Academic literature on the topic 'Ergodic Diffusion Processe'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ergodic Diffusion Processe.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ergodic Diffusion Processe"

1

Corradi, Valentina. "Comovements Between Diffusion Processes." Econometric Theory 13, no. 5 (October 1997): 646–66. http://dx.doi.org/10.1017/s0266466600006113.

Full text
Abstract:
The aim of this paper is to characterize and analyze long-run comovements among diffusion processes. Broadly speaking, if X = (X1,,X2,;t ≥ 0) is a nonergodic diffusion in R2, but there exists a linear combination, say, γ′X, that is instead ergodic in R, then we say there exists a linear stochastic comovement between the components of X. Linear diffusions exhibiting stochastic comovements admit an error correction representation. Estimation of γ and hypothesis testing, under different sampling schemes, are considered.
APA, Harvard, Vancouver, ISO, and other styles
2

Kamarianakis, Yiannis. "Ergodic control of diffusion processes." Journal of Applied Statistics 40, no. 4 (April 2013): 921–22. http://dx.doi.org/10.1080/02664763.2012.750440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wong, Bernard. "On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications." Journal of Applied Mathematics and Stochastic Analysis 2009 (September 23, 2009): 1–16. http://dx.doi.org/10.1155/2009/215817.

Full text
Abstract:
We investigate the arbitrage-free property of stock price models where the local martingale component is based on an ergodic diffusion with a specified stationary distribution. These models are particularly useful for long horizon asset-liability management as they allow the modelling of long term stock returns with heavy tail ergodic diffusions, with tractable, time homogeneous dynamics, and which moreover admit a complete financial market, leading to unique pricing and hedging strategies. Unfortunately the standard specifications of these models in literature admit arbitrage opportunities. We investigate in detail the features of the existing model specifications which create these arbitrage opportunities and consequently construct a modification that is arbitrage free.
APA, Harvard, Vancouver, ISO, and other styles
4

Swishchuk, Anatoliy, and M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas." International Journal of Stochastic Analysis 2010 (December 19, 2010): 1–21. http://dx.doi.org/10.1155/2010/347105.

Full text
Abstract:
We consider the geometric Markov renewal processes as a model for a security market and study this processes in a diffusion approximation scheme. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented. We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometric Markov renewal processes.
APA, Harvard, Vancouver, ISO, and other styles
5

Kutoyants, Yury A., and Nakahiro Yoshida. "Moment estimation for ergodic diffusion processes." Bernoulli 13, no. 4 (November 2007): 933–51. http://dx.doi.org/10.3150/07-bej1040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kiessler, Peter C. "Statistical Inference for Ergodic Diffusion Processes." Journal of the American Statistical Association 101, no. 474 (June 1, 2006): 846. http://dx.doi.org/10.1198/jasa.2006.s98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Mu Fa. "Ergodic theorems for reaction-diffusion processes." Journal of Statistical Physics 58, no. 5-6 (March 1990): 939–66. http://dx.doi.org/10.1007/bf01026558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Magdziarz, Marcin, and Aleksander Weron. "Ergodic properties of anomalous diffusion processes." Annals of Physics 326, no. 9 (September 2011): 2431–43. http://dx.doi.org/10.1016/j.aop.2011.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bel, Golan, and Ilya Nemenman. "Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes." New Journal of Physics 11, no. 8 (August 12, 2009): 083009. http://dx.doi.org/10.1088/1367-2630/11/8/083009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Di Masp, G. B., and Ł. Stettner. "Bayesian ergodic adaptive control of diffusion processes." Stochastics and Stochastic Reports 60, no. 3-4 (April 1997): 155–83. http://dx.doi.org/10.1080/17442509708834104.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ergodic Diffusion Processe"

1

Wasielak, Aramian. "Various Limiting Criteria for Multidimensional Diffusion Processes." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195115.

Full text
Abstract:
In this dissertation we consider several limiting criteria forn-dimensional diffusion processes defined as solutions of stochasticdifferential equations. Our main interest is in criteria for polynomialand exponential rates of convergence to the steady state distributionin the total variation norm. Resulting criteria should place assumptionsonly on the coefficients of the elliptic differentialoperator governing the diffusion.Coupling of Harris chains is one of the main methods employed in thisdissertation.
APA, Harvard, Vancouver, ISO, and other styles
2

Maillet, Raphaël. "Analyse statistique et probabiliste de systèmes diffusifs en présence de bruit." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD025.

Full text
Abstract:
Cette thèse traite du comportement en temps long des équations stochastiques de Fokker-Planck en présence d’un bruit commun additif et présente des méthodes statistiques pour estimer la mesure invariante des processus de diffusion ergodiques multidimensionnels à partir de données bruitées. Dans la première partie, nous analysons les équations différentielles partielles stochastiques de type Fokker-Planck non linéaires, obtenues comme la limite du champ moyen de systèmes de particules en interaction dirigés par des bruits browniens idiosyncrasiques et en présence de bruit commun. Nous établissons des conditions sous lesquelles l’ajout d’un bruit commun promet de restaurer l’unicité de la mesure invariante. La principale difficulté provient de la dimension finie du bruit commun, alors que la variable d’état- interprétée comme la loi marginale conditionnelle du système compte tenu du bruit commun - opère dans un espace de dimension infinie. Nous démontrons que l’unicité est rétablie dès lors que le terme d’interaction du champ moyen attire le système vers sa moyenne conditionnelle (par rapport au bruit commun), en particulier lorsque l’intensité du bruit idiosyncrasique est faible, qui sont des cas typiques de perte d’unicité en l’absence de bruit commun. Dans la deuxième partie, nous développons une méthodologie statistique afin d’approximer la mesure invariante d’un processus de diffusion à partir d’observations bruitées et discrètes de ce même processus. Cette méthode implique une technique de pré-moyennage des données qui réduit l’intensité du bruit tout en conservant les caractéristiques analytiques et les propriétés asymptotiques du signal sous-jacent. Nous étudions le taux de convergence de cet estimateur, qui dépend de la régularité anisotrope de la densité et de l’intensité du bruit. Nous établissons ensuite des conditions sur l’intensité du bruit qui permettent d’obtenir des taux de convergence comparables à ceux des cas sans bruit. Enfin, nous démontrons une inégalité de concentration de type Bernstein pour notre estimateur, ce qui promet de mettre en place une procédure adaptative pour la sélection de la fenêtre du noyau
This thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator, which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth
APA, Harvard, Vancouver, ISO, and other styles
3

