Dissertations / Theses on the topic 'Ergodic theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ergodic theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Quas, Anthony Nicholas. "Some problems in ergodic theory." Thesis, University of Warwick, 1993. http://wrap.warwick.ac.uk/58569/.
Full textBulinski, Kamil. "Interactions between Ergodic Theory and Combinatorial Number Theory." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17733.
Full textButkevich, Sergey G. "Convergence of Averages in Ergodic Theory." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu980555965.
Full textButkevich, Sergey. "Convergence of averages in Ergodic Theory /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488196781735316.
Full textJohnson, Bryan R. "Unconditional convergence of differences in ergodic theory /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487945015615412.
Full textJaššová, Alena. "On ergodic theory in non-Archimedean settings." Thesis, University of Liverpool, 2014. http://livrepository.liverpool.ac.uk/2006322/.
Full textMeco, Benjamin. "Ergodic Theory and Applications to Combinatorial Problems." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409810.
Full textPrabaharan, Kanagarajah. "Topics in ergodic theory : existence of invariant elements and ergodic decompositions of Banach lattices /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487688973685025.
Full textCannizzo, Jan. "Schreier Graphs and Ergodic Properties of Boundary Actions." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31444.
Full textRaissi-Dehkordi, Ramin. "Ergodic theory of dynamical systems having absolutely continuous spectrum." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627274.
Full textLi, Kuo-tung. "Convergence problems arising from harmonic analysis and ergodic theory /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487853913100673.
Full textSnyman, Mathys Machiel. "Ergodic properties of noncommutative dynamical systems." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40351.
Full textDissertation (MSc)--University of Pretoria, 2013.
gm2014
Mathematics and Applied Mathematics
unrestricted
Beyers, Frederik J. C. "A Hilbert space approach to multiple recurrence in ergodic theory." Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-02222006-104936.
Full textWierdl, Mate. "Almost everywhere convergence and recurrence along subsequences in ergodic theory /." The Ohio State University, 1989. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487672631600881.
Full textRothlisberger, Matthew Samuel. "Ergodic and Combinatorial Proofs of van der Waerden's Theorem." Scholarship @ Claremont, 2010. http://scholarship.claremont.edu/cmc_theses/14.
Full textKing, Malcolm Bruce. "Joinings and relative ergodic properties of W*-dynamical systems." Thesis, University of Pretoria, 2019. http://hdl.handle.net/2263/73237.
Full textThesis (PhD)--University of Pretoria, 2019.
Pilot Programme Top-Up Bursary, Department of Mathematics and Applied Mathematics, University of Pretoria.
Mathematics and Applied Mathematics
PhD
Unrestricted
Rehacek, Jan. "Ergodic billiards and mechanism of defocusing in N dimensions." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/28886.
Full textBeyers, Frederik Johannes Conradie. "The Szemeredi property in noncommutative dynamical systems." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-05242009-145506.
Full textKunde, Philipp [Verfasser], and Reiner [Akademischer Betreuer] Lauterbach. "Combinatorial constructions in Smooth Ergodic Theory / Philipp Kunde. Betreuer: Reiner Lauterbach." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1064077056/34.
Full textMunday, Sara Ann. "Finite and infinite ergodic theory for linear and conformal dynamical systems." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/3220.
Full textDonoso, Sebastian Andres. "Contributions to ergodic theory and topological dynamics : cube structures and automorphisms." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1007/document.
Full textThis thesis is devoted to the study of different problems in ergodic theory and topological dynamics related to og cube structures fg. It consists of six chapters. In the General Presentation we review some general results in ergodic theory and topological dynamics associated in some way to cubes structures which motivates this thesis. We start by the cube structures introduced in ergodic theory by Host and Kra (2005) to prove the convergence in $L^2$ of multiple ergodic averages. Then we present its extension to topological dynamics developed by Host, Kra and Maass (2010), which gives tools to understand the topological structure of topological dynamical systems. Finally we present the main implications and extensions derived of studying these structures, we motivate the new objects introduced in the thesis and sketch out our contributions. In Chapter 1 we give a general background in ergodic theory and topological dynamics given emphasis to the treatment of special factors. % We give basic definitions and describe special factors associated to a From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is devoted to a different topic and related questions, both in ergodic theory and topological dynamics. Each one is associated to a scientific article. In Chapter 2 we introduce a novel cube structure to study the actions of two commuting transformations $S$ and $T$ on a compact metric space $X$. In the same chapter we study the topological and dynamical properties of such structure and we use it to characterize products systems and their factors. We also provide some applications, like the construction of special factors. In the same topic, in Chapter 3 we use the new cube structure to prove the pointwise convergence of a cubic average in a system with two commuting transformations. In Chapter 4, we study the enveloping semigroup of a very important class of dynamical systems, the nilsystems. We use cube structures to show connexions between algebraic properties of the enveloping semigroup and the geometry and dynamics of the system. In particular, we characterize nilsystems of order 2 by its enveloping semigroup. In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional symbolic spaces. First, we consider low complexity symbolic systems and use special factors, some related to the introduced cube structures, to study the group of automorphisms. Our main result states that for minimal systems with sublinear complexity such groups are spanned by the shift action and a finite set. Also, using factors associated to the cube structures introduced in Chapter 2 we study the automorphism group of a representative tiling system. The bibliography is defer to the end of this document
Donoso, Fuentes Sebastián Andrés. "Contributions to ergodic theory and topological dynamics: cube structures and automorphisms." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135055.
Full textEsta tesis está consagrada al estudio de diferentes problemas en teoría ergódica y dinámica topológica, relacionados a "estructuras de cubos". Consta de seis capítulos. En la presentación general entregamos resultados generales, ligados en cierta manera a las estructuras de cubos que motivan esta tesis. Comenzamos por las estructuras de cubos introducidas en teoría ergódica por Host y Kra para probar la convergencia en L^2 de medias ergódicas múltiples. Luego presentamos su extensión a dinámica topológica, desarrollada por Host, Kra y Maass (2010), que entrega herramientas para entender la estructura topológica de sistemas dinámicos topológicos. Finalmente, mostramos las implicancias y extensiones principales derivadas de estudiar estas estructuras, motivamos los nuevos objetos introducidos en esta tesis y bosquejamos nuestras contribuciones. En el Capítulo 1, entregamos antecedes generales en teoría ergódica y dinámica topológica, dando énfasis al estudio de ciertos factores especiales. Desde el Capítulo 2 al Capítulo 5 desarrollamos las contribuciones de esta tesis. Cada uno está consagrado a un tópico diferente y a sus problemáticas relacionadas, tanto en teoría ergódica como en dinámica topológica. Cada uno está asociado a un artículo científico. En el Capítulo 2 introducimos una nueva estructura de cubos para estudiar la acción de dos transformaciones S y T que conmutan, sobre un espacio métrico compacto X. En el mismo capítulo estudiamos las propiedades topológicas y dinámicas de tales estructuras y las usamos para caracterizar productos de sistemas y sus factores. También damos algunas aplicaciones, como la construcción de factores especiales. En el mismo tema, en el Capítulo 3 usamos esta nueva estructura para probar la convergencia casi segura de una media cúbica en un sistema con dos transformaciones que conmutan. En el Capítulo 4, estudiamos el semigrupo envolvente de una clase importante de sistemas dinámicos, los nilsistemas. Usamos estructuras de cubos para mostrar relaciones entre propiedades algebraicas del semigrupo envolvente con la geometría y dinámica de un sistema. En particular, caracterizamos nilsistemas de orden 2 vía el semigrupo envolvente. En el Capítulo 5 estudiamos grupos de automorfismos de sistemas simbólicos uno y dos dimensionales. Primero consideramos sistemas simbólicos de baja complejidad y usamos factores especiales, algunos ligados a estructuras de cubos, para estudiar el grupo de automorfismos. Nuestro resultado principal establece que en sistemas minimales de complejidad sublineal, tales grupos son generados por el shift y un conjunto finito. También, usando factores asociados a las estructuras de cubos del Capítulo 2, estudiamos el grupo de automorfismos de un sistema de embaldosados representativo. Las referencias bibliográficas aparecen al final del documento.
Kunde, Philipp Verfasser], and Reiner [Akademischer Betreuer] [Lauterbach. "Combinatorial constructions in Smooth Ergodic Theory / Philipp Kunde. Betreuer: Reiner Lauterbach." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1064077056/34.
Full textArtigiani, Mauro. "Some aspects of diophantine approximation and ergodic theory of translation surfaces." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.702866.
Full textMortiss, Genevieve. "Average co-ordinate entropy and a non-singular version of restricted orbit equivalence." [Sydney : University of New South Wales], 1997. http://www.library.unsw.edu.au/~thesis/adt-NUN/public/adt-NUN1998.0001/index.html.
Full textShi, Ronggang. "Equidistribution of expanding measures with local maximal dimension and Diophantine Approximation." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1242259439.
Full textKaimanovich, Vadim, Klaus Schmidt, and Klaus Schmidt@univie ac at. "Ergodicity of cocycles. 1: General Theory." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi936.ps.
Full textTanzi, Matteo. "Heterogeneously coupled maps : from high to low dimensional systems through ergodic theory." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/50709.
Full textGriesmer, John Thomas. "Ergodic averages, correlation sequences, and sumsets." Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1243973834.
Full textJarrett, Kieran. "Non-singular actions of countable groups." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761021.
Full textNaughton, David Vincent. "On the fine structure of dynamically-defined invariant graphs." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/on-the-fine-structure-of-dynamicallydefined-invariant-graphs(0e81b14b-af68-4433-a983-f98a7b8c5d86).html.
Full textMENDICO, CRISTIAN. "Ergodic behavior of control systems and first-order mean field games." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/23542.
Full textShereshevsky, Mark Alexandrovich. "On the ergodic theory of cellular automata and two-dimensional Markov shifts generated by them." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/34640/.
Full textMortiss, Genevieve Catherine Mathematics UNSW. "Average co-ordinate entropy and a non-singular version of restricted orbit equivalence." Awarded by:University of New South Wales. Mathematics, 1997. http://handle.unsw.edu.au/1959.4/17823.
Full textPavlov, Ronald Lee. "Some results on recurrence and entropy." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180454690.
Full textKadyrov, Shirali. "Entropy and Escape of Mass in Non-Compact Homogeneous Spaces." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1272027404.
Full textGrigo, Alexander. "Billiards and statistical mechanics." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29610.
Full textCommittee Chair: Bunimovich, Leonid; Committee Member: Bonetto, Federico; Committee Member: Chow, Shui-Nee; Committee Member: Cvitanovic, Predrag; Committee Member: Weiss, Howard. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Szkola, Arleta. "The Shannon-McMillan theorem and related results for ergodic quantum spin lattice systems and applications in quantum information theory." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=970619588.
Full textUdrea, Bogdan Teodor. "Applications of deformation rigidity theory in Von Neumann algebras." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3395.
Full textAndrade, Rodrigo Manoel Dias [UNESP]. "Bilhares planares." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/92952.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O objetivo principal deste trabalho e estudar a dinâmica de uma partícula pontual no interior de subconjuntos do plano. Tais sistemas são conhecidos na literatura como bilhares. Apresentaremos os principais conceitos desses sistemas e veremos que tais sistemas deixam invariante uma medida de probabilidade, o que nos permite aplicar a Teoria Ergódica ao problema do bilhar
The main goal of this work is to study the dynamical behavior of a point-like (dimensionless) particle in the interior of planar regions. Such systems are known in the literature as billiards. We're going to present the principal concepts of those systems and we'll see that such system turns the probability measure invariant, which allows us to apply the Ergodic Theory to billiard problems
Karagulyan, Davit. "Certain results on the Möbius disjointness conjecture." Doctoral thesis, KTH, Matematik (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215682.
Full textQC 20171016
Alves, Fabricio Fernando [UNESP]. "Teorema ergódico multiplicativo de oseledets." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/94212.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este trablaho apresenta os conceitos de Lyapounov e de espaços próprios e fornece um resultado devido a Oseledets, o qual trata da existência desses expoentes (e, consequentemente, dos espaços próprios) do ponto de vista da teoria da medida. A prova do teorema que nós fornecemos foi dada originalmente por Mañe e posteriormente melhorada por Viana.
