Journal articles on the topic 'Equivariant quantization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Equivariant quantization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bieliavsky, Pierre, Victor Gayral, Sergey Neshveyev, and Lars Tuset. "On deformations of C∗-algebras by actions of Kählerian Lie groups." International Journal of Mathematics 27, no. 03 (March 2016): 1650023. http://dx.doi.org/10.1142/s0129167x16500233.
Full textLecomte, Pierre B. A. "Towards Projectively Equivariant Quantization." Progress of Theoretical Physics Supplement 144 (December 1, 2001): 125–32. http://dx.doi.org/10.1143/ptps.144.125.
Full textPoncin, N., F. Radoux, and R. Wolak. "Equivariant quantization of orbifolds." Journal of Geometry and Physics 60, no. 9 (September 2010): 1103–11. http://dx.doi.org/10.1016/j.geomphys.2010.04.003.
Full textPFLAUM, M. J., H. B. POSTHUMA, X. TANG, and H. H. TSENG. "ORBIFOLD CUP PRODUCTS AND RING STRUCTURES ON HOCHSCHILD COHOMOLOGIES." Communications in Contemporary Mathematics 13, no. 01 (February 2011): 123–82. http://dx.doi.org/10.1142/s0219199711004142.
Full textHawkins, Eli. "Quantization of Equivariant Vector Bundles." Communications in Mathematical Physics 202, no. 3 (May 1, 1999): 517–46. http://dx.doi.org/10.1007/s002200050594.
Full textTang, Xiang, and Yi-Jun Yao. "K -theory of equivariant quantization." Journal of Functional Analysis 266, no. 2 (January 2014): 478–86. http://dx.doi.org/10.1016/j.jfa.2013.10.005.
Full textRogers, Alice. "Equivariant BRST quantization and reducible symmetries." Journal of Physics A: Mathematical and Theoretical 40, no. 17 (April 11, 2007): 4649–63. http://dx.doi.org/10.1088/1751-8113/40/17/016.
Full textMichel, Jean-Philippe. "Conformally Equivariant Quantization for Spinning Particles." Communications in Mathematical Physics 333, no. 1 (December 16, 2014): 261–98. http://dx.doi.org/10.1007/s00220-014-2229-0.
Full textDuval, Christian, Pierre Lecomte, and Valentin Ovsienko. "Conformally equivariant quantization: existence and uniqueness." Annales de l’institut Fourier 49, no. 6 (1999): 1999–2029. http://dx.doi.org/10.5802/aif.1744.
Full textDonin, J., and A. Mudrov. "Reflection equation, twist, and equivariant quantization." Israel Journal of Mathematics 136, no. 1 (December 2003): 11–28. http://dx.doi.org/10.1007/bf02807191.
Full textRobinson, P. L. "Equivariant prequantization and admissible coadjoint orbits." Mathematical Proceedings of the Cambridge Philosophical Society 114, no. 1 (July 1993): 131–42. http://dx.doi.org/10.1017/s0305004100071462.
Full textGrigorescu, M. "Energy and time as conjugate dynamical variables." Canadian Journal of Physics 78, no. 11 (November 1, 2000): 959–67. http://dx.doi.org/10.1139/p00-082.
Full textDonin, J., and A. Mudrov. "Method of Quantum Characters in Equivariant Quantization." Communications in Mathematical Physics 234, no. 3 (March 1, 2003): 533–55. http://dx.doi.org/10.1007/s00220-002-0771-7.
Full textKarolinsky, E., A. Stolin, and V. Tarasov. "Irreducible highest weight modules and equivariant quantization." Advances in Mathematics 211, no. 1 (May 2007): 266–83. http://dx.doi.org/10.1016/j.aim.2006.08.004.
Full textGalasso, Andrea, and Mauro Spera. "Remarks on the geometric quantization of Landau levels." International Journal of Geometric Methods in Modern Physics 13, no. 10 (October 26, 2016): 1650122. http://dx.doi.org/10.1142/s021988781650122x.
Full textBichr, Taher, Jamel Boujelben, and Khaled Tounsi. "Bilinear differential operators: Projectively equivariant symbol and quantization maps." Tohoku Mathematical Journal 67, no. 4 (December 2015): 481–93. http://dx.doi.org/10.2748/tmj/1450798067.
Full textRadoux, F. "Non-uniqueness of the natural and projectively equivariant quantization." Journal of Geometry and Physics 58, no. 2 (February 2008): 253–58. http://dx.doi.org/10.1016/j.geomphys.2007.11.002.
Full textHansoul, Sarah. "Projectively Equivariant Quantization for Differential Operators Acting on Forms." Letters in Mathematical Physics 70, no. 2 (November 2004): 141–53. http://dx.doi.org/10.1007/s11005-004-4293-4.
Full textRadoux, F. "Explicit Formula for the Natural and Projectively Equivariant Quantization." Letters in Mathematical Physics 78, no. 2 (October 13, 2006): 173–88. http://dx.doi.org/10.1007/s11005-006-0116-0.
Full textKarolinsky, E., A. Stolin, and V. Tarasov. "Equivariant quantization of Poisson homogeneous spaces and Kostant's problem." Journal of Algebra 409 (July 2014): 362–81. http://dx.doi.org/10.1016/j.jalgebra.2014.03.033.
Full textGiselsson, Olof. "q-Independence of the Jimbo–Drinfeld Quantization." Communications in Mathematical Physics 376, no. 3 (January 7, 2020): 1737–65. http://dx.doi.org/10.1007/s00220-019-03660-9.
Full textPAOLETTI, ROBERTO. "LOCAL TRACE FORMULAE AND SCALING ASYMPTOTICS IN TOEPLITZ QUANTIZATION." International Journal of Geometric Methods in Modern Physics 07, no. 03 (May 2010): 379–403. http://dx.doi.org/10.1142/s021988781000435x.
Full textPAOLETTI, ROBERTO. "SCALING ASYMPTOTICS FOR QUANTIZED HAMILTONIAN FLOWS." International Journal of Mathematics 23, no. 10 (October 2012): 1250102. http://dx.doi.org/10.1142/s0129167x12501029.
Full textGargoubi, Hichem, Najla Mellouli, and Valentin Ovsienko. "Differential Operators on Supercircle: Conformally Equivariant Quantization and Symbol Calculus." Letters in Mathematical Physics 79, no. 1 (November 30, 2006): 51–65. http://dx.doi.org/10.1007/s11005-006-0129-8.
Full textCirio, Lucio S., Giovanni Landi, and Richard J. Szabo. "Instantons and vortices on noncommutative toric varieties." Reviews in Mathematical Physics 26, no. 09 (October 2014): 1430008. http://dx.doi.org/10.1142/s0129055x14300088.
Full textOstapenko, Vadim. "On Uħ (ℊ, r)-equivariant quantization of non-orbit homogeneous varieties." Reports on Mathematical Physics 61, no. 2 (April 2008): 303–10. http://dx.doi.org/10.1016/s0034-4877(08)80018-3.
Full textDuval, C., and G. Valent. "A new integrable system on the sphere and conformally equivariant quantization." Journal of Geometry and Physics 61, no. 8 (August 2011): 1329–47. http://dx.doi.org/10.1016/j.geomphys.2011.02.020.
Full textBrylinski, Ranee. "Equivariant deformation quantization for the cotangent bundle of a flag manifold." Annales de l’institut Fourier 52, no. 3 (2002): 881–97. http://dx.doi.org/10.5802/aif.1905.
Full textASCHIERI, PAOLO. "TWISTING ALL THE WAY: FROM ALGEBRAS TO MORPHISMS AND CONNECTIONS." International Journal of Modern Physics: Conference Series 13 (January 2012): 1–19. http://dx.doi.org/10.1142/s201019451200668x.
Full textSEMENOFF, GORDON W., and RICHARD J. SZABO. "EQUIVARIANT LOCALIZATION, SPIN SYSTEMS AND TOPOLOGICAL QUANTUM THEORY ON RIEMANN SURFACES." Modern Physics Letters A 09, no. 29 (September 21, 1994): 2705–18. http://dx.doi.org/10.1142/s0217732394002550.
Full textRădulescu, Florin. "The Γ-equivariant form of the Berezin quantization of the upper half plane." Memoirs of the American Mathematical Society 133, no. 630 (1998): 0. http://dx.doi.org/10.1090/memo/0630.
Full textSpera, Mauro. "Moment map and gauge geometric aspects of the Schrödinger and Pauli equations." International Journal of Geometric Methods in Modern Physics 13, no. 04 (March 31, 2016): 1630004. http://dx.doi.org/10.1142/s021988781630004x.
Full textVarshovi, Amir Abbass. "⋆-cohomology, third type Chern character and anomalies in general translation-invariant noncommutative Yang–Mills." International Journal of Geometric Methods in Modern Physics 18, no. 06 (February 24, 2021): 2150089. http://dx.doi.org/10.1142/s0219887821500894.
Full textBoniver, F., and P. Mathonet. "IFFT-equivariant quantizations." Journal of Geometry and Physics 56, no. 4 (April 2006): 712–30. http://dx.doi.org/10.1016/j.geomphys.2005.04.014.
Full textBouarroudj, S., and M. Iadh AYARI. "On (2)-equivariant quantizations." Journal of Nonlinear Mathematical Physics 14, no. 2 (January 2007): 179–87. http://dx.doi.org/10.2991/jnmp.2007.14.2.4.
Full textMathonet, P. "Equivariant quantizations and Cartan connections." Bulletin of the Belgian Mathematical Society - Simon Stevin 13, no. 5 (January 2007): 857–74. http://dx.doi.org/10.36045/bbms/1170347809.
Full textČap, Andreas, and Josef Šilhan. "Equivariant quantizations for AHS-structures." Advances in Mathematics 224, no. 4 (July 2010): 1717–34. http://dx.doi.org/10.1016/j.aim.2010.01.016.
Full textZwicknagl, Sebastian. "Equivariant quantizations of symmetric algebras." Journal of Algebra 322, no. 12 (December 2009): 4247–82. http://dx.doi.org/10.1016/j.jalgebra.2009.08.007.
Full textMathonet, P., and F. Radoux. "On natural and conformally equivariant quantizations." Journal of the London Mathematical Society 80, no. 1 (June 12, 2009): 256–72. http://dx.doi.org/10.1112/jlms/jdp024.
Full textHansoul, Sarah. "Existence of natural and projectively equivariant quantizations." Advances in Mathematics 214, no. 2 (October 2007): 832–64. http://dx.doi.org/10.1016/j.aim.2007.03.007.
Full textBieliavsky, Pierre, Victor Gayral, Sergey Neshveyev, and Lars Tuset. "Addendum: On deformations of C∗-algebras by actions of Kählerian Lie groups." International Journal of Mathematics 30, no. 11 (October 2019): 1992002. http://dx.doi.org/10.1142/s0129167x19920022.
Full textMathonet, P., and F. Radoux. "Cartan connections and natural and projectively equivariant quantizations." Journal of the London Mathematical Society 76, no. 1 (August 2007): 87–104. http://dx.doi.org/10.1112/jlms/jdm030.
Full textBoniver, F., and P. Mathonet. "Maximal subalgebras of vector fields for equivariant quantizations." Journal of Mathematical Physics 42, no. 2 (2001): 582. http://dx.doi.org/10.1063/1.1332782.
Full textLeuther, Thomas, Pierre Mathonet, and Fabian Radoux. "On osp(p+1,q+1|2r)-equivariant quantizations." Journal of Geometry and Physics 62, no. 1 (January 2012): 87–99. http://dx.doi.org/10.1016/j.geomphys.2011.09.003.
Full textMathonet, P., and F. Radoux. "Natural and Projectively Equivariant Quantizations by means of Cartan Connections." Letters in Mathematical Physics 72, no. 3 (June 2005): 183–96. http://dx.doi.org/10.1007/s11005-005-6783-4.
Full textMathonet, Pierre, and Fabian Radoux. "Projectively Equivariant Quantizations over the Superspace $${\mathbb{R}^{p|q}}$$." Letters in Mathematical Physics 98, no. 3 (February 25, 2011): 311–31. http://dx.doi.org/10.1007/s11005-011-0474-0.
Full textLecomte, Pierre B. A. "On Martin Bordemann's proof of the existence of projectively equivariant quantizations." Central European Journal of Mathematics 2, no. 5 (October 2004): 793–800. http://dx.doi.org/10.2478/bf02475977.
Full textNguyen, Hans, Alexander Schenkel, and Richard J. Szabo. "Batalin–Vilkovisky quantization of fuzzy field theories." Letters in Mathematical Physics 111, no. 6 (December 2021). http://dx.doi.org/10.1007/s11005-021-01490-2.
Full textMichel, Jean-Philippe. "Conformally Equivariant Quantization - a Complete Classification." Symmetry, Integrability and Geometry: Methods and Applications, April 15, 2012. http://dx.doi.org/10.3842/sigma.2012.022.
Full textGenolini, Pietro Benetti, Jerome P. Gauntlett, and James Sparks. "Equivariant localization for AdS/CFT." Journal of High Energy Physics 2024, no. 2 (February 1, 2024). http://dx.doi.org/10.1007/jhep02(2024)015.
Full text