To see the other types of publications on this topic, follow the link: Erbium doped optical fibres.

Journal articles on the topic 'Erbium doped optical fibres'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Erbium doped optical fibres.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Likhachev, M. E., M. M. Bubnov, K. V. Zotov, O. I. Medvedkov, D. S. Lipatov, M. V. Yashkov, and Aleksei N. Gur'yanov. "Erbium-doped aluminophosphosilicate optical fibres." Quantum Electronics 40, no. 7 (September 10, 2010): 633–38. http://dx.doi.org/10.1070/qe2010v040n07abeh014326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khudyakov, M. M., A. E. Levchenko, V. V. Vel’miskin, K. K. Bobkov, S. S. Aleshkina, M. M. Bubnov, M. V. Yashkov, A. N. Guryanov, L. V. Kotov, and M. E. Likhachev. "Optimisation of the efficiency of tapered erbium-doped optical fibre." Quantum Electronics 51, no. 12 (December 1, 2021): 1056–60. http://dx.doi.org/10.1070/qel17651.

Full text
Abstract:
Abstract We have developed a cladding pumped tapered erbium-doped fibre with a record-high core diameter for erbium-doped fibres (100 mm) and a near diffraction-limited beam quality (μ 2 ∼ 1.3). Optimisation of the tapered fibre parameters provided a high (18 %) efficiency of pump radiation conversion at a wavelength of 976 nm into signal radiation at a wavelength of 1560 nm.
APA, Harvard, Vancouver, ISO, and other styles
3

Lavrinovica, I., A. Supe, and J. Porins. "Experimental Measurement of Erbium-Doped Optical Fibre Charecteristics for Edfa Performance Optimization." Latvian Journal of Physics and Technical Sciences 56, no. 2 (April 1, 2019): 33–41. http://dx.doi.org/10.2478/lpts-2019-0011.

Full text
Abstract:
Abstract The paper presents experimental study of the major erbium-doped fibre amplifier (EDFA) features such as gain at low signal and gain saturation by an application of different erbium-doped optical fibres (EDFs). The main objective of the research is to estimate how the performance of EDFA varies depending on the length of doped fibre, pumping configuration scheme, as well as excitation source power. It is shown that a high gain coefficient of 16–20 dB can be practically achieved.
APA, Harvard, Vancouver, ISO, and other styles
4

Sen, Ranjan, Mukul Paul, Mrinmay Pal, Anirban Dhar, Shyamal Bhadra, and Kamal Dasgupta. "Erbium Doped Optical Fibres — Fabrication Technology." Journal of Optics 33, no. 4 (December 2004): 257–75. http://dx.doi.org/10.1007/bf03354769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ainslie, B. J., S. P. Craig-Ryan, S. T. Davey, J. R. Armitage, C. G. Atkins, J. F. Massicott, and R. Wyatt. "Erbium doped fibres for efficient optical amplifiers." IEE Proceedings J Optoelectronics 137, no. 4 (1990): 205. http://dx.doi.org/10.1049/ip-j.1990.0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, G. M., M. A. Putnam, C. G. Askins, M. E. Gingerich, and E. J. Friebele. "Radiation effects in erbium-doped optical fibres." Electronics Letters 28, no. 19 (1992): 1816. http://dx.doi.org/10.1049/el:19921158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Allain, J. Y., M. Monerie, and H. Poignant. "Light Emission in Erbium-Doped Fluorozirconate Optical Fibres." Materials Science Forum 67-68 (January 1991): 515–20. http://dx.doi.org/10.4028/www.scientific.net/msf.67-68.515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Blanc, Wilfried, N. A. Valé, rie Mauroy, and Bernard Dussardier. "Erbium-doped nanoparticles in silica-based optical fibres." International Journal of Nanotechnology 9, no. 3/4/5/6/7 (2012): 480. http://dx.doi.org/10.1504/ijnt.2012.045350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Popov, S. M., O. V. Butov, A. O. Kolosovskii, V. V. Voloshin, I. L. Vorob’ev, V. A. Isaev, D. V. Ryakhovskii, et al. "Optical fibres with an inscribed fibre Bragg grating array for sensor systems and random lasers." Quantum Electronics 51, no. 12 (December 1, 2021): 1101–6. http://dx.doi.org/10.1070/qel17659.

Full text
Abstract:
Abstract We report the latest results on inscribing extended fibre Bragg grating (FBG) arrays upon fibre drawing, obtained at the Kotelnikov Institute of Radioengineering and Electronics of RAS. The properties of these structures are considered, and examples of their application in sensor systems of microwave dense wavelength multiplexing and as a basis for designing single-frequency fibre lasers are considered. The optical and laser characteristics of FBG arrays, inscribed (using 248-nm UV laser radiation) both in standard single-mode telecommunication fibres of the SMF-28 type and in erbium-doped active fibres, are investigated.
APA, Harvard, Vancouver, ISO, and other styles
10

CHU, P. L., and Y. L. XUE. "NONLINEAR EFFECTS IN ERBIUM-DOPED FIBRES." Journal of Nonlinear Optical Physics & Materials 02, no. 03 (July 1993): 401–13. http://dx.doi.org/10.1142/s0218199193000243.

Full text
Abstract:
Theoretical and experimental investigations of the nonlinear refractive index in an Erbium-doped fibre is presented. The transient response of this fibre is also examined. The switching speed can be improved by using a signal power at a wavelength close to the resonant wavelength between the excited state and the ground state.
APA, Harvard, Vancouver, ISO, and other styles
11

Kasik, I., O. Podrazky, J. Mrazek, J. Cajzl, J. Aubrecht, J. Probostova, P. Peterka, P. Honzatko, and A. Dhar. "Erbium and Al2O3 nanocrystals-doped silica optical fibers." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 4 (December 1, 2014): 641–46. http://dx.doi.org/10.2478/bpasts-2014-0070.

Full text
Abstract:
Abstract. Fibre lasers and inherently rare-earth-doped optical fibers nowadays pass through a new period of their progress aiming at high efficiency of systems and their high power. In this paper, we deal with the preparation of silica fibers doped with erbium and Al2O3 nanocrystals and the characterization of their optical properties. The fibers were prepared by the extended Modified Chemical Vapor Deposition (MCVD) method from starting chlorides or oxide nanopowders. Conventional as well as modified approaches led to a nanocrystalline mullite phase formation in the fiber cores in which erbium is dissolved. The proposed modified approach based on starting nanopowders led to improved geometry of preforms and fibers and consequently to the improvement of their background attenuation. Such nanocrystal -doped fibers can be used for ASE sources. Further improvement of fiber optical properties can be expected.
APA, Harvard, Vancouver, ISO, and other styles
12

Blow, K. J. "An Optical Routing Switch Using Coupled Erbium Doped Fibres." Journal of Modern Optics 40, no. 1 (January 1993): 37–40. http://dx.doi.org/10.1080/09500349314550061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Plotskii, A. Yu, Andrei S. Kurkov, M. Yu Yashkov, M. M. Bubnov, M. E. Likhachev, A. A. Sysolyatin, A. N. Gur'yanov, and Evgenii M. Dianov. "Amplifying properties of heavily erbium-doped active fibres." Quantum Electronics 35, no. 6 (June 30, 2005): 559–62. http://dx.doi.org/10.1070/qe2005v035n06abeh006595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kuriki, K., S. Nishihara, Y. Nishizawa, A. Tagaya, Y. Okamoto, and Y. Koike. "Fabrication and optical properties of neodymium-, praseodymium- and erbium-chelates-doped plastic optical fibres." Electronics Letters 37, no. 7 (2001): 415. http://dx.doi.org/10.1049/el:20010293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nakkeeran, K. "Optical solitons in erbium-doped fibres with higher-order effects and pumping." Journal of Physics A: Mathematical and General 33, no. 23 (June 2, 2000): 4377–81. http://dx.doi.org/10.1088/0305-4470/33/23/311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kotov, L. V., A. D. Ignat'ev, M. M. Bubnov, and M. E. Likhachev. "Effect of temperature on the active properties of erbium-doped optical fibres." Quantum Electronics 46, no. 3 (March 29, 2016): 271–76. http://dx.doi.org/10.1070/qel15968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Veng, T., and B. Pálsdóttir. "Investigation and optimisation of fusion splicing abilities between erbium-doped optical fibres and standard singlemode fibres." Electronics Letters 41, no. 1 (2005): 10. http://dx.doi.org/10.1049/el:20057504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rybaltovsky, A. A., S. A. Vasil'ev, O. V. Butov, O. N. Egorova, S. G. Zhuravlev, S. L. Semjonov, B. I. Galagan, S. E. Sverchkov, and B. I. Denker. "Photosensitivity of composite erbium-doped phosphorosilicate optical fibres to 193-nm laser radiation." Quantum Electronics 49, no. 12 (December 13, 2019): 1132–36. http://dx.doi.org/10.1070/qel17160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chu, P. L., and B. Wu. "Optical switching in twin-core erbium-doped fibers." Optics Letters 17, no. 4 (February 15, 1992): 255. http://dx.doi.org/10.1364/ol.17.000255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jarabo, S., and J. M. Rodrı́guez. "Experimental determination of saturation power in erbium-doped silica fibres." Optics Communications 154, no. 4 (September 1998): 196–202. http://dx.doi.org/10.1016/s0030-4018(98)00302-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, J. S., C. Codemard, J. Nilsson, and J. K. Sahu. "Erbium-ytterbium co-doped hollow optical fibre laser." Electronics Letters 42, no. 9 (2006): 515. http://dx.doi.org/10.1049/el:20060186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Olshansky, R. "Noise figure for erbium-doped optical fibre amplifiers." Electronics Letters 24, no. 22 (1988): 1363. http://dx.doi.org/10.1049/el:19880933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Azlan Sulaiman, Azlan Sulaiman, Sulaiman Wadi Harun Sulaiman Wadi Harun, and Harith Ahmad Harith Ahmad. "Ring microfiber coupler erbium-doped fiber laser analysis." Chinese Optics Letters 12, no. 2 (2014): 021403–21406. http://dx.doi.org/10.3788/col201412.021403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Seikai, S., T. Tohi, and Y. Kanaoka. "Erbium-doped fibre amplifier circuit having a subsidiary erbium-doped fibre useful for bidirectional optical transmission systems." Electronics Letters 30, no. 22 (October 27, 1994): 1877–78. http://dx.doi.org/10.1049/el:19941296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ratuszek, M., M. J. Ratuszek, and J. Hejna. "The study of thermal connecting of telecommunication optical fibers (SiO2: GeO2) and EDF (SiO2: Al2O3, Er) fibers." Bulletin of the Polish Academy of Sciences: Technical Sciences 61, no. 1 (March 1, 2013): 279–86. http://dx.doi.org/10.2478/bpasts-2013-0026.

Full text
Abstract:
Abstract. This paper presents the research on optimization of the splicing process in the electric arc of telecommunication optical fibers and erbium doped EDF fibers. The results of the calculations of diffusion coefficients GeO2 in telecommunication optical fibers and diffusion coefficients Er and Al2O3 (together) in the fiber EDF are presented. Diffusion coefficients were determined for the fusion temperature in the electric arc ≈2000°C, on the basis of changes, along the splice, of spliced thermoluminescence intensity profiles of the fibers. On the basis of knowledge of diffusion coefficients simulation calculation of loss joints of MC SMF fiber (Matched Cladding Single Mode Fiber - SiO2: GeO2) and NZDS SMF (Non Zero Dispersion Shifted - Single Mode Fiber - SiO2: GeO2) with EDF (Erbium Doped Fiber - SiO2: Al2O3, Er) was performed and presented as a function of diffusion time. Experimental studies of optimization of thermal connected MC SMF and NZDS SMF with EDF were presented and compared with theoretical results. This paper presents the results of microscopic observations of defects and diffusion, and X-ray microanalysis in the spliced areas of single-mode telecommunication optical fibers: MC SMF, NZDS-SMF and erbium doped active single mode optical fibers. Studies were performed with the use of the scanning electron microscope JSM5800LV and JSM6610A microscope equipped with EDS X-ray spectrometer. Results showing the influence of heating time on the diffusion of core dopants and the formation of deformations in the splice areas were presented.
APA, Harvard, Vancouver, ISO, and other styles
26

Krylov, A. A., A. V. Gladyshev, A. K. Senatorov, A. N. Kolyadin, A. F. Kosolapov, M. M. Khudyakov, M. E. Likhachev, and I. A. Bufetov. "1.56-to-2.84 μm SRS conversion of chirped pulses of a high-power erbium fibre laser in a methane-filled hollow-core revolver fibre." Quantum Electronics 52, no. 3 (March 1, 2022): 274–77. http://dx.doi.org/10.1070/qel18003.