This work presents the concepts of Lyapounov exponents and of proper spaces and provides a result due to Oseledets, wich deals with the existence of these exponents (and consequently, of the proper spaces) from a measure-theoretical point of view. The proof of the theorem which we provide was originally given by Mañe later improved by Viana.
Samuel, Anthony. "A commutative noncommutative fractal geometry." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1710.
Full textBhattad, Kapil. "Joint source channel coding for non-ergodic channels: the distortion signal-to-noise ratio (SNR) exponent perspective." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85928.
Full textFigueiredo, Fernanda Ronssani de. "Medidas que maximizam a entropia no Deslocamento de Haydn." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/127974.
Full textIn this work, we present the example shown by Nicolai Haydn, which is given by subshift where is possible to show in nity measures of maximal entropy, besides in nitely many distinct equilibrium states.
Nasca, Angelo J. III. "The Linear Dynamics of Several Commuting Operators." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420228736.
Full textAlves, Fabricio Fernando. "Teorema ergódico multiplicativo de oseledets /." São José do Rio Preto : [s.n.], 2010. http://hdl.handle.net/11449/94212.
Full textBanca: Daniel Smania Brandão
Banca: Ali Messaoudi
Resumo: Este trablaho apresenta os conceitos de Lyapounov e de espaços próprios e fornece um resultado devido a Oseledets, o qual trata da existência desses expoentes (e, consequentemente, dos espaços próprios) do ponto de vista da teoria da medida. A prova do teorema que nós fornecemos foi dada originalmente por Mañe e posteriormente melhorada por Viana.
Abstract: This work presents the concepts of Lyapounov exponents and of proper spaces and provides a result due to Oseledets, wich deals with the existence of these exponents (and consequently, of the proper spaces) from a measure-theoretical point of view. The proof of the theorem which we provide was originally given by Mañe later improved by Viana.
Mestre
Chousionis, Vasileios. "Thermodynamical Formalism." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4631/.
Full textGomes, João Tiago Assunção 1986. "Formalismos Gibbsianos para sistemas de spins unidimensionais." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307025.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T22:00:53Z (GMT). No. of bitstreams: 1 Gomes_JoaoTiagoAssuncao_M.pdf: 1424859 bytes, checksum: 6679c0458ae1350513c30bdc7ea2e699 (MD5) Previous issue date: 2012
Resumo: Exibir os estados de Gibbs e os estados de equilíbrios para certos sistemas de spins sobre reticulados é um problema de grande interesse para mecânica estatística. Com este intuito, apresentamos para o caso unidimensional dois formalismos existentes para tais sistemas: o formalismo DLR (enfoque mecânico-estatístico) e o formalismo SRB (enfoque dinamicista). Apesar das particularidades próprias aos contextos nos quais cada um dos formalismos se aplica, investigam-se aqui as relações existentes entre estes através da energia livre de Gibbs e da pressão topológica. Discute-se também o comportamento assintótico dos estados de Gibbs/equilíbrio quando levados ao congelamento do sistema. Tal fenômeno nos conduz ao estudo dos estados maximizantes via teoria de otimização ergódica. Ao fim, comparam-se algumas ideias da álgebra max/min-plus e o conceito de subação, as quais serão fundamentais para análise do comportamento assintótico da pressão topológica
Abstract: To exhibit Gibbs states and equilibrium states for certain kind of lattice spin systems is a problem with great interest for statistical mechanics. To that end, we introduce two existing formalisms for one-dimensional systems: DLR formalism (statistical-mechanical approach) and SRB formalism (dynamical-systems approach). In spite of their distinct applications, we analyse the relation between them through the notions of Gibbs free energy and topological pressure. We discuss also the asymptotic behaviour of Gibbs/equilibrium states when the system is frozen. This phenomenon leads us to the study of maximizing states in the context of ergodic optimization. Finally, we compare some ideas of max/min-plus algebra and the notion of sub-action, which will be essential to investigate the asymptotic behaviour of the topological pressure
Mestrado
Matematica
Mestre em Matemática
Mance, Bill. "Normal Numbers with Respect to the Cantor Series Expansion." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274431587.
Full text