Academic literature on the topic 'Ergodic Diffusion Processe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ergodic Diffusion Processe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ergodic Diffusion Processe"
Corradi, Valentina. "Comovements Between Diffusion Processes." Econometric Theory 13, no. 5 (October 1997): 646–66. http://dx.doi.org/10.1017/s0266466600006113.
Full textKamarianakis, Yiannis. "Ergodic control of diffusion processes." Journal of Applied Statistics 40, no. 4 (April 2013): 921–22. http://dx.doi.org/10.1080/02664763.2012.750440.
Full textWong, Bernard. "On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications." Journal of Applied Mathematics and Stochastic Analysis 2009 (September 23, 2009): 1–16. http://dx.doi.org/10.1155/2009/215817.
Full textSwishchuk, Anatoliy, and M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas." International Journal of Stochastic Analysis 2010 (December 19, 2010): 1–21. http://dx.doi.org/10.1155/2010/347105.
Full textKutoyants, Yury A., and Nakahiro Yoshida. "Moment estimation for ergodic diffusion processes." Bernoulli 13, no. 4 (November 2007): 933–51. http://dx.doi.org/10.3150/07-bej1040.
Full textKiessler, Peter C. "Statistical Inference for Ergodic Diffusion Processes." Journal of the American Statistical Association 101, no. 474 (June 1, 2006): 846. http://dx.doi.org/10.1198/jasa.2006.s98.
Full textChen, Mu Fa. "Ergodic theorems for reaction-diffusion processes." Journal of Statistical Physics 58, no. 5-6 (March 1990): 939–66. http://dx.doi.org/10.1007/bf01026558.
Full textMagdziarz, Marcin, and Aleksander Weron. "Ergodic properties of anomalous diffusion processes." Annals of Physics 326, no. 9 (September 2011): 2431–43. http://dx.doi.org/10.1016/j.aop.2011.04.015.
Full textBel, Golan, and Ilya Nemenman. "Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes." New Journal of Physics 11, no. 8 (August 12, 2009): 083009. http://dx.doi.org/10.1088/1367-2630/11/8/083009.
Full textDi Masp, G. B., and Ł. Stettner. "Bayesian ergodic adaptive control of diffusion processes." Stochastics and Stochastic Reports 60, no. 3-4 (April 1997): 155–83. http://dx.doi.org/10.1080/17442509708834104.
Full textDissertations / Theses on the topic "Ergodic Diffusion Processe"
Wasielak, Aramian. "Various Limiting Criteria for Multidimensional Diffusion Processes." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195115.
Full textMaillet, Raphaël. "Analyse statistique et probabiliste de systèmes diffusifs en présence de bruit." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD025.
Full textThis thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator, which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth
Aeckerle-Willems, Cathrine [Verfasser], and Claudia [Akademischer Betreuer] Strauch. "Nonparametric statistics for scalar ergodic diffusion processes / Cathrine Aeckerle-Willems ; Betreuer: Claudia Strauch." Mannheim : Universitätsbibliothek Mannheim, 2019. http://d-nb.info/1202012035/34.
Full textSera, Toru. "Functional limit theorem for occupation time processes of intermittent maps." Kyoto University, 2020. http://hdl.handle.net/2433/259719.
Full textMélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Full textKadlec, Karel. "Optimální řízení stochastických rovnic s Lévyho procesy v Hilbertových proctorech." Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-437018.
Full textBooks on the topic "Ergodic Diffusion Processe"
S, Borkar Vivek, and Ghosh Mrinal K. 1956-, eds. Ergodic control of diffusion processes. Cambridge: Cambridge University Press, 2011.
Find full textKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2.
Full textHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Find full textBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Find full textBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2013.
Find full textBorkar, Vivek S., Ari Arapostathis, and Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Find full textKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. Springer London, Limited, 2013.
Find full textStatistical Inference for Ergodic Diffusion Processes. Springer, 2003.
Find full textKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Proces. Springer London, 2010.
Find full textBook chapters on the topic "Ergodic Diffusion Processe"
Kutoyants, Yury A. "Diffusion Processes and Statistical Problems." In Statistical Inference for Ergodic Diffusion Processes, 17–110. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_2.
Full textKutoyants, Yury A. "Introduction." In Statistical Inference for Ergodic Diffusion Processes, 1–16. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_1.
Full textKutoyants, Yury A. "Parameter Estimation." In Statistical Inference for Ergodic Diffusion Processes, 111–226. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_3.
Full textKutoyants, Yury A. "Special Models." In Statistical Inference for Ergodic Diffusion Processes, 227–307. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_4.
Full textKutoyants, Yury A. "Nonparametric Estimation." In Statistical Inference for Ergodic Diffusion Processes, 309–419. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_5.
Full textKutoyants, Yury A. "Hypotheses Testing." In Statistical Inference for Ergodic Diffusion Processes, 421–60. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_6.
Full textArnold, Ludwig, and Hans Crauel. "Iterated Function Systems and Multiplicative Ergodic Theory." In Diffusion Processes and Related Problems in Analysis, Volume II, 283–305. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_13.
Full textKutoyants, Yury A., and Li Zhou. "Asymptotically Parameter-Free Tests for Ergodic Diffusion Processes." In Statistical Models and Methods for Reliability and Survival Analysis, 161–75. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118826805.ch11.
Full textColonius, Fritz, and Wolfgang Kliemann. "Remarks on Ergodic Theory of Stochastic Flows and Control Flows." In Diffusion Processes and Related Problems in Analysis, Volume II, 203–39. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_9.
Full textKutoyants, Yu A. "On Parameter Estimation by Contaminated Observations of Ergodic Diffusion Processes." In Statistics for Industry and Technology, 461–72. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8206-4_28.
Full textConference papers on the topic "Ergodic Diffusion Processe"
Piera, Francisco J., and Ravi R. Mazumdar. "An ergodic result for queue length processes of state-dependent queueing networks in the heavy-traffic diffusion limit." In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797600.
Full text