Aeckerle-Willems, Cathrine [Verfasser], and Claudia [Akademischer Betreuer] Strauch. "Nonparametric statistics for scalar ergodic diffusion processes / Cathrine Aeckerle-Willems ; Betreuer: Claudia Strauch." Mannheim : Universitätsbibliothek Mannheim, 2019. http://d-nb.info/1202012035/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sera, Toru. "Functional limit theorem for occupation time processes of intermittent maps." Kyoto University, 2020. http://hdl.handle.net/2433/259719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.

Full text
Abstract:
This thesis is concerned with methodologies for the accurate quantitative modelling of molecular biological systems. The first part is devoted to the chemical Langevin equation (CLE), a stochastic differential equation driven by a multidimensional Wiener process. The CLE is an approximation to the standard discrete Markov jump process model of chemical reaction kinetics. It is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. We observe that the CLE is not a single equation, but a family of equations with shared finite-dimensional distributions. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m_1 pairs of reversible reactions and m_2 irreversible reactions, there is another, simple formulation of the CLE with only m_1+m_2 Wiener processes, whereas the standard approach uses 2m_1+m_2. Considerable computational savings are achieved with this latter formulation. A flaw of the CLE model is identified: trajectories may leave the nonnegative orthant with positive probability. The second part addresses the challenge when alternative, structurally different ordinary differential equation models of similar complexity fit the available experimental data equally well. We review optimal experiment design methods for choosing the initial state and structural changes on the biological system to maximally discriminate between the outputs of rival models in terms of L_2-distance. We determine the optimal stimulus (input) profile for externally excitable systems. The numerical implementation relies on sum of squares decompositions and is demonstrated on two rival models of signal processing in starving Dictyostelium amoebae. Such experiments accelerate the perfection of our understanding of biochemical mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
6

Kadlec, Karel. "Optimální řízení stochastických rovnic s Lévyho procesy v Hilbertových proctorech." Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-437018.

Full text
Abstract:
Controlled linear stochastic evolution equations driven by Lévy processes are studied in the Hilbert space setting. The control operator may be unbounded which makes the results obtained in the abstract setting applicable to parabolic SPDEs with boundary or point control. The first part contains some preliminary technical results, notably a version of Itô formula which is applicable to weak/mild solutions of controlled equations. In the second part, the ergodic control problem is solved: The feedback form of the optimal control and the formula for the optimal cost are found. The control problem is solved in the mean-value sense and, under selective conditions, in the pathwise sense. As examples, various parabolic type controlled SPDEs are studied. 1
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ergodic Diffusion Processe"

1

S, Borkar Vivek, and Ghosh Mrinal K. 1956-, eds. Ergodic control of diffusion processes. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Borkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Borkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. Springer London, Limited, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Statistical Inference for Ergodic Diffusion Processes. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kutoyants, Yury A. Statistical Inference for Ergodic Diffusion Proces. Springer London, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ergodic Diffusion Processe"

1

Kutoyants, Yury A. "Diffusion Processes and Statistical Problems." In Statistical Inference for Ergodic Diffusion Processes, 17–110. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kutoyants, Yury A. "Introduction." In Statistical Inference for Ergodic Diffusion Processes, 1–16. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kutoyants, Yury A. "Parameter Estimation." In Statistical Inference for Ergodic Diffusion Processes, 111–226. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kutoyants, Yury A. "Special Models." In Statistical Inference for Ergodic Diffusion Processes, 227–307. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kutoyants, Yury A. "Nonparametric Estimation." In Statistical Inference for Ergodic Diffusion Processes, 309–419. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kutoyants, Yury A. "Hypotheses Testing." In Statistical Inference for Ergodic Diffusion Processes, 421–60. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arnold, Ludwig, and Hans Crauel. "Iterated Function Systems and Multiplicative Ergodic Theory." In Diffusion Processes and Related Problems in Analysis, Volume II, 283–305. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kutoyants, Yury A., and Li Zhou. "Asymptotically Parameter-Free Tests for Ergodic Diffusion Processes." In Statistical Models and Methods for Reliability and Survival Analysis, 161–75. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118826805.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Colonius, Fritz, and Wolfgang Kliemann. "Remarks on Ergodic Theory of Stochastic Flows and Control Flows." In Diffusion Processes and Related Problems in Analysis, Volume II, 203–39. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kutoyants, Yu A. "On Parameter Estimation by Contaminated Observations of Ergodic Diffusion Processes." In Statistics for Industry and Technology, 461–72. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8206-4_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ergodic Diffusion Processe"

1

Piera, Francisco J., and Ravi R. Mazumdar. "An ergodic result for queue length processes of state-dependent queueing networks in the heavy-traffic diffusion limit." In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography