To see the other types of publications on this topic, follow the link: Equatorial ionospheric.

Journal articles on the topic 'Equatorial ionospheric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Equatorial ionospheric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bhattacharyya, Archana. "Equatorial Plasma Bubbles: A Review." Atmosphere 13, no. 10 (October 8, 2022): 1637. http://dx.doi.org/10.3390/atmos13101637.

Full text
Abstract:
The equatorial plasma bubble (EPB) phenomenon is an important component of space weather as the ionospheric irregularities that develop within EPBs can have major detrimental effects on the operation of satellite-based communication and navigation systems. Although the name suggests that EPBs occur in the equatorial ionosphere, the nature of the plasma instability that gives rise to EPBs is such that the bubbles may extend over a large part of the global ionosphere between geomagnetic latitudes of approximately ±15°. The scientific challenge continues to be to understand the day-to-day variability in the occurrence and characteristics of EPBs, such as their latitudinal extent and the development of irregularities within EPBs. In this paper, basic theoretical aspects of the plasma processes involved in the generation of EPBs, associated ionospheric irregularities, and observations of their characteristics using different techniques will be reviewed. Special focus will be given to observations of scintillations produced by the scattering of VHF and higher frequency radio waves while they propagate through ionospheric irregularities associated with EPBs, as these observations have revealed new information about the non-linear development of Rayleigh–Taylor instability in equatorial ionospheric plasma, which is the genesis of EPBs.
APA, Harvard, Vancouver, ISO, and other styles
2

Biktash, L. Z. "Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms." Annales Geophysicae 22, no. 9 (September 23, 2004): 3195–202. http://dx.doi.org/10.5194/angeo-22-3195-2004.

Full text
Abstract:
Abstract. The equatorial ionosphere parameters, Kp, Dst, AU and AL indices characterized contribution of different magnetospheric and ionospheric currents to the H-component of geomagnetic field are examined to test the geomagnetic activity effect on the generation of ionospheric irregularities producing VLF scintillations. According to the results of the current statistical studies, one can predict near 70% of scintillations from Aarons' criteria using the Dst index, which mainly depicts the magnetospheric ring current field. To amplify Aarons' criteria or to propose new criteria for predicting scintillation characteristics is the question. In the present phase of the experimental investigations of electron density irregularities in the ionosphere new ways are opened up because observations in the interaction between the solar wind - magnetosphere - ionosphere during magnetic storms have progressed greatly. According to present view, the intensity of the electric fields and currents at the polar regions, as well as the magnetospheric ring current intensity, are strongly dependent on the variations of the interplanetary magnetic field. The magnetospheric ring current cannot directly penetrate the equatorial ionosphere and because of this difficulties emerge in explaining its relation to scintillation activity. On the other hand, the equatorial scintillations can be observed in the absence of the magnetospheric ring current. It is shown that in addition to Aarons' criteria for the prediction of the ionospheric scintillations, models can be used to explain the relationship between the equatorial ionospheric parameters, h'F, foF2, and the equatorial geomagnetic variations with the polar ionosphere currents and the solar wind.
APA, Harvard, Vancouver, ISO, and other styles
3

Onohara, A. N., I. S. Batista, and H. Takahashi. "The ultra-fast Kelvin waves in the equatorial ionosphere: observations and modeling." Annales Geophysicae 31, no. 2 (February 7, 2013): 209–15. http://dx.doi.org/10.5194/angeo-31-209-2013.

Full text
Abstract:
Abstract. The main purpose of this study is to investigate the vertical coupling between the mesosphere and lower thermosphere (MLT) region and the ionosphere through ultra-fast Kelvin (UFK) waves in the equatorial atmosphere. The effect of UFK waves on the ionospheric parameters was estimated using an ionospheric model which calculates electrostatic potential in the E-region and solves coupled electrodynamics of the equatorial ionosphere in the E- and F-regions. The UFK wave was observed in the South American equatorial region during February–March 2005. The MLT wind data obtained by meteor radar at São João do Cariri (7.5° S, 37.5° W) and ionospheric F-layer bottom height (h'F) observed by ionosonde at Fortaleza (3.9° S; 38.4° W) were used in order to calculate the wave characteristics and amplitude of oscillation. The simulation results showed that the combined electrodynamical effect of tides and UFK waves in the MLT region could explain the oscillations observed in the ionospheric parameters.
APA, Harvard, Vancouver, ISO, and other styles
4

Tsunomura, S. "Numerical analysis of global ionospheric current system including the effect of equatorial enhancement." Annales Geophysicae 17, no. 5 (May 31, 1999): 692–706. http://dx.doi.org/10.1007/s00585-999-0692-2.

Full text
Abstract:
Abstract. A modeling method is proposed to derive a two-dimensional ionospheric layer conductivity, which is appropriate to obtain a realistic solution of the polar-originating ionospheric current system including equatorial enhancement. The model can be obtained by modifying the conventional, thin shell conductivity model. It is shown that the modification for one of the non-diagonal terms (Σθφ) in the conductivity tensor near the equatorial region is very important; the term influences the profile of the ionospheric electric field around the equator drastically. The proposed model can reproduce well the results representing the observed electric and magnetic field signatures of geomagnetic sudden commencement. The new model is applied to two factors concerning polar-originating ionospheric current systems. First, the latitudinal profile of the DP2 amplitude in the daytime is examined, changing the canceling rate for the dawn-to-dusk electric field by the region 2 field-aligned current. It is shown that the equatorial enhancement would not appear when the ratio of the total amount of the region 2 field-aligned current to that of region 1 exceeds 0.5. Second, the north-south asymmetry of the magnetic fields in the summer solstice condition of the ionospheric conductivity is examined by calculating the global ionospheric current system covering both hemispheres simultaneously. It is shown that the positive relationship between the magnitudes of high latitude magnetic fields and the conductivity is clearly seen if a voltage generator is given as the source, while the relationship is vague or even reversed for a current generator. The new model, based on the International Reference Ionosphere (IRI) model, can be applied to further investigations in the quantitative analysis of the magnetosphere-ionosphere coupling problems.Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionosphere-magnetosphere interactions)
APA, Harvard, Vancouver, ISO, and other styles
5

Rishbeth, H. "The equatorial F-layer: progress and puzzles." Annales Geophysicae 18, no. 7 (July 31, 2000): 730–39. http://dx.doi.org/10.1007/s00585-000-0730-6.

Full text
Abstract:
Abstract. This work reviews some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator. Starting with a historical introduction, brief summaries are given of the physics that makes the equatorial ionosphere so interesting, concentrating on the large-scale structure rather than the smaller-scale instability phenomena. Several individual topics are then discussed, including eclipse effects, the asymmetries of the `equatorial trough', variations with longitude, the semiannual variation, the effects of the global thermospheric circulation, and finally the equatorial neutral thermosphere, including `superrotation' and possible topographic influences.Keyword: Ionosphere (equatorial ionosphere)
APA, Harvard, Vancouver, ISO, and other styles
6

Kobea, A. T., C. Amory-Mazaudier, J. M. Do, H. Lühr, E. Houngninou, J. Vassal, E. Blanc, and J. J. Curto. "Equatorial electrojet as part of the global circuit: a case-study from the IEEY." Annales Geophysicae 16, no. 6 (June 30, 1998): 698–710. http://dx.doi.org/10.1007/s00585-998-0698-1.

Full text
Abstract:
Abstract. Geomagnetic storm-time variations often occur coherently at high latitude and the day-side dip equator where they affect the normal eastward Sq field. This paper presents an analysis of ground magnetic field and ionospheric electrodynamic data related to the geomagnetic storm which occured on 27 May 1993 during the International Equatorial Electrojet Year (IEEY) experiment. This storm-signature analysis on the auroral, mid-latitude and equatorial ground field and ionospheric electrodynamic data leads to the identification of a sensitive response of the equatorial electrojet (EEJ) to large-scale auroral return current: this response consists in a change of the eastward electric field during the pre-sunrise hours (0400-0600 UT) coherently to the high-, mid-, and equatorial-latitude H decrease and the disappearance of the EEJ irregularities between the time-interval 0800-0950 UT. Subsequent to the change in h'F during pre-sunrise hours, the observed foF2 increase revealed an enhancement of the equatorial ionization anomaly (EIA) caused by the high-latitude penetrating electric field. The strengthening of these irregularities attested by the Doppler frequency increase tracks the H component at the equator which undergoes a rapid increase around 0800 UT. The ∆H variations observed at the equator are the sum of the following components: SR, DP, DR, DCF and DT.Keywords. Equatorial electrojet · Magnetosphere-ionosphere interactions · Electric fields and currents · Auroral ionosphere · Ionospheric disturbances
APA, Harvard, Vancouver, ISO, and other styles
7

Le Roux, Y. M., J. Ménard, J. P. Jolivet, and P. J. Davy. "<i>Letter to the Editor:</i> SCIPION, a new flexible ionospheric sounder in Senegal." Annales Geophysicae 16, no. 6 (June 30, 1998): 738–42. http://dx.doi.org/10.1007/s00585-998-0738-x.

Full text
Abstract:
Abstract. SCIPION is a new state of the art digital sounder that has been devoloped by France Telecom-CNET for ionospheric monitoring and research. Extensive data processing using DSP technology has resulted in a low power, low cost and full featured system for both vertical and oblique soundings. A SCIPION system is in the process of being installed in Dakar, Senegal, to study HF propagation in the sub-equatorial ionosphere. However, preliminary results have still been obtained during experiments wit a prototype system. In this paper, the system is described and some illustrative examples of its capabilities are shown.Keywords. Ionosphere (Equatorial ionosphere, Instruments and Techniques) &amp;#x22C5 Radio science (ionospheric propagation).
APA, Harvard, Vancouver, ISO, and other styles
8

Sahai, Y., P. R. Fagundes, J. R. Abalde, A. A. Pimenta, J. A. Bittencourt, Y. Otsuka, and V. H. Rios. "Generation of large-scale equatorial F-region plasma depletions during lowrange spread-F season." Annales Geophysicae 22, no. 1 (January 1, 2004): 15–23. http://dx.doi.org/10.5194/angeo-22-15-2004.

Full text
Abstract:
Abstract. All-sky imaging observations of the F-region OI 630nm nightglow emission allow us to visualize large-scale equatorial plasma depletions, generally known as trans-equatorial plasma bubbles. Strong range type spread-F is the radio signature of these (magnetically) north-south aligned plasma depletions. An extensive database of the OI 630nm emission all-sky imaging observations has been obtained at Cachoeira Paulista (22.7°S, 45.0°W; dip latitude ∼16°S), Brazil, between the years 1987 and 2000. An analysis of these observations revealed that relatively few large-scale ionospheric plasma depletions occur during the months of May to August (southern winter, June solstice) in the Brazilian sector. Of the few that are observed during these months, some occur in association with geomagnetic storms and some do not. In this paper, a detailed analysis of the events when large-scale ionospheric plasma depletions were initiated and evolved during the June solstice periods are presented and discussed.Key words. Atmospheric composition and chemistry (airglow and aurora). Ionosphere (equatorial ionosphere; ionospheric irregularities)
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Hai-Ning, Qing-Lin Zhu, Xiang Dong, Dong-Sheng Sheng, Yong-Feng Zhi, Chen Zhou, and Bin Xu. "A Novel Technique for High-Precision Ionospheric VTEC Estimation and Prediction at the Equatorial Ionization Anomaly Region: A Case Study over Haikou Station." Remote Sensing 15, no. 13 (July 4, 2023): 3394. http://dx.doi.org/10.3390/rs15133394.

Full text
Abstract:
This paper introduces a novel technique that uses observation data from GNSS to estimate the ionospheric vertical total electron content (VTEC) using the Kriging–Kalman method. The technique provides a method to validate the accuracy of the Ionospheric VTEC analysis within the Equatorial Ionization anomaly region. The technique developed uses GNSS VTEC alongside solar parameters, such as solar radio flux (F10.7 cm), Disturbance Storm Time (Dst) and other data, and Long Short Term Memory (LSTM) Networks to predict the occurrence time of the ionospheric equatorial anomaly and ionospheric VTEC changes. The LSTM method was applied to GNSS data from Haikou Station. A comparison of this technique with the neural network (NN) model and International Reference Ionosphere model shows that the LSTM outperforms all of them at VTEC estimation and prediction. The results, which are based on the root mean square error (RMSE) between GNSS VTEC and GIM VTEC outside the equatorial anomaly region, was 1.42 TECU, and the results of GNSS VTEC and VTEC from Beidou geostationary orbit satellite, which lies inside the equatorial ionization anomaly region, was 1.92 TECU. The method developed can be used in VTEC prediction and estimation in real time space operations.
APA, Harvard, Vancouver, ISO, and other styles
10

Kulyamin, Dmitry V., Pavel A. Ostanin, and Valentin P. Dymnikov. "INM-IM: INM RAS Earth ionosphere F region dynamical model." Russian Journal of Numerical Analysis and Mathematical Modelling 37, no. 6 (December 1, 2022): 349–62. http://dx.doi.org/10.1515/rnam-2022-0028.

Full text
Abstract:
Abstract A new INM RAS global dynamical model of Earth’s ionosphere F region (100–500 km), which takes into account plasma-chemical processes, ambipolar diffusion, and advective ion transport due to electromagnetic drifts and neutral wind is presented. The model includes parameterizations of polar electric fields induced by magnetospheric convection and simplified equatorial drifts considerations. The focus of the paper is directed on the description of specific methods developed and utilized in the ionospheric model. Key processes responsible for the formation of global ionospheric features are outlined and their representation in the model is evaluated. The main global ionospheric characteristic features, such as seasonal and diurnal cycles, the equatorial ionization anomaly (EIA), polar ionization caps and the main trough have been adequately reproduced based on this model.
APA, Harvard, Vancouver, ISO, and other styles
11

Hysell, D. L., E. Kudeki, and J. L. Chau. "Possible ionospheric preconditioning by shear flow leading to equatorial spread <i>F</i>." Annales Geophysicae 23, no. 7 (October 14, 2005): 2647–55. http://dx.doi.org/10.5194/angeo-23-2647-2005.

Full text
Abstract:
Abstract. Vertical shear in the zonal plasma drift speed is apparent in incoherent and coherent scatter radar observations of the bottomside F region ionosphere made at Jicamarca from about 1600–2200 LT. The relative importance of the factors controlling the shear, which include competition between the E and F region dynamos as well as vertical currents driven in the E and F regions at the dip equator, is presently unknown. Bottom-type scattering layers arise in strata where the neutral and plasma drifts differ widely, and periodic structuring of irregularities within the layers is telltale of intermediate-scale waves in the bottomside. These precursor waves appear to be able to seed ionospheric interchange instabilities and initiate full-blown equatorial spread F. The seed or precursor waves may be generated by a collisional shear instability. However, assessing the viability of shear instability requires measurements of the same parameters needed to understand shear flow quantitatively - thermospheric neutral wind and off-equatorial conductivity profiles. Keywords. Ionosphere (Equatorial ionosphere; ionospheric irregularities) – Space plasma physics (Waves and instabilities)
APA, Harvard, Vancouver, ISO, and other styles
12

DABBAKUTI, J. R. K. Kumar, D. Venkata RATNAM, and Surendra SUNDA. "MODELLING OF IONOSPHERIC TIME DELAYS BASED ON ADJUSTED SPHERICAL HARMONIC ANALYSIS." Aviation 20, no. 1 (April 11, 2016): 1–7. http://dx.doi.org/10.3846/16487788.2016.1162197.

Full text
Abstract:
The ionosphere is the region of the upper atmosphere and the study of the upper atmosphere has a significant role in monitoring, modeling and forecasting for satellite based navigation services. As India lies in a low latitude region, a more careful approach has to be taken to characterize the ionosphere due to the irregularities and equatorial anomaly conditions. In order to study the ionospheric temporal variations, a regional ionospheric model based on the Adjusted Spherical Harmonic Analysis (ASHA) is implemented. The results indicate that the ASHA model is one of the contenders for estimating ionospheric delays well for GNSS augmentation systems.
APA, Harvard, Vancouver, ISO, and other styles
13

Pimenta, A. A., P. R. Fagundes, Y. Sahai, J. A. Bittencourt, and J. R. Abalde. "Equatorial F-region plasma depletion drifts: latitudinal and seasonal variations." Annales Geophysicae 21, no. 12 (December 31, 2003): 2315–22. http://dx.doi.org/10.5194/angeo-21-2315-2003.

Full text
Abstract:
Abstract. The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation), and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles). The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions) seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45° W, 15.8° S dip latitude), Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7° S) region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991) to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed.Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques)
APA, Harvard, Vancouver, ISO, and other styles
14

Rastogi, R. G. "Midday reversal of equatorial ionospheric electric field." Annales Geophysicae 15, no. 10 (October 31, 1997): 1309–15. http://dx.doi.org/10.1007/s00585-997-1309-2.

Full text
Abstract:
Abstract. A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
15

Pulinets, Sergey. "Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process." International Journal of Geophysics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/131842.

Full text
Abstract:
Ionospheric and atmospheric anomalies registered around the time of strong earthquakes in low-latitude regions are reported now regularly. Majority of these reports have the character of case studies without clear physical mechanism proposed. Here we try to present the general conception of low-latitude effects using the results of the recent author’s publications, including also rethinking the earlier results interpreted basing on recently established background physical mechanisms of anomalies generation. It should be underlined that only processes initiated by earthquake preparation are considered. Segregation of low-latitude regions for special consideration is connected with the important role of ionospheric equatorial anomaly in the seismoionospheric coupling and specific character of low-latitude earthquake initiated effects. Three main specific features can be marked in low-latitude ionospheric anomalies manifestation: the presence of magnetic conjugacy in majority of cases, local longitudinal asymmetry of effects observed in ionosphere in relation to the vertical projection of epicenter onto ionosphere, and equatorial anomaly reaction even on earthquakes outside equatorial anomaly (i.e., 30–40 LAT). The equality of effects morphology regardless they observed over land or over sea implies only one possible explanation that these anomalies are initiated by gaseous emanations from the Earth crust, and radon plays the major role.
APA, Harvard, Vancouver, ISO, and other styles
16

Nimmakayala, Shiva Kumar, and Bala Sai Srilatha Indira Dutt Vemuri. "Analysis of Ionospheric Scintillations using GPS and NavIC Combined Constellation." Engineering, Technology & Applied Science Research 13, no. 3 (June 2, 2023): 10936–40. http://dx.doi.org/10.48084/etasr.5863.

Full text
Abstract:
The disturbances and irregularities in the ionosphere are the primarily recognized ramifications of space weather called scintillations. Irregularities in the electron densities are the source of the ionospheric scintillations. This article investigates the ionospheric scintillations, which are predominant in the trans-equatorial and equatorial regions. Based on the data from a multi-constellation Global Navigation Satellite Systems (GNSS) receiver at the Chaitanya Bharathi Institute of Technology Hyderabad, the relationship between the amplitude scintillation index S4 and the rate of change of total electron content (ROTI) is examined. The correlation coefficient between S4 and ROTI is demonstrated in this article. The outcome validates the usefulness of the ROTI in identifying the scintillations.
APA, Harvard, Vancouver, ISO, and other styles
17

Keskinen, M. J. "Equatorial ionospheric bubble precursor." Geophysical Research Letters 37, no. 9 (May 2010): n/a. http://dx.doi.org/10.1029/2010gl042963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chakrabarti, N., and G. S. Lakhina. "Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma." Annales Geophysicae 21, no. 5 (May 31, 2003): 1153–57. http://dx.doi.org/10.5194/angeo-21-1153-2003.

Full text
Abstract:
Abstract. Collisional Rayleigh-Taylor (RT) instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities)
APA, Harvard, Vancouver, ISO, and other styles
19

Yizengaw, Endawoke. "Global Longitudinal Dependence Observation of the Neutral Wind and Ionospheric Density Distribution." International Journal of Geophysics 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/342581.

Full text
Abstract:
The statistical global view of the low-latitude ionospheric density stimulates further interest in studying the strong longitudinal variability of the ionospheric density structures in low-to-equatorial latitudes. However, we are not completely certain how the electrodynamics and ion-neutral coupling proceeds at low latitudes; in particular, the longitudinal difference in the dynamics of plasma structures in the low-to-mid latitude ionosphere is not yet fully understood. Numerical studies of latent heat release in the troposphere have indicated that the lower atmosphere can indeed introduce a longitudinal dependence and variability of the low-latitude ionosphere during quiet conditions. For the first time, we present simultaneous observations of the tidally modulated global wind structure, using TIDI observations, in the E-region and the ionospheric density distribution using ground (global GPS receivers) and space-based (C/NOFS in situ density and GPS TEC on CHAMP) instruments. Our results show that the longitudinally structured zonal wind component could be responsible for the formation of wave number four pattern of the equatorial anomaly.
APA, Harvard, Vancouver, ISO, and other styles
20

SUN, J., Z. ZHANG, X. LIU, C. ZHANG, and Z. MU. "ANALYSIS OF IONOSPHERIC TEC ANOMALIES DURING SUPER TYPHOONS MEGI AND MERANTI." Meteorologiya i Gidrologiya 3 (2021): 117–26. http://dx.doi.org/10.52002/0130-2906-2021-3-117-126.

Full text
Abstract:
In this paper, we detected and analyzed ionospheric anomalies during the 2016 super typhoons Megi and Meranti using the sliding interquartile range method applied to the ionospheric total electron content (TEC) grid data from the Global Ionospheric Model (GIM) provided by the Center for Orbit Determination in Europe (CODE). We found that ionospheric TEC anomalies occurred 2 days before the origination of super typhoon Megi. The anomalies occurred from 02:00 to 12:00 local time over a period of 10 h, with a maximum outlier of 12 TEC units over the typhoon center. Anomalies occurred in the ionosphere over both the area near the typhoon center and the corresponding equatorial magnetic conjugate region. The anomalies in both areas showed approximately the same trends. It is very likely that the disturbances from the ionospheric anomalies over the typhoon center were one of the precursors for the typhoon event. Similar ionospheric anomalies also occurred in the ionosphere 2 days before the formation and development of super typhoon Meranti...
APA, Harvard, Vancouver, ISO, and other styles
21

Hickey, Dustin A., Carlos R. Martinis, Michael Mendillo, Jeffrey Baumgardner, Joei Wroten, and Marco Milla. "Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator." Annales Geophysicae 36, no. 2 (March 22, 2018): 473–87. http://dx.doi.org/10.5194/angeo-36-473-2018.

Full text
Abstract:
Abstract. In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95∘ S, 76.87∘ W; 0.3∘ S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774 Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8∘ S, 69.3∘ W; 19.8∘ S MLAT), and Villa de Leyva, Colombia (5.6∘ N, 73.52∘ W; 16.4∘ N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400–500 km and within-group separation around 50–100 km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry–Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes. Keywords. Ionosphere (equatorial ionosphere; ionospheric irregularities; plasma temperature and density)
APA, Harvard, Vancouver, ISO, and other styles
22

Yizengaw, E., P. L. Dyson, E. A. Essex, and M. B. Moldwin. "Ionosphere dynamics over the Southern Hemisphere during the 31 March 2001 severe magnetic storm using multi-instrument measurement data." Annales Geophysicae 23, no. 3 (March 30, 2005): 707–21. http://dx.doi.org/10.5194/angeo-23-707-2005.

Full text
Abstract:
Abstract. The effects of the 31 March 2001 severe magnetic storm on the Southern Hemisphere ionosphere have been studied using ground-based and satellite measurements. The prime goal of this comprehensive study is to track the ionospheric response from high-to-low latitude to obtain a clear understanding of storm-time ionospheric change. The study uses a combination of ionospheric Total Electron Content (TEC) obtained from GPS signal group delay and phase advance measurements, ionosonde data, and data from satellite in-situ measurements, such as the Defense Metrological Satellite Program (DMSP), TOPographic EXplorer (TOPEX), and solar wind data from the Advanced Composition Explorer (ACE). A chain of Global Positioning System (GPS) stations near the 150° E meridian has been used to give comprehensive latitude coverage extending from the cusp to the equatorial region. A tomographic inversion algorithm has been applied to the GPS TEC measurements to obtain maps of the latitudinal structure of the ionospheric during this severe magnetic storm period, enabling both the spatial and temporal response of the ionosphere to be studied. Analysis of data from several of the instruments indicates that a strong density enhancement occurred at mid-latitudes at 11:00 UT on 31 March 2001 and was followed by equatorward propagating large-scale Travelling Ionospheric Disturbances (TIDs). The tomographic reconstruction revealed important features in ionospheric structure, such as quasi-wave formations extending finger-like to higher altitudes. The most pronounced ionospheric effects of the storm occurred at high- and mid-latitudes, where strong positive disturbances occurred during the storm main phase, followed by a long lasting negative storm effect during the recovery phase. Relatively minor storm effects occurred in the equatorial region.
APA, Harvard, Vancouver, ISO, and other styles
23

Ratovsky, Konstantin G., Maxim V. Klimenko, Yury V. Yasyukevich, Vladimir V. Klimenko, and Artem M. Vesnin. "Statistical Analysis and Interpretation of High-, Mid- and Low-Latitude Responses in Regional Electron Content to Geomagnetic Storms." Atmosphere 11, no. 12 (December 2, 2020): 1308. http://dx.doi.org/10.3390/atmos11121308.

Full text
Abstract:
Geomagnetic storm is one of the most powerful factors affecting the state of the Earth’s ionosphere. Revealing the significance of formation mechanisms for ionospheric storms is still an unresolved problem. The purpose of the study is to obtain a statistical pattern of the response in regional electron content to geomagnetic storms on a global scale to interpret the results using the upper atmosphere model (the Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere), to make the detailed comparison with the thermospheric storm concept, and to compare the obtained pattern with results from previous statistical studies. The regional electron content is calculated based on the global ionospheric maps data, which allows us to cover the midlatitude and high-latitude zones of both hemispheres, as well as the equatorial zone. Most of the obtained statistical pattern agrees with the thermospheric storm concept and with the previous statistical studies: ionospheric responses at ionospheric storm main phases including their seasonal dependences for the high- and midlatitudes and some features of ionospheric responses at recovery phases. However, some of the statistical patterns are inconsistent with the thermospheric storm concept or contradicts the previous statistical studies: negative midlatitude ionospheric responses at recovery phases in the local winter, the domination of the spring response in the equatorial zone, seasonal features of the positive after-effects, the interhemispheric asymmetry of ionospheric responses, and the prestorm enhancement. We obtained that the contribution of electric field to the interpretation of the zonal and diurnal averaged storm-time regional electron content (REC) disturbances is insignificant. The positive after-storm effects at different latitudes are caused by n(O) disturbances.
APA, Harvard, Vancouver, ISO, and other styles
24

Elias, Ana G., Blas F. de Haro Barbas, Bruno S. Zossi, Franco D. Medina, Mariano Fagre, and Jose V. Venchiarutti. "Review of Long-Term Trends in the Equatorial Ionosphere Due the Geomagnetic Field Secular Variations and Its Relevance to Space Weather." Atmosphere 13, no. 1 (December 28, 2021): 40. http://dx.doi.org/10.3390/atmos13010040.

Full text
Abstract:
The Earth’s ionosphere presents long-term trends that have been of interest since a pioneering study in 1989 suggesting that greenhouse gases increasing due to anthropogenic activity will produce not only a troposphere global warming, but a cooling in the upper atmosphere as well. Since then, long-term changes in the upper atmosphere, and particularly in the ionosphere, have become a significant topic in global change studies with many results already published. There are also other ionospheric long-term change forcings of natural origin, such as the Earth’s magnetic field secular variation with very special characteristics at equatorial and low latitudes. The ionosphere, as a part of the space weather environment, plays a crucial role to the point that it could certainly be said that space weather cannot be understood without reference to it. In this work, theoretical and experimental results on equatorial and low-latitude ionospheric trends linked to the geomagnetic field secular variation are reviewed and analyzed. Controversies and gaps in existing knowledge are identified together with important areas for future study. These trends, although weak when compared to other ionospheric variations, are steady and may become significant in the future and important even now for long-term space weather forecasts.
APA, Harvard, Vancouver, ISO, and other styles
25

Li, G., B. Ning, W. Wan, and B. Zhao. "Observations of GPS ionospheric scintillations over Wuhan during geomagnetic storms." Annales Geophysicae 24, no. 6 (July 3, 2006): 1581–90. http://dx.doi.org/10.5194/angeo-24-1581-2006.

Full text
Abstract:
Abstract. During the two geomagnetic storms which occurred on 1 October 2002 and 22 January 2004, the strong ionospheric scintillations of the GPS L1 band were observed at Wuhan station (30.6° N, 114.4° E, 45.8° Dip), which is situated near the northern crest of the equatorial ionosphere anomaly. We found that the intense scintillations were associated with the main phases of the storms and were co-located with the enhancement of the equatorial ionization anomaly (EIA); the co-existence of large- and small-scale irregularities at post-midnight was also found. The results may be relevant regarding the influence of the equatorial ionospheric eastward electric field during geomagnetic storms. On the other hand, GPS L1 band scintillations were not observed during the other two similar storms on 16 July 2003 and 20 November 2003. One of the reasons is probably that the sporadic E layer observed at the storms inhibited the generation of spread F by changing the Pedersen conductivity and suppressing the upward plasma drift.
APA, Harvard, Vancouver, ISO, and other styles
26

Maruyama, T., S. Saito, M. Kawamura, K. Nozaki, J. Krall, and J. D. Huba. "Equinoctial asymmetry of a low-latitude ionosphere-thermosphere system and equatorial irregularities: evidence for meridional wind control." Annales Geophysicae 27, no. 5 (May 4, 2009): 2027–34. http://dx.doi.org/10.5194/angeo-27-2027-2009.

Full text
Abstract:
Abstract. Nocturnal ionospheric height variations were analyzed along the meridian of 100° E by using ionosonde data. Two ionosondes were installed near the magnetic conjugate points at low latitudes, and the third station was situated near the magnetic equator. Ionospheric virtual heights were scaled every 15 min and vertical E×B drift velocities were inferred from the equatorial station. By incorporating the inferred equatorial vertical drift velocity, ionospheric bottom heights with the absence of wind were modeled for the two low-latitude conjugate stations, and the deviation in heights from the model outputs was used to infer the transequatorial meridional thermospheric winds. The results obtained for the September and March equinoxes of years 2004 and 2005, respectively, were compared, and a significant difference in the meridional wind was found. An oscillation with a period of approximately 7 h of the meridional wind existed in both the equinoxes, but its amplitude was larger in September as compared to that in March. When the equatorial height reached the maximum level due to the evening enhancement of the zonal electric field, the transequatorial meridional wind velocity reached approximately 10 and 40 m/s for the March and September equinoxes, respectively. This asymmetry of the ionosphere-thermosphere system was found to be associated with the previously reported equinoctial asymmetry of equatorial ionospheric irregularities; the probability for equatorial irregularities to occur is higher in March as compared to that in September at the Indian to Western Pacific longitudes. Numerical simulations of plasma bubble developments were conducted by incorporating the transequatorial neutral wind effect, and the results showed that the growth time (e-folding time) of the bubble was halved when the wind velocity changed from 10 to 40 m/s.
APA, Harvard, Vancouver, ISO, and other styles
27

Diabaté, Abidina, Jean Louis Zerbo, and Frédéric Ouattara. "Variation of the foF2 parameter during fluctuating activity: Prediction with IRI-2012 compared to measured data from Ouagadougou inosonde station during solar cycles 21 and 22." VIETNAM JOURNAL OF EARTH SCIENCES 41, no. 1 (January 8, 2019): 59–68. http://dx.doi.org/10.15625/0866-7187/41/1/13549.

Full text
Abstract:
In this paper, we review on diurnal variations of the foF2 ionospheric parameter predicted by the IRI-2012 model, and data from Ouagadougou ionosonde station located in the crest of the Equatorial Anomaly (Lat: 12.5°N; Long: 358.5°E, dip: 1.43°) during fluctuating geomagnetic activity conditions for the solar cycles 21 and 22. Our investigations are focused on the electrodynamic aspects, the influence of the ionospheric electric currents as well as the variations of the hourly values given by model and experimental measurements. A comparative study pointed out that the IRI-2012 model, through its URSI and CCIR subroutines, gives a good prediction of the critical frequency of the F2 layer between 0700 TL and 0000 TL. In addition, IRI -2012 tries to reproduce, as best as possible, the vertical drift E × B during minimum, decreasing phase, winter, and autumn. However, there is no effect of drift during the other seasons and solar cycle phases. A last, the model does not take into account the PRE phenomenon observed in autumn and the influence of the equatorial electrojet in this ionospheric zone.ReferencesAcharya R., Roy B., Sivaraman M.R., 2010. Dasgupta A. An empirical relation of daytime equatorial total electron content with equatorial electrojet in the Indian zone. J Atmos Terr Phys, 72(10), 774–780.Acharya R., Roy B., Sivaraman M.R.; Dasgupta A., 2011. On conformity of the EEJ based Ionospheric model to the Fountain effect and resulting improvements. J Atmos Terr Phys, 73, 779-784.Adeniyi J.O., Oladipo O.A., Radicella S.M., 2005. Variability of fof2 and comparison with iri model for an equatorial station. The Abdus Salam International Centre for Theoretical Physics, IC/2005/085, http://www.ictp.it/~pub_off.Adeniyi1 J.O., Oladjipo O.A., Radicella S.M., 2005. Variability of foF2 and comparison with IRI model for an equatorial station. The Abdus Salam International Centre for Theoretical Physics, IC/2005/085.Bilitza D., et al., 2014. The International Reference Ionosphere 2012-a model of international collaborationI. J. Space Weather Space Clim, 4, A07.Bilitza D., Reinisch B.W., 2008. International Reference Ionosphere 2007: Improvements and new parameters. Adv. Space Res, 42, 599–609.Farley D.T., Bonell E., Fejer B.G., Larsen M.F., 1986. The Prereversal Enhancement of the Zonal Electric Field in the Equatorial Ionosphere. J Geophys Res, 91(A12), 13,723–13,728.Faynot J.M., Villa P., 1979. F region at the magnetic equator. Ann Geophys, 35, 1–9.Fejer B.G., 1981. The equatorial ionospheric electric fields: A review. J Atmos Terr Phys, 43, 377.Fejer B.G., Farley D.T., Woodman R.F., Calderon C., 1979. Dependence of equatorial F region vertical drifts on season and solar cycle. J Geophys Res, 84, 5792.Legrand J.P., Simon P.A., 1989. Solar cycle and geomagnetic activity: A review for geophysicists. Part I. The contributions to geomagnetic activity of shock waves and of the solar wind. Ann. Geophys, 7, 565–578.Obrou K.O., 2008. Contribution à l’amélioration du modèle "International Reference Ionosphere" (IRI) pour l’ionosphère équatoriale. Thèse de doctorat Université de Cocody, Abidjan, Côte d’Ivoire.Ouattara F., 2009. Contribution à l’étude des relations entre les deux composantes du champ magnétique solaire et l’Ionosphère Equatoriale. Thèse de Doctorat d’Etat ès Sciences, Université Cheikh Anta Diop, Dakar, Sénégal.Ouattara F., 2013. IRI-2007 foF2 Predictions at Ouagadougou Station during Quiet Time Periods from 1985 to 1995. Archives of Physics Research, 4, 12–18.Ouattara F., Amory-Mazaudier C., 2009. Solar–geomagnetic activity and Aa indices toward a Standard. J. Atmos. Terr. Phys, 71, 1736–1748.Ouattra F., Nanéma, 2014. Quiet Time foF2 Variation at Ouagadougou Station and Comparison with TIEGCM and IRI-2012 Predictions for 1985 and 1990. Physical Science International Journal, 4(6), 892–902.Oyekola O.S., Fagundes P.R., 2012. Equatorial F2-layer variations: Comparison between F2 peak parameters at Ouagadougou with the IRI-2007 model. Earth, Planets Space, 64, 553–566.Rishbeth H., 1971. The F-layer dynamo. Planet, Space Sci, 19, 263.Vassal J.A., 1982. The variation of the magnetic field and its relationship with the equatorial electrojet in Senegal Oriental. Annals of Geophysics, Tome French, 38.Zerbo J.L., Amory-Mazaudier C. Ouattara F., Richardson J., 2012. Solar Wind and Geomagnetism, toward a Standard Classification 1868-2009. Ann Geophys, 30, 421–426. http://dx.doi.org/10.5194/angeo-30-421-2012.Zerbo J.L., Amory-Mazaudier C., Ouattara F., 2013. Geomagnetism during solar cycle 23: Characteristics. J. Adv. Res, 4(3), 265–274. Doi:10.1016/j.jare.2013.08.010.Zerbo J.L., Ouattara F., Zoundi C., Gyébré A., 2011. Solar cycle 23 and geomagnetic activity since 1868. Revue CAMES serie A, 12(2), 255–262.
APA, Harvard, Vancouver, ISO, and other styles
28

Zakharenkova, I. E., A. Krankowski, and I. I. Shagimuratov. "Modification of the low-latitude ionosphere before the 26 December 2004 Indonesian earthquake." Natural Hazards and Earth System Sciences 6, no. 5 (September 25, 2006): 817–23. http://dx.doi.org/10.5194/nhess-6-817-2006.

Full text
Abstract:
Abstract. This paper investigates the features of pre-earthquake ionospheric anomalies in the total electron content (TEC) data obtained on the basis of regular GPS observations from the IGS network. For the analysis of the ionospheric effects of the 26 December 2004 Indonesian earthquake, global TEC maps were used. The possible influence of the earthquake preparation processes on the main low-latitude ionosphere peculiarity – the equatorial anomaly – is discussed. Analysis of the TEC maps has shown that modification of the equatorial anomaly occurred a few days before the earthquake. For 2 days prior to the event, a positive effect was observed in the daytime amplification of the equatorial anomaly. Maximal enhancement in the crests reached 20 TECU (50–60%) relative to the non-disturbed state. In previous days, during the evening and night hours (local time), a specific transformation of the TEC distribution had taken place. This modification took the shape of a double-crest structure with a trough near the epicenter, though usually in this time the restored normal latitudinal distribution with a maximum near the magnetic equator is observed. It is assumed that anomalous electric field generated in the earthquake preparation zone could cause a near-natural "fountain-effect" phenomenon and might be a possible cause of the observed ionospheric anomaly.
APA, Harvard, Vancouver, ISO, and other styles
29

Ryu, Kwangsun, Seunguk Lee, Chang Ho Woo, Junchan Lee, Eunjin Jang, Jaemin Hwang, Jin-Kyu Kim, et al. "Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasmaprobe (IAMMAP) for the CAS500-3 Satellite." Journal of Astronomy and Space Sciences 39, no. 3 (September 2022): 117–26. http://dx.doi.org/10.5140/jass.2022.39.3.117.

Full text
Abstract:
The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperaturetolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.
APA, Harvard, Vancouver, ISO, and other styles
30

ROMANELLI, L., and F. A. HIRSCH. "An equatorial ionospheric current system." Journal of geomagnetism and geoelectricity 37, no. 6 (1985): 575–80. http://dx.doi.org/10.5636/jgg.37.575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Richmond, A. D. "Modeling equatorial ionospheric electric fields." Journal of Atmospheric and Terrestrial Physics 57, no. 10 (August 1995): 1103–15. http://dx.doi.org/10.1016/0021-9169(94)00126-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chapagain, Narayan P. "Dynamics Ionospheric Plasma Bubbles Measured by Optical Imaging System." Journal of Institute of Science and Technology 20, no. 1 (November 25, 2015): 20–27. http://dx.doi.org/10.3126/jist.v20i1.13906.

Full text
Abstract:
Deep plasma depletions during the nighttime period in the equatorial ionosphere (referred to as equatorial plasma bubbles –EPBs) can significantly affect communications and navigation systems. In this study, we present the image measurements of plasma bubble from Christmas Island (2.1°N, 157.4°W, dip latitude 2.8°N) in the central Pacific Ocean. These observations were made during September-October 1995 using a Utah State University (USU) CCD imaging system measured at ~280 km altitude. Well-defined magnetic field-aligned plasma depletions were observed for 18 nights, including strong post-midnight fossilized structures, enabling detailed measurements of their morphology and dynamics. We also estimate zonal velocity of the plasma bubbles from available images. The zonal drift velocity of the EPBs is a very important parameter for the understanding and modeling of the electrodynamics of the equatorial ionosphere and for the predictions of ionospheric irregularities. The eastward zonal drift velocities were around 90-100 m/s prior to local midnight, and decreases during the post-midnight period that persisted until dawn.Journal of Institute of Science and Technology, 2015, 20(1): 20-27
APA, Harvard, Vancouver, ISO, and other styles
33

Thampi, S. V., T. K. Pant, S. Ravindran, C. V. Devasia, and R. Sridharan. "Simulation studies on the tomographic reconstruction of the equatorial and low-latitude ionosphere in the context of the Indian tomography experiment: CRABEX." Annales Geophysicae 22, no. 10 (November 3, 2004): 3445–60. http://dx.doi.org/10.5194/angeo-22-3445-2004.

Full text
Abstract:
Abstract. Equatorial ionosphere poses a challenge to any algorithm that is used for tomographic reconstruction because of the phenomena like the Equatorial Ionization Anomaly (EIA) and Equatorial Spread F (ESF). Any tomographic reconstruction of ionospheric density distributions in the equatorial region is not acceptable if it does not image these phenomena, which exhibit large spatial and temporal variability, to a reasonable accuracy. The accuracy of the reconstructed image generally depends on many factors, such as the satellite-receiver configuration, the ray path modelling, grid intersections and finally, the reconstruction algorithm. The present simulation study is performed to examine these in the context of the operational Coherent Radio Beacon Experiment (CRABEX) network just commenced in India. The feasibility of using this network for the studies of the equatorial and low-latitude ionosphere over Indian longitudes has been investigated through simulations. The electron density distributions that are characteristic of EIA and ESF are fed into various simulations and the reconstructed tomograms are investigated in terms of their reproducing capabilities. It is seen that, with the present receiver chain existing from 8.5° N to 34° N, it would be possible to obtain accurate images of EIA and the plasma bubbles. The Singular Value Decomposition (SVD) algorithm has been used for the inversion procedure in this study. As is known, by the very nature of ionospheric tomography experiments, the received data contain various kinds of errors, like the measurement and discretization errors. The sensitivity of the inversion algorithm, SVD in the present case, to these errors has also been investigated and quantified.
APA, Harvard, Vancouver, ISO, and other styles
34

Nichols, J. D., and S. W. H. Cowley. "Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages." Annales Geophysicae 23, no. 3 (March 30, 2005): 799–808. http://dx.doi.org/10.5194/angeo-23-799-2005.

Full text
Abstract:
Abstract. We consider the effect of field-aligned voltages on the magnetosphere-ionosphere coupling current system associated with the breakdown of rigid corotation of equatorial plasma in Jupiter's middle magnetosphere. Previous analyses have assumed perfect mapping of the electric field and flow along equipotential field lines between the equatorial plane and the ionosphere, whereas it has been shown that substantial field-aligned voltages must exist to drive the field-aligned currents associated with the main auroral oval. The effect of these field-aligned voltages is to decouple the flow of the equatorial and ionospheric plasma, such that their angular velocities are in general different from each other. In this paper we self-consistently include the field-aligned voltages in computing the plasma flows and currents in the system. A third order differential equation is derived for the ionospheric plasma angular velocity, and a power series solution obtained which reduces to previous solutions in the limit that the field-aligned voltage is small. Results are obtained to second order in the power series, and are compared to the original zeroth order results with no parallel voltage. We find that for system parameters appropriate to Jupiter the effect of the field-aligned voltages on the solutions is small, thus validating the results of previously-published analyses.
APA, Harvard, Vancouver, ISO, and other styles
35

Becker-Guedes, F., Y. Sahai, P. R. Fagundes, W. L. C. Lima, V. G. Pillat, J. R. Abalde, and J. A. Bittencourt. "Geomagnetic storm and equatorial spread-F." Annales Geophysicae 22, no. 9 (September 23, 2004): 3231–39. http://dx.doi.org/10.5194/angeo-22-3231-2004.

Full text
Abstract:
Abstract. In August 2000, a new ionospheric sounding station was established at Sao Jose dos Campos (23.2° S, 45.9° W; dip latitude 17.6° S), Brazil, by the University of Vale do Paraiba (UNIVAP). Another ionospheric sounding station was established at Palmas (10.2° S, 48.2° W; dip latitude 5.5° S), Brazil, in April 2002, by UNIVAP in collaboration with the Lutheran University Center of Palmas (CEULP), Lutheran University of Brazil (ULBRA). Both the stations are equipped with digital ionosonde of the type known as Canadian Advanced Digital Ionosonde (CADI). In order to study the effects of geomagnetic storms on equatorial spread-F, we present and discuss three case studies, two from the ionospheric sounding observations at Sao Jose dos Campos (September and November 2000) and one from the simultaneous ionospheric sounding observations at Sao Jose dos Campos and Palmas (July 2003). Salient features from these ionospheric observations are presented and discussed in this paper. It has been observed that sometimes (e.g. 4-5 November 2000) the geomagnetic storm acts as an inhibitor (high strong spread-F season), whereas at other times (e.g. 11-12 July 2003) they act as an initiator (low strong spread-F season), possibly due to corresponding changes in the quiet and disturbed drift patterns during different seasons.
APA, Harvard, Vancouver, ISO, and other styles
36

Sethi, N. K., M. K. Goel, and K. K. Mahajan. "Solar Cycle variations of ƒ<i>o</i>F2 from IGY to 1990." Annales Geophysicae 20, no. 10 (October 31, 2002): 1677–85. http://dx.doi.org/10.5194/angeo-20-1677-2002.

Full text
Abstract:
Abstract. Noontime monthly median values of F2-layer critical frequency foF2 (m) for some ionospheric stations representing low- and mid-latitudes are examined for their dependence on solar activity for the years 1957 (IGY) to 1990. This is the period for which ionospheric data in digital form is available in two CD-ROMs at the World Data Center, Boulder. It is observed that at mid-latitudes, foF2 (m) shows nearly a linear relationship with R12 (the 12-month running average of the Zurich sunspot number), though this relation is nonlinear for low-latitudes. These results indicate some departures from the existing information often used in theoretical and applied areas of space research.Key words. Ionosphere (equatorial ionosphere; mid-latitude ionosphere; modelling and forecasting)
APA, Harvard, Vancouver, ISO, and other styles
37

Jonah, Olusegun F., Shunrong Zhang, Anthea J. Coster, Larisa P. Goncharenko, Philip J. Erickson, William Rideout, Eurico R. de Paula, and Rodolfo de Jesus. "Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms." Remote Sensing 12, no. 2 (January 9, 2020): 228. http://dx.doi.org/10.3390/rs12020228.

Full text
Abstract:
Traveling ionospheric disturbances (TIDs) are wave-like disturbances in ionospheric plasma density. They are often observed during both quiet (medium-scale TID) and geomagnetically disturbed (large-scale TID) conditions. Their amplitudes can reach double-digit percentages of the background plasma density, and their existence presents a challenge for accurate ionosphere specification. In this study, we examine TID properties using observations obtained during two geomagnetically disturbed periods using multiple ground and space-borne instruments, such as magnetometers, Global Navigation Satellite System (GNSS) receivers, and the SWARM satellite. Reference quiet time observations are also provided for both storms. We use a thermosphere–ionosphere–electrodynamics general circulation model (TIEGCM) results to properly interpret TID features and their drivers. This combination of observations and modeling allows the investigation of variations of TID generation mechanisms and subsequent wave propagation, particularly as a function of different plasma background densities during various geophysical conditions. The trans-equatorial coupling of TIDs in the northern and southern hemispheres is also investigated with respect to attenuation and propagation characteristics. We show that TID properties during trans-equatorial events may be substantially affected by storm time background neutral wind perturbation.
APA, Harvard, Vancouver, ISO, and other styles
38

Horvath, I., and E. A. Essex. "Vertical <i>E</i> × <i>B</i> drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data." Annales Geophysicae 21, no. 4 (April 30, 2003): 1017–30. http://dx.doi.org/10.5194/angeo-21-1017-2003.

Full text
Abstract:
Abstract. With a well-selected data set, the various events of the vertical E × B drift velocity variations at magnetic-equator-latitudes, the resultant ionospheric features at low-and mid-latitudes, and the practical consequences of these E × B events on the equatorial radio signal propagation are demonstrated. On a global scale, the development of a equatorial anomaly is illustrated with a series of 1995 global TOPEX TEC (total electron content) maps. Locally, in the Australian longitude region, some field-aligned TOPEX TEC cross sections are combined with the matching Guam (144.86° E; 13.59° N, geographic) GPS (Global Positioning System) TEC data, covering the northern crest of the equatorial anomaly. Together, the 1998 TOPEX and GPS TEC data are utilized to show the three main events of vertical E × B drift velocity variations: (1) the pre-reversal enhancement, (2) the reversal and (3) the downward maximum. Their effects on the dual-frequency GPS recordings are documented with the raw Guam GPS TEC data and with the filtered Guam GPS dTEC/min or 1-min GPS TEC data after Aarons et al. (1997). During these E × B drift velocity events, the Port Moresby (147.10° E; - 9.40° N, geographic) virtual height or h'F ionosonde data (km), which cover the southern crest of the equatorial anomaly in the Australian longitude region, show the effects of plasma drift on the equatorial ionosphere. With the net (D) horizontal (H) magnetic field intensity parameter, introduced and called DH or Hequator-Hnon-equator (nT) by Chandra and Rastogi (1974), the daily E × B drift velocity variations are illustrated at 121° E (geographic) in the Australian longitude region. The results obtained with the various data show very clearly that the development of mid-latitude night-time TEC increases is triggered by the westward electric field as the appearance of such night-time TEC increases coincides with the E × B drift velocity reversal. An explanation is offered with the F-region dynamo theory and electrodynamics, and with the ionospheric-plasmaspheric coupling. A comparison is made with the published model results of SUPIM (Sheffield University Plasmasphere-Ionosphere Model; Balan and Bailey, 1995) and experimental results of Park (1971), and the good agreement found is highlighted.Key words. Ionosphere (electric fields; equatorial ionosphere; mid-latitude ionosphere)
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Yiding, Libo Liu, Huijun Le, Hui Zhang, and Ruilong Zhang. "Responding trends of ionospheric F2-layer to weaker geomagnetic activities." Journal of Space Weather and Space Climate 12 (2022): 6. http://dx.doi.org/10.1051/swsc/2022005.

Full text
Abstract:
Geomagnetic activities frequently occur in varying degrees. Strong geomagnetic activities, which have been widely investigated, occur occasionally; they can cause distinguishable and significant disturbances in the ionosphere. Weaker geomagnetic activities frequently appear, whereas their effects are generally difficult to be distinguished from complex ionospheric variations. Weaker geomagnetic activities play important roles in ionospheric day-to-day variability thus should deserve further attention. In this study, long-term (longer than one solar cycle) measurements of the F2-layer critical frequency (foF2) were collected to statistically investigate ionospheric responses to weaker geomagnetic activities (Ap < 60). The responding trends of low- to high-latitude foF2 to increasing geomagnetic activity are presented for the first time; they are statistically evident. Both increasing and decreasing trends can occur, depending on latitudes and seasons. The trend gradually transits from high-latitude decreasing trends to equatorial increasing trends with decreasing latitude, and this transition is seasonally dependent. As a result, the trend has a seasonal difference at mid-latitudes. The responding trend is generally more distinct at higher latitudes and in the equatorial region than at mid-latitudes, and the responding intensity is largest at higher latitudes. Although theoretically, geomagnetic activities can disturb the ionosphere through multiple mechanisms, the morphology of the trend suggests that the frequent weaker geomagnetic activities modulate the high- to low-latitude ionosphere mainly through disturbing high-latitude thermospheric composition and further altering the thermospheric background circulation.
APA, Harvard, Vancouver, ISO, and other styles
40

Simões, Fernando, Jeffrey Klenzing, Stoyan Ivanov, Robert Pfaff, Henry Freudenreich, Dieter Bilitza, Douglas Rowland, et al. "Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere." Journal of Geophysical Research: Space Physics 117, A11 (November 2012): n/a. http://dx.doi.org/10.1029/2012ja017709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rastogi, R. G. "Morphological aspects of a new type of counter electrojet event." Annales Geophysicae 17, no. 2 (February 28, 1999): 210–19. http://dx.doi.org/10.1007/s00585-999-0210-6.

Full text
Abstract:
Abstract. The study describes the time and space morphologies of a rather new type of counter electrojet event on the basis of data from the excellent chain of magnetic and ionospheric observatories along the Indo-Russian longitude sector. Abnormally large westward currents are observed during almost the whole of the daytime hours on a series of days. These events do not form any vortices in the current system and do not apparently seem to be associated with tidal effects or any solar magnetosphere events or geomagnetic disturbances. The existence of a westward electric field over the equatorial ionosphere has been confirmed by the absence of an equatorial type of sporadic E in the ionograms at Thumba precisely during the periods when ∆H at Trivandrum minus ∆H at Alibag is negative. The equatorial F region anomaly was also absent on the counter electrojet day. Such counter electrojet events during the northern winter months of low solar activity years are suggested to be the result of the modified wind system in the ionosphere associated with stratospheric warming events.Key words. Geomagnetism and paleomagnetism (time variations · diurnal to secular) · Ionosphere (electric fields and currents; equatorial ionosphere)
APA, Harvard, Vancouver, ISO, and other styles
42

Dashora, N., and R. Pandey. "Observations in equatorial anomaly region of total electron content enhancements and depletions." Annales Geophysicae 23, no. 7 (October 14, 2005): 2449–56. http://dx.doi.org/10.5194/angeo-23-2449-2005.

Full text
Abstract:
Abstract. A GSV 4004A GPS receiver has been operational near the crest of the equatorial anomaly at Udaipur, India for some time now. The receiver provides the line-of-sight total electron content (TEC), the phase and amplitude scintillation index, σφ and S4, respectively. This paper presents the first results on the nighttime TEC depletions associated with the equatorial spread F in the Indian zone. The TEC depletions are found to be very well correlated with the increased S4 index. A new feature of low-latitude TEC is also reported, concerning the observation of isolated and localized TEC enhancements in the nighttime low-latitude ionosphere. The TEC enhancements are not correlated with the S4 index. The TEC enhancements have also been observed along with the TEC depletions. The TEC enhancements have been interpreted as the manifestation of the plasma density enhancements reported by Le et al. (2003). Keywords. Ionosphere (Equatorial ionosphere; Ionospheric irregularities)
APA, Harvard, Vancouver, ISO, and other styles
43

Chakrabarty, D., R. Sekar, H. Chandra, R. Narayanan, B. M. Pathan, and K. S. V. Subbarao. "Characterizations of the diurnal shapes of OI 630.0 nm dayglow intensity variations: inferences." Annales Geophysicae 20, no. 11 (November 30, 2002): 1851–55. http://dx.doi.org/10.5194/angeo-20-1851-2002.

Full text
Abstract:
Abstract. Measurements of OI 630.0 nm thermospheric dayglow emission by means of the Dayglow Photometer (DGP) at Mt. Abu (24.6° N, 73.7° E, dip lat 19.09° N), a station under the crest of Equatorial Ionization Anomaly (EIA), reveal day-to-day changes in the shapes of the diurnal profiles of dayglow intensity variations. These shapes have been characterized using the magnetometer data from equatorial and low-latitude stations. Substantial changes have been noticed in the shapes of the dayglow intensity variations between 10:00–15:00 IST (Indian Standard Time) during the days when normal and counter electrojet events are present over the equator. It is found that the width (the time span corresponding to 0.8 times the maximum dayglow intensity) of the diurnal profile has a linear relationship with the integrated electrojet strength. Occasional deviation from this linear relationship is attributed to the presence of substantial mean meridional wind.Key words. Ionosphere (equatorial ionosphere; ionosphere – atmosphere interactions; ionospheric disturbances)
APA, Harvard, Vancouver, ISO, and other styles
44

Suvorova, Alla, and Alexei Dmitriev. "The impact of intense fluxes of energetic protons on the low-latitude ionosphere." E3S Web of Conferences 196 (2020): 01011. http://dx.doi.org/10.1051/e3sconf/202019601011.

Full text
Abstract:
Experiments on board low-Earth orbit satellites show that energetic particles (tens of keV) of the Earth’s radiation belt can penetrate to the equatorial ionosphere. Impact of the energetic particles on the upper atmosphere and ionosphere was studied for the case of the geomagnetic storm on 22 July 2009. We present changes of local ion concentration in the low-latitude ionosphere at night measured by the C/NOFS satellite at heights 400-800 km during the magnetic storm and quiet days. The ionospheric density during the storm was compared with a simultaneous observation of enhancements of 30-80 keV proton fluxes measured by the NOAA/POES satellites near the equator at height ~850 km. We suggest that ionospheric irregularities at night can be caused by effect of energetic protons.
APA, Harvard, Vancouver, ISO, and other styles
45

Zhivetiev, Ilya V., and Yury V. Yasyukevich. "Network Theory to Reveal Ionospheric Anomalies over North America and Australia." Atmosphere 13, no. 8 (August 22, 2022): 1333. http://dx.doi.org/10.3390/atmos13081333.

Full text
Abstract:
There are significant challenges to model the ionosphere due to different anomalies, especially under the increasing requirements for precision level. We used network theory to construct an ionospheric network analysis based on the data of global ionospheric maps for the period from 1998 to 2015. The network approach revealed different domains in the ionosphere. Besides the well-known equatorial anomaly, we revealed two more essential areas with “anomalous” behavior in the total electron content (TEC). Both anomalies are located at mid-latitudes: the first over most of North America, and the second one over the southeast part of Australia and the adjacent part of the Indian Ocean. The revealed areas partly coincide with the winter anomaly regions. Our results demonstrate that complex ionosphere/magnetic field/neutral atmosphere interaction can result in atypical ionosphere dynamics in huge areas.
APA, Harvard, Vancouver, ISO, and other styles
46

Aol, Sharon, Stephan Buchert, Edward Jurua, and Marco Milla. "Simultaneous ground-based and in situ Swarm observations of equatorial F-region irregularities over Jicamarca." Annales Geophysicae 38, no. 5 (October 16, 2020): 1063–80. http://dx.doi.org/10.5194/angeo-38-1063-2020.

Full text
Abstract:
Abstract. Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. They can be seen in situ as depletions of plasma density, radar plasma plumes, or ionogram spread F by ionosondes. In this paper, we compared simultaneous observations of plasma plumes by the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory (JRO), and irregularities observed in situ by Swarm in order to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground. The study covered the years from 2014 to 2018, as this was the period for which JULIA, Swarm, and ionosonde data sets were available. Overall, the results showed that Swarm's in situ density fluctuations on magnetic flux tubes passing over (or near) the JRO may be used as indicators of plasma plumes and spread F over (or near) the observatory. For Swarm and the ground-based observations, a classification procedure was conducted based on the presence or absence of ionospheric irregularities. There was a strong consensus between ground-based observations of ionospheric irregularities and Swarm's depth of disturbance of electron density for most passes. Cases, where ionospheric irregularities were observed on the ground with no apparent variation in the in situ electron density or vice versa, suggest that irregularities may either be localized horizontally or restricted to particular height intervals. The results also showed that the Swarm and ground-based observations of ionospheric irregularities had similar local time statistical trends with the highest occurrence obtained between 20:00 and 22:00 LT. Moreover, similar seasonal patterns of the occurrence of in situ and ground-based ionospheric irregularities were observed with the highest percentage occurrence at the December solstice and the equinoxes and low occurrence at the June solstice. The observed seasonal pattern was explained in terms of the pre-reversal enhancement (PRE) of the vertical plasma drift. Initial findings from this research indicate that fluctuations in the in situ density observed meridionally along magnetic field lines passing through the JRO can be used as an indication of the existence of well-developed plasma plumes.
APA, Harvard, Vancouver, ISO, and other styles
47

Camargo, Paulo de Oliveira. "Quality of TEC Estimated with Mod_Ion Using GPS and GLONASS Data." Mathematical Problems in Engineering 2009 (2009): 1–16. http://dx.doi.org/10.1155/2009/794578.

Full text
Abstract:
One of the largest sources of error in positioning and navigation with GNSS is the ionosphere, and the associated error is directly proportional to the TEC and inversely proportional to the square of the signal frequency that propagates through the ionosphere. The equatorial region, especially in Brazil, is where the highest spatial and temporal value variations of the TEC are seen, and where these various features of the ionosphere, such as the equatorial anomaly and scintillation, can be found. Thus, the development and assessments of ionospheric models are important. In this paper, the quality of the TEC was evaluated, as well as the systematic error in the L1 carrier and the inter-frequency biases of satellites and receivers estimated with the Mod_Ion, observable from GPS and integration with the GLONASS, collected with dual frequency receivers.
APA, Harvard, Vancouver, ISO, and other styles
48

Chernigovskaya, Marina, Boris Shpynev, Denis Khabituev, Konstantin Ratovsky, Anastasiya Belinskaya, Aleksandr Stepanov, Vasily Bychkov, Svetlana Grigor'eva, Valery Panchenko, and Jens Mielich. "Studying the response of the mid-latitude ionosphere of the Northern Hemisphere to magnetic storms in March 2012." Solnechno-Zemnaya Fizika 8, no. 4 (December 24, 2022): 46–56. http://dx.doi.org/10.12737/szf-84202204.

Full text
Abstract:
We have studied variations in ionospheric and geomagnetic parameters in the Northern Hemisphere during a series of magnetic storms in March 2012 by analyzing data from the Eurasian mid-latitude ionosonde chain, mid- and high-latitude chains of magnetometers of the global network INTERMAGNET. We have confirmed manifestations of the longitude inhomogeneity of ionospheric effects, which is associated with the irregular structure of the longitudinal variability of geomagnetic field components. The complex physics of the long magnetically disturbed period in March 2012 with switching between positive and negative phases of the ionospheric storm in the same period of the magnetic storm for different spatial regions is emphasized. The change in the effects of the ionospheric storm during this period might have been associated with the superposition in the mid-latitude region of the competing processes affecting the ionospheric ionization whose sources were in the auroral and equatorial ionosphere. We have compared the scenarios for the development of ionospheric disturbances under equinox conditions during magnetic storms in March 2012, October 2016, and March 2015.
APA, Harvard, Vancouver, ISO, and other styles
49

Chernigovskaya, Marina, Boris Shpynev, Denis Khabituev, Konstantin Ratovsky, Anastasiya Belinskaya, Aleksandr Stepanov, Vasily Bychkov, Svetlana Grigor'eva, Valery Panchenko, and Jens Mielich. "Studying the response of the mid-latitude ionosphere of the Northern Hemisphere to magnetic storms in March 2012." Solar-Terrestrial Physics 8, no. 4 (December 24, 2022): 44–54. http://dx.doi.org/10.12737/stp-84202204.

Full text
Abstract:
We have studied variations in ionospheric and geomagnetic parameters in the Northern Hemisphere during a series of magnetic storms in March 2012 by analyzing data from the Eurasian mid-latitude ionosonde chain, mid- and high-latitude chains of magnetometers of the global network INTERMAGNET. We have confirmed manifestations of the longitude inhomogeneity of ionospheric effects, which is associated with the irregular structure of the longitudinal variability of geomagnetic field components. The complex physics of the long magnetically disturbed period in March 2012 with switching between positive and negative phases of the ionospheric storm in the same period of the magnetic storm for different spatial regions is emphasized. The change in the effects of the ionospheric storm during this period might have been associated with the superposition in the mid-latitude region of the competing processes affecting the ionospheric ionization whose sources were in the auroral and equatorial ionosphere. We have compared the scenarios for the development of ionospheric disturbances under equinox conditions during magnetic storms in March 2012, October 2016, and March 2015.
APA, Harvard, Vancouver, ISO, and other styles
50

Huang, Z., and H. Yuan. "Climatology of the ionospheric slab thickness along the longitude of 120° E in China and its adjacent region during the solar minimum years of 2007–2009." Annales Geophysicae 33, no. 10 (October 30, 2015): 1311–19. http://dx.doi.org/10.5194/angeo-33-1311-2015.

Full text
Abstract:
Abstract. The ionospheric slab thickness is defined as the ratio of the total electron content (TEC) to the ionospheric F2 layer peak electron density (NmF2). In this study, the slab thickness is determined by measuring the ionospheric TEC from dual-frequency Global Positioning System (GPS) data and the NmF2 from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC). A statistical analysis of the diurnal, seasonal and spatial variation in the ionospheric slab thickness is presented along the longitude of 120° E in China and its adjacent region during the recent solar minimum phase (2007–2009). The diurnal ratio, defined as the maximum slab thickness to the minimum slab thickness, and the night-to-day ratio, defined as the slab thickness during daytime to the slab thickness during night-time, are both analysed. The results show that the TEC of the northern crest is greater in winter than in summer, whereas NmF2 is greater in summer than in winter. A pronounced peak of slab thickness occurs during the post-midnight (00:00–04:00 LT) period, when the peak electron density is at the lowest level. A large diurnal ratio exists at the equatorial ionization anomaly, and a large night-to-day ratio occurs near the equatorial latitudes and mid- to high latitudes. It is found that the behaviours of the slab thickness and the F2 peak altitude are well correlated at the latitudes of 30–50° N and during the period of 10:00–16:00 LT. This current study is useful for improvement of the regional model and accurate calculation of the signal delay of radio waves propagating through the ionosphere.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography