Academic literature on the topic 'Equiangular lines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Equiangular lines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Equiangular lines"
Et-Taoui, Boumediene. "Quaternionic equiangular lines." Advances in Geometry 20, no. 2 (April 28, 2020): 273–84. http://dx.doi.org/10.1515/advgeom-2019-0021.
Full textEt-Taoui, B. "Equiangular lines in Cr." Indagationes Mathematicae 11, no. 2 (June 2000): 201–7. http://dx.doi.org/10.1016/s0019-3577(00)89078-3.
Full textDeza, M., and V. P. Grishukhin. "L-polytopes and equiangular lines." Discrete Applied Mathematics 56, no. 2-3 (January 1995): 181–214. http://dx.doi.org/10.1016/0166-218x(94)00086-s.
Full textGreaves, Gary, Jacobus H. Koolen, Akihiro Munemasa, and Ferenc Szöllősi. "Equiangular lines in Euclidean spaces." Journal of Combinatorial Theory, Series A 138 (February 2016): 208–35. http://dx.doi.org/10.1016/j.jcta.2015.09.008.
Full textDeza, M., and V. P. Grishukhin. "Cut Lattices and Equiangular Lines." European Journal of Combinatorics 17, no. 2-3 (February 1996): 143–56. http://dx.doi.org/10.1006/eujc.1996.0013.
Full textEt-Taoui, B. "Equiangular lines in Cr (part II)." Indagationes Mathematicae 13, no. 4 (2002): 483–86. http://dx.doi.org/10.1016/s0019-3577(02)80027-1.
Full textMondal, Bishwarup, Roopsha Samanta, and Robert W. Heath. "Congruent Voronoi tessellations from equiangular lines." Applied and Computational Harmonic Analysis 23, no. 2 (September 2007): 254–58. http://dx.doi.org/10.1016/j.acha.2007.03.005.
Full textLin, Yen-Chi Roger, and Wei-Hsuan Yu. "Equiangular lines and the Lemmens–Seidel conjecture." Discrete Mathematics 343, no. 2 (February 2020): 111667. http://dx.doi.org/10.1016/j.disc.2019.111667.
Full textBalla, Igor, Felix Dräxler, Peter Keevash, and Benny Sudakov. "Equiangular lines and subspaces in Euclidean spaces." Electronic Notes in Discrete Mathematics 61 (August 2017): 85–91. http://dx.doi.org/10.1016/j.endm.2017.06.024.
Full textGuiduli, B., and M. Rosenfeld. "Ubiquitous Angles in Equiangular Sets of Lines." Discrete & Computational Geometry 24, no. 2 (September 2000): 313–24. http://dx.doi.org/10.1007/s004540010038.
Full textDissertations / Theses on the topic "Equiangular lines"
Lehbab, Imène. "Problèmes métriques dans les espaces de Grassmann." Electronic Thesis or Diss., Mulhouse, 2023. http://www.theses.fr/2023MULH6508.
Full textThis work contributes to the field of metric geometry of the complex projective plane CP2 and the real Grassmannian manifold of the planes in R6. More specifically, we study all p-tuples, p ≥ 3, of equiangular lines in C3 or equidistant points in CP2, and p-tuples of equi-isoclinic planes in R6. Knowing that 9 is the maximum number of equiangular lines that can be constructed in C3, we develop a method to obtain all p-tuples of equiangular lines for all p ϵ [3,9]. In particular, we construct in C3 five congruence classes of quadruples of equiangular lines, one of which depends on a real parameter ɣ, which we extend to an infinite family of sextuples of equiangular lines depending on the same real parameter ɣ. In addition, we give the angles for which our sextuples extend beyond and up to 9-tuples. We know that there exists a p-tuple, p ≥ 3, of equi-isoclinic planes generating Rr, r ≥ 4, with parameter c, 0< c <1, if and only if there exists a square symmetric matrix, called Seidel matrix, of p × p square blocks of order 2, whose diagonal blocks are all zero and the others are orthogonal matrices in O(2) and whose smallest eigenvalue is equal to - 1/c and has multiplicity 2p-r. In this thesis, we investigate the case r=6 and we also show that we can explicitly determine the spectrum of all Seidel matrices of order 2p, p ≥ 3 whose off-diagonal blocks are in {R0, S0} where R0 and S0 are respectively the zero-angle rotation and the zero-angle symmetry. We thus show an unexpected link between some p-tuples of equi-isoclinic planes in Rr and simple graphs of order p
Mirjalalieh, Shirazi Mirhamed. "Equiangular Lines and Antipodal Covers." Thesis, 2010. http://hdl.handle.net/10012/5493.
Full textEubanks, Travis Wayne. "A Compact Parallel-plane Perpendicular-current Feed for a Modified Equiangular Spiral Antenna and Related Circuits." Thesis, 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7801.
Full textBook chapters on the topic "Equiangular lines"
Matoušek, Jiří. "Equiangular lines." In The Student Mathematical Library, 27–29. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/stml/053/09.
Full textStacey, Blake C. "Equiangular Lines." In A First Course in the Sporadic SICs, 1–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76104-2_1.
Full textGrassl, Markus. "Computing Equiangular Lines in Complex Space." In Mathematical Methods in Computer Science, 89–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89994-5_8.
Full textJedwab, Jonathan, and Amy Wiebe. "A Simple Construction of Complex Equiangular Lines." In Algebraic Design Theory and Hadamard Matrices, 159–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17729-8_13.
Full textLEMMENS, P. W. H., J. J. SEIDEL, and J. A. Green. "Equiangular Lines." In Geometry and Combinatorics, 127–45. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-12-189420-7.50017-7.
Full text