Full text
Abstract:
Abstract Single-cascade 1.56-to-2.84 μm SRS conversion is demonstrated in a hollow-core revolver fibre filled with methane at a pressure of 25 atm under pumping by positively chirped pulses of a high-power erbium-doped all-fibre laser. At a maximum pump pulse energy of 34 μJ (average power 3.74 W) and a pump pulse duration of about 260 ps, ultrashort pulses (USPs) with a duration of 110 ps and an energy of 1.33 μJ (average power 133 mW) are achieved at the centre wavelength of 2.84 μm. The gas fibre Raman lasers based on hollow-core fibres with pumping by high-power fibre sources are promising for producing all-fibre systems emitting USPs in the mid-IR range.
APA, Harvard, Vancouver, ISO, and other styles
27

Tortech, B., M. Van Uffelen, A. Gusarov, Y. Ouerdane, A. Boukenter, J. P. Meunier, F. Berghmans, and H. Thienpont. "Gamma radiation induced loss in erbium doped optical fibers." Journal of Non-Crystalline Solids 353, no. 5-7 (April 2007): 477–80. http://dx.doi.org/10.1016/j.jnoncrysol.2006.10.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Md. Ziaul Amin, Md Ziaul Amin, Khurram Karim Qureshi Khurram Karim Qureshi, and Md Mahbub Hossain Md. Mahbub Hossain. "Doping radius effects on an erbium-doped fiber amplifier." Chinese Optics Letters 17, no. 1 (2019): 010602. http://dx.doi.org/10.3788/col201917.010602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Laming, R. I., M. C. Farries, P. R. Morkel, L. Reekie, D. N. Payne, P. L. Scrivener, F. Fontana, and A. Righetti. "Efficient pump wavelengths of erbium-doped fibre optical amplifier." Electronics Letters 25, no. 1 (January 5, 1989): 12–14. http://dx.doi.org/10.1049/el:19890009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Varaksa, Yu A., G. V. Sinitsyn, and M. A. Khodasevich. "Transmission capacity of erbium-doped fiber amplifiers as a criterion for quality of erbium-doped optical fibers." Optics and Spectroscopy 104, no. 1 (January 2008): 130–34. http://dx.doi.org/10.1134/s0030400x08010207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Arrieta-Yáñez, Francisco, Oscar G. Calderón, and Sonia Melle. "Slow and fast light based on coherent population oscillations in erbium-doped fibres." Journal of Optics 12, no. 10 (September 24, 2010): 104002. http://dx.doi.org/10.1088/2040-8978/12/10/104002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zotov, K. V., M. E. Likhachev, A. L. Tomashuk, M. M. Bubnov, M. V. Yashkov, and A. N. Gur'yanov. "Radiation-resistant erbium-doped silica fibre." Quantum Electronics 37, no. 10 (October 31, 2007): 946–49. http://dx.doi.org/10.1070/qe2007v037n10abeh013660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sergeyev, Sergey V. "Fast and slowly evolving vector solitons in mode-locked fibre lasers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2027 (October 28, 2014): 20140006. http://dx.doi.org/10.1098/rsta.2014.0006.

Full text
Abstract:
We report on a new vector model of an erbium-doped fibre laser mode locked with carbon nanotubes. This model goes beyond the limitations of the previously used models based on either coupled nonlinear Schrödinger or Ginzburg–Landau equations. Unlike the previous models, it accounts for the vector nature of the interaction between an optical field and an erbium-doped active medium, slow relaxation dynamics of erbium ions, linear birefringence in a fibre, linear and circular birefringence of a laser cavity caused by in-cavity polarization controller and light-induced anisotropy caused by elliptically polarized pump field. Interplay of aforementioned factors changes coherent coupling of two polarization modes at a long time scale and so results in a new family of vector solitons (VSs) with fast and slowly evolving states of polarization. The observed VSs can be of interest in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetization in data storage devices and many other areas.
APA, Harvard, Vancouver, ISO, and other styles
34

Tammela, Simo. "Design and fabrication of erbium-doped fibers for optical amplifiers." Optical Engineering 39, no. 7 (July 1, 2000): 1943. http://dx.doi.org/10.1117/1.602579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nakkeeran, K. "Optical solitons in erbium doped fibers with higher order effects." Physics Letters A 275, no. 5-6 (October 2000): 415–18. http://dx.doi.org/10.1016/s0375-9601(00)00600-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Girard, S., B. Tortech, E. Regnier, M. Van Uffelen, A. Gusarov, Y. Ouerdane, J. Baggio, et al. "Proton- and Gamma-Induced Effects on Erbium-Doped Optical Fibers." IEEE Transactions on Nuclear Science 54, no. 6 (December 2007): 2426–34. http://dx.doi.org/10.1109/tns.2007.910859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhao, Y., and K. T. Chan. "Transmission equations for soliton amplification in erbium-doped optical fibers." Microwave and Optical Technology Letters 9, no. 3 (June 20, 1995): 164–70. http://dx.doi.org/10.1002/mop.4650090317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Oh, T. W., J. H. Shin, H. D. Kim, C. H. Lee, M. S. Lee, and B. Y. Kim. "Bidirectional erbium-doped fibre amplifier with non-reciprocal optical filter." Electronics Letters 37, no. 5 (2001): 283. http://dx.doi.org/10.1049/el:20010191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chapman, D. A. "Erbium-doped fibre amplifiers: the latest revolution in optical communications." Electronics & Communication Engineering Journal 6, no. 2 (April 1, 1994): 59–67. http://dx.doi.org/10.1049/ecej:19940202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ronarc'h, D., J. Y. Allain, M. Guibert, M. Monerie, and H. Poignant. "Erbium-doped fluoride fibre optical amplifier operating around 2.75 μm." Electronics Letters 26, no. 13 (1990): 903. http://dx.doi.org/10.1049/el:19900590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Spirit, D. M., G. R. Walker, P. W. France, S. F. Carter, and D. Szebesta. "Characterisation of diode-pumped erbium-doped fluorozirconate fibre optical amplifier." Electronics Letters 26, no. 15 (1990): 1218. http://dx.doi.org/10.1049/el:19900787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Luo, L. G., R. F. Peng, and P. L. Chu. "Optical bistability in a passive erbium-doped fibre ring resonator." Optics Communications 156, no. 4-6 (November 1998): 275–78. http://dx.doi.org/10.1016/s0030-4018(98)00466-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ren Jingfeng, 任静峰, 杨玲珍 Yang Lingzhen, 祝王华 Zhu Wanghua, 樊林林 Fan Linlin, 丁伟杰 Ding Weijie, and 王娟芬 Wang Juanfen. "光注入掺铒光纤激光器的混沌特性." Acta Optica Sinica 41, no. 21 (2021): 2114002. http://dx.doi.org/10.3788/aos202141.2114002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

WANG, M., B. TIAN, F. H. QI, B. QIN, and Z. Q. LIN. "SOLITON INTERACTIONS FOR A HIROTA–MAXWELL–BLOCH SYSTEM IN THE INHOMOGENEOUS ERBIUM-DOPED FIBER." International Journal of Modern Physics B 26, no. 24 (August 28, 2012): 1250115. http://dx.doi.org/10.1142/s0217979212501159.

Full text
Abstract:
In this paper, we consider a generalized Hirota–Maxwell–Bloch system with the higher-order dispersion and self-steepening effects, which describes the propagation of ultrashort optical pulse in the inhomogeneous erbium-doped fiber. Under certain coefficient constraints, N-soliton solutions are obtained through the Hirota method and symbolic computation. Soliton interactions are graphically presented and analyzed in the different fibers. Compared with the Hirota equation without the Maxwell–Bloch parts, the self-induced transparency effect caused by the doped erbium atoms is found to lead to the change of the soliton velocity and phase. In addition, the amplitudes and widths of solitons are respectively observed to decrease and increase in the dispersion-decreasing and dispersion-increasing fibers. Finally, we give the modulational instability condition through the linear stability analysis.
APA, Harvard, Vancouver, ISO, and other styles
45

Wu, Qing, Si Chen, Wenli Bao, and Haibin Wu. "Femtosecond Pulsed Fiber Laser Based on Graphdiyne-Modified Tapered Fiber." Nanomaterials 12, no. 12 (June 15, 2022): 2050. http://dx.doi.org/10.3390/nano12122050.

Full text
Abstract:
We report the application of saturable absorbers prepared from graphdiyne-modified tapered fibers to an erbium-doped fiber laser to achieve a femtosecond pulse output. Graphdiyne quantum dots are successfully prepared by the Glaser–Hay method. The graphdiyne-based all-fiber saturable absorber device exhibited strongly saturable absorption characteristics with a modulation depth of 18.06% and a saturation intensity of 103.5 W. The net dispersion of the erbium-doped fiber laser cavity is ~0.016 ps2, and a femtosecond pulse output with a bandwidth of 26.3 nm, a pulse width of 135.8 fs, and a single pulse capability of 54 pJ is obtained. This work lays the foundation for the application of the nonlinear optical material, graphdiyne, in ultrafast photonics.
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Zhenzhen, Cheng Guo, Liang Cui, Yichi Zhang, Cheng Du, and Xiaoying Li. "All-fiber few-mode erbium-doped fiber amplifier supporting six spatial modes." Chinese Optics Letters 17, no. 10 (2019): 100604. http://dx.doi.org/10.3788/col201917.100604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xiao, Gui, Binbin Yan, Yanhua Luo, Jianxiang Wen, Desheng Fan, Xinghu Fu, Yushi Chu, Jianzhong Zhang, and Gang-Ding Peng. "Co-doping effect of lead or erbium upon the spectroscopic properties of bismuth doped optical fibres." Journal of Luminescence 230 (February 2021): 117726. http://dx.doi.org/10.1016/j.jlumin.2020.117726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mengli Liu, Mengli Liu, Wenjun Liu Wenjun Liu, Peiguang Yan Peiguang Yan, Shaobo Fang Shaobo Fang, Hao Teng Hao Teng, and Zhiyi Wei Zhiyi Wei. "High-power MoTe2-based passively Q-switched erbium-doped fiber laser." Chinese Optics Letters 16, no. 2 (2018): 020007. http://dx.doi.org/10.3788/col201816.020007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Si, Fengpeng Wang, Fangguang Kuang, Shuying Kang, Hanwen Liang, Lijing Zheng, Lixin Guan, and Qing Wu. "Femtosecond Pulsed Fiber Laser by an Optical Device Based on NaOH-LPE Prepared WSe2 Saturable Absorber." Nanomaterials 12, no. 16 (August 11, 2022): 2747. http://dx.doi.org/10.3390/nano12162747.

Full text
Abstract:
We report on all-optical devices prepared from WSe2 combined with drawn tapered fibers as saturable absorbers to achieve ultrashort pulse output. The saturable absorber with a high damage threshold and high saturable absorption characteristics is prepared for application in erbium-doped fiber lasers by the liquid phase exfoliation method for WSe2, and the all-optical device exhibited strong saturable absorption characteristics with a modulation depth of 15% and a saturation intensity of 100.58 W. The net dispersion of the erbium-doped fiber laser cavity is ~−0.1 ps2, and a femtosecond pulse output with a bandwidth of 11.4 nm, a pulse width of 390 fs, and a single-pulse capability of 42 pJ is obtained. Results indicate that the proposed WSe2 saturable absorbers are efficient, photonic devices to realize stable fiber lasers. The results demonstrate that the WSe2 saturable absorber is an effective photonic device for realizing stable fiber lasers, which have a certain significance for the development of potential photonic devices.
APA, Harvard, Vancouver, ISO, and other styles
50

Kurkov, Andrei S., Vladimir M. Paramonov, M. V. Yashkov, S. E. Goncharov, and I. D. Zalevskii. "Multimode cladding-pumped erbium-doped fibre laser." Quantum Electronics 37, no. 4 (April 30, 2007): 343–44. http://dx.doi.org/10.1070/qe2007v037n04abeh013471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography