEEE International Symposium on Information Theory (ISIT). IEEE, 2013. http://dx.doi.org/10.1109/isit.2013.6620321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yaakobi, Eitan, and Tuvi Etzion. "High dimensional error-correcting codes." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roy, Shounak, and Shayan Srinivasa Garani. "Two Dimensional Algebraic Error Correcting Codes." In 2018 Information Theory and Applications Workshop (ITA). IEEE, 2018. http://dx.doi.org/10.1109/ita.2018.8502956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Qin, Shu Lin, and Khaled Abdel-Ghaffar. "Error-correcting codes for flash coding." In 2011 Information Theory and Applications Workshop (ITA). IEEE, 2011. http://dx.doi.org/10.1109/ita.2011.5743580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ngai, Chi Kin, and Shenghao Yang. "Deterministic Secure Error-Correcting (SEC) Network Codes." In 2007 IEEE Information Theory Workshop. IEEE, 2007. http://dx.doi.org/10.1109/itw.2007.4313056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duan, Runyao, Markus Grassl, Zhengfeng Ji, and Bei Zeng. "Multi-error-correcting amplitude damping codes." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bracken, Carl, and Tor Helleseth. "Triple-error-correcting BCH-like codes." In 2009 IEEE International Symposium on Information Theory - ISIT. IEEE, 2009. http://dx.doi.org/10.1109/isit.2009.5205249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography