Dissertations / Theses on the topic 'Équations différentielles stochastiques rétrogrades (EDSR)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Équations différentielles stochastiques rétrogrades (EDSR).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

El, Asri Brahim. "Switching optimal et équations différentielles stochastiques rétrogrades réfléchies." Le Mans, 2010. http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1003.pdf.

Full text
Abstract:
Dans les deux premières parties, nous nous intéressons à un problème de Switching à plusieurs régimes de fonctionnement, les fonctions de profits sont à croissance polynomiale arbitraire et les fonctions de switching d’un régime à un autre (coût de Switching) non constantes dépendant de l’état et du temps. Dans la première partie, nous étudions essentiellement le cadre Markovien en horizon fini et dans la seconde nous étudions le cadre général en horizon infini. En horizon fini nous montrons que le théorème de vérification associé à notre problème qui s’exprime par l’intermédiaire d’un système d’EDP paraboliques avec obstacles inter-connectés à une solution unique au sens de viscosité. Cette solution est construite à partir du système d’EDSR réfléchies et le principe de la programmation dynamique associés au problème du switching optimal. Puis en horizon infini, nous établissons le théorème de vérification pour lequel nous montrons l’existence d’une solution en utilisant la théorie de l’enveloppe de Snell et des équations différentielles stochastiques rétrogrades. Nous étudions ensuite le cadre markovien et nous montrons que le théorème de vérification associé à notre problème qui s’exprime par l’intermédiaire d’un système d’EDP elliptiques avec obstacles inter-connectés à une solution unique au sens de viscosité. Enfin, dans la dernière partie, nous étudions les EDSRs réfléchies à deux barrières continues où les coefficients sont supposés simplement p-intégrables avec р Є (1; 2). En utilisant la notion de solution locale, nous démontrons que cette équation admet une solution unique. Comme applications, nous abordons un problème de jeu de Dynkin puis la solution au sens de viscosité d’un problème d’équation aux dérivées partielles avec deux obstacles
We study optimal switching and Lр-solution for doubly reflected backward stochastic differential equations. In the first part, we show existence and uniqueness of a solution for a system of m variational partial differential inequalities with inter-connected obstacles. This system is the deterministic version of the Verification Theorem of the Markovian optimal m-states switching problem. The switching cost functions are arbitrary. In the second part we study the problem of the deterministic version of the Verification Theorem for the optimal m-states switching in infinite horizon under Markovian framework with arbitrary switching cost functions. The problem is formulated as an extended impulse control problem and solved by means of probabilistic tools such as the Snell envelop of processes and reflected backward stochastic differential equations. A viscosity solutions approach is employed to carry out a fine analysis on the associated system of m variational inequalities with inter-connected obstacles. We show that the vector of value functions of the optimal problem is the unique viscosity solution to the system. Finally in the third part, we deal the problem of existence and uniqueness of a solution for à backward stochastic differential equation (BSDE for short) with two strictly separated continuous reflecting barriers in the case when the terminal value, the generator and the obstacle process are Lр-integrable with р Є (1, 2). The main idea is to use the concept of local solution to construct the global one. As applications, we obtain new results in zerosum Dynkin games and in double obstacle variational inequalities theories
APA, Harvard, Vancouver, ISO, and other styles
2

Choukroun, Sébastien. "Equations différentielles stochastiques rétrogrades et contrôle stochastique et applications aux mathématiques financières." Sorbonne Paris Cité, 2015. https://theses.hal.science/tel-01168589.

Full text
Abstract:
Cette thèse est constituée de deux parties pouvant être lues indépendamment. Dans la première partie de la thèse, trois utilisations des équations différentielles stochastiques rétrogrades sont présentées. Le premier chapitre est une application de ces équations au problème de couverture moyenne-variance dans un marché incomplet où des défauts multiples peuvent survenir. Nous faisons une hypothèse de densité conditionnelle sur les temps de défaut. Nous décomposons ensuite la fonction valeur en une suite de fonctions valeur entre deux défauts consécutifs et nous prouvons la forme quadratique de chacune d'entre elles. Enfin, nous illustrons nos résultats dans un cas particulier à 2 temps de défaut suivant des lois exponentielles indépendantes. Les deux chapitres suivants sont des extensions de l'article [75]. Le deuxième chapitre est l'étude d'une classe d'équations différentielles stochastiques rétrogrades avec sauts négatifs et barrière supérieure. L'existence et l'unicité d'une solution minimale sont prouvées par double pénalisation sous des hypothèses de régularité sur l'obstacle. Cette méthode permet de résoudre le cas où le coefficient de diffusion est dégénéré. Nous montrons aussi, dans un cadre markovien adapté, le lien entre notre classe d'équations rétrogrades et des inégalités variationnelles non linéaires. En particulier, notre représentation d'équation rétrograde donne une formule de type Feynman-Kac pour les équations aux dérivées partielles associées à des jeux différentiels stochastiques de type contrôleur et stoppeur à somme nulle, où le contrôle affecte à la fois les termes dérives de volatilité. De plus, nous obtenons une formule duale du jeu de la solution minimale de l'équation rétrograde, ce qui donne une nouvelle représentation des jeux différentiels stochastiques contrôleur et stoppeur à somme nulle. Le troisième chapitre est lié à l'incertitude de modèle, où l'incertitude affecte à la fois la volatilité et l'intensité. Ces problèmes de contrôle stochastiques sont associées à des équations intégro-différentielles aux dérivées partielles telles que la partie de saut est caractérisée par la mesure lambda(a,. ) dépendant d'un paramètre a. Nous ne supposons pas que la famille lambda(a,. ) est dominée. Nous obtenons une formule non linéaire de type Feynman-Kac à la fonction valeur associée à ces problèmes de contrôle. Pour cela, nous introduisons une classe d'équations différentielles stochastiques rétrogrades avec saut et une partie diffusive partiellement contrainte. Ici aussi le cas où le coefficient de diffusion est dégénéré est résolu Dans la seconde partie de la thèse, un problème de gestion actif-passif conditionnelle est résolu Nous obtenons d'abord le domaine de définition de la fonction valeur associée au problème en identifiant la richesse minimale pour laquelle il existe une stratégie d'investissement admissible permettant de satisfaire la contrainte à maturité. Cette richesse minimal est identifiée comme une solution de viscosité d'une EDP. Nous montrons aussi que sa transformée de Fenschel-Legendre est une solution de viscosité d'une autre EDP, ce qui permet d'obtenir un schéma numérique avec une convergence plus rapide. Nous identifions ensuite la fonction valeur liée au problème d'intérêt comme une solution de viscosité d'une EDP sur son domaine de définition. Enfin, nous résolvons numériquement le problème en présentant des graphes de la richesse minimale, de la fonction valeur du problème et de la stratégie optimale
This thesis is divided into two parts that may be read independently. In the first part, three uses of backward stochastic differential equations are presented. The first chapter is an application of these equations to the mean-variance hedging problem in an incomplete market where multiple defaults can occur. We make a conditional density hypothesis on the default times. We then decompose the value function into a sequence of value functions between consecutive default times and we prove that each of them admits a quadratic form. Finally, we illustrate our results for a specific case where 2 default times follow independent exponential laws. The two following applications are extensions of the paper [75]. The second chapter is the study of a class of backward stochastic differential equations with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal solution are proved by a double penalization approach under regularity assumptions on the obstacle. This method allows us to solve the case where the diffusion coefficient is degenerate. We also show, in a suitable markovian framework, the connection between our class of backward stochastic differential equations and fully nonlinear variational inequalities. In particular, our backward equation representation provides a Feynman-Kac type formula for PDEs associated to general zero-sum stochastic differential controller-and-stopper games, where control affects both drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we state a dual game formula of this backward equation minimal solution, which gives a new representation for zero-sum stochastic differential controller-and-stopper games The third chapter is linked to model uncertainty, where the uncertainty affects both volatility and intensity. This kind of stochastic control problems is associated to a fully nonlinear integro-partial differential equation, such that the measure lambda(a,. ) characterizing the jump part depends on a parameter a. We do not assume that the family lambda(a,. ) is dominated. We obtain a nonlinear Feynman-Kac formula for the value function associated to these control problems. To this aim, we introduce a class of backward stochastic differential equations with jumps and partially constrained diffusive part. Here the case where the diffusion coefficient is degenerate is solved as well. In the second part, a conditional asset liability management problem is solved. We first derive the proper domain of definition of the value function associated to the problem by identifying the minimal wealth for which there exists an admissible investment strategy allowing to satisfy the constraint at maturity. This minimal wealth is identified as a solution of viscosity of a PDE. We also show that its Fenschel-Legendre transform is a solution of viscosity of another PDE, which allows to obtain a scheme with a faste convergence. We then identify the value function linked to the problem of interest as a solution of viscosity of a PDE on its domain of definition. Finally, we solve numerically the problem and we provide graphs of the minimal wealth, of the value function of the problem and of the optimal strategy
APA, Harvard, Vancouver, ISO, and other styles
3

Moussaoui, Hadjer. "Contribution aux équations différentielles stochastiques rétrogrades et application aux équations aux dérivées partielles et au contrôle stochastique." Electronic Thesis or Diss., Toulon, 2018. http://www.theses.fr/2018TOUL0016.

Full text
Abstract:
L'objectif de cette thèse est l'étude des équations différentielles stochastiques rétrogrades (EDSR) et progressives-rétrogrades (EDSPR), dont les résultats principaux sont : Le premier porte sur la solvabilité des EDSR à croissance logarithmique de type (lylllnlyll lzlJllnlzll) et application aux équations aux dérivées partielles (EDP). Le deuxième concerne l'existence d'un contrôle optimal stricte pour un système dirigé par une EDSPR fortement couplée. Des multiples applications sont établies. Un résultat d'existence et d'unicité de la solution de l'équation de Hamilton-Jacobi-Belmann (HJB) est également établi
The objective of this thesis is to study backward stochastic differential equations (BSDE) and forward-backward stochastic differential equations (FBSDE), the main results are:The first is about the solvability of logarithmic BSDE of type (lylllnlyll lzlJllnlzll) and application to partial differential equations (PDE). The second concems the existence of strict optimal control for a system driven by a strongly coupled FBSDE. Multiple applications are established. A result of existence and uniqueness of the solution of the Hamilton-Jacobi-Belmann equation (HJB) is also established
APA, Harvard, Vancouver, ISO, and other styles
4

Madec, Pierre-Yves. "Equations différentielles stochastiques rétrogrades ergodiques et applications aux EDP." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S027/document.

Full text
Abstract:
Cette thèse s'intéresse à l'étude des EDSR ergodiques et à leurs applications à l'étude du comportement en temps long des solutions d'EDP paraboliques semi-linéaires. Dans un premier temps, nous établissons des résultats d'existence et d'unicité d'une EDSR ergodique avec conditions de Neumann au bord dans un convexe non borné et dans un environnement faiblement dissipatif. Nous étudions ensuite leur lien avec les EDP avec conditions de Neumann au bord et nous donnons un exemple d'application à un problème de contrôle optimal stochastique. La deuxième partie est constituée de deux sous-parties. Tout d'abord, nous étudions le comportement en temps long des solutions mild d'une EDP parabolique semi-linéaire en dimension infinie par des méthodes probabilistes. Cette méthode probabiliste repose sur une application d'un résultat nommé "Basic coupling estimate" qui nous permet d'obtenir une vitesse de convergence exponentielle de la solution vers sons asymptote. Au passage notons que cette asymptote est entièrement déterminée par la solution de l'EDP ergodique semi-linéaire associée à l'EDP parabolique semi-linéaire initiale. Puis, nous adaptons cette méthode à l'étude du comportement en temps long des solutions de viscosité d'une EDP parabolique semi-linéaire avec condition de Neumann au bord dans un convexe borné en dimension finie. Par des méthodes de régularisation et de pénalisation des coefficients et en utilisant un résultat de stabilité pour les EDSR, nous obtenons des résultats analogues à ceux obtenus dans le contexte mild, avec notamment une vitesse exponentielle de convergence de la solution vers son asymptote
This thesis deals with the study of ergodic BSDE and their applications to the study of the large time behaviour of solutions to semilinear parabolic PDE. In a first time, we establish some existence and uniqueness results to an ergodic BSDE with Neumann boundary conditions in an unbounded convex set in a weakly dissipative environment. Then we study their link with PDE with Neumann boundary condition and we give an application to an ergodic stochastic control problem. The second part consists of two sections. In the first one, we study the large time bahaviour of mild solutions to semilinear parabolic PDE in infinite dimension by a probabilistic method. This probabilistic method relies on a Basic coupling estimate result which gives us an exponential rate of convergence of the solution toward its asymptote. Let us mention that that this asymptote is fully determined by the solution of the ergodic semilinear PDE associated to the parabolic semilinear PDE. Then, we adapt this method to the sudy of the large time behaviour of viscosity solutions of semilinear parabolic PDE with Neumann boundary condition in a convex and bounded set in finite dimension. By regularization and penalization procedures, we obtain similar results as those obtained in the mild context, especially with an exponential rate of convergence for the solution toward its asymptote
APA, Harvard, Vancouver, ISO, and other styles
5

Bandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.

Full text
Abstract:
Dans le présent document on aborde trois divers thèmes liés au contrôle et au calcul stochastiques, qui s'appuient sur la notion d'équation différentielle stochastique rétrograde (EDSR) dirigée par une mesure aléatoire. Les trois premiers chapitres de la thèse traitent des problèmes de contrôle optimal pour différentes catégories de processus markoviens non-diffusifs, à horizon fini ou infini. Dans chaque cas, la fonction valeur, qui est l'unique solution d'une équation intégro-différentielle de Hamilton-Jacobi-Bellman (HJB), est représentée comme l'unique solution d'une EDSR appropriée. Dans le premier chapitre, nous contrôlons une classe de processus semi-markoviens à horizon fini; le deuxième chapitre est consacré au contrôle optimal de processus markoviens de saut pur, tandis qu'au troisième chapitre, nous examinons le cas de processus markoviens déterministes par morceaux (PDMPs) à horizon infini. Dans les deuxième et troisième chapitres les équations d'HJB associées au contrôle optimal sont complètement non-linéaires. Cette situation survient lorsque les lois des processus contrôlés ne sont pas absolument continues par rapport à la loi d'un processus donné. Etant donné ce caractère complètement non-linéaire, ces équations ne peuvent pas être représentées par des EDSRs classiques. Dans ce cadre, nous avons obtenu des formules de Feynman-Kac non-linéaires en généralisant la méthode de la randomisation du contrôle introduite par Kharroubi et Pham (2015) pour les diffusions. Ces techniques nous permettent de relier la fonction valeur du problème de contrôle à une EDSR dirigée par une mesure aléatoire, dont une composante de la solution subit une contrainte de signe. En plus, on démontre que la fonction valeur du problème de contrôle originel non dominé coïncide avec la fonction valeur d'un problème de contrôle dominé auxiliaire, exprimé en termes de changements de mesures équivalentes de probabilité. Dans le quatrième chapitre, nous étudions une équation différentielle stochastique rétrograde à horizon fini, dirigée par une mesure aléatoire à valeurs entières sur $R_+ times E$, o`u $E$ est un espace lusinien, avec compensateur de la forme $nu(dt, dx) = dA_t phi_t(dx)$. Le générateur de cette équation satisfait une condition de Lipschitz uniforme par rapport aux inconnues. Dans la littérature, l'existence et unicité pour des EDSRs dans ce cadre ont été établies seulement lorsque $A$ est continu ou déterministe. Nous fournissons un théorème d'existence et d'unicité même lorsque $A$ est un processus prévisible, non décroissant, continu à droite. Ce résultat s’applique par exemple, au cas du contrôle lié aux PDMPs. En effet, quand $mu$ est la mesure de saut d'un PDMP sur un domaine borné, $A$ est prévisible et discontinu. Enfin, dans les deux derniers chapitres de la thèse nous traitons le calcul stochastique pour des processus discontinus généraux. Dans le cinquième chapitre, nous développons le calcul stochastique via régularisations des processus à sauts qui ne sont pas nécessairement des semimartingales. En particulier nous poursuivons l'étude des processus dénommés de Dirichlet faibles, dans le cadre discontinu. Un tel processus $X$ est la somme d'une martingale locale et d'un processus adapté $A$ tel que $[N, A] = 0$, pour toute martingale locale continue $N$. Pour une fonction $u: [0, T] times R rightarrow R$ de classe $C^{0,1}$ (ou parfois moins), on exprime un développement de $u(t, X_t)$, dans l'esprit d'une généralisation du lemme d'Itô, lequel vaut lorsque $u$ est de classe $C^{1,2}$. Le calcul est appliqué dans le sixième chapitre à la théorie des EDSRs dirigées par des mesures aléatoires. Dans de nombreuses situations, lorsque le processus sous-jacent $X$ est une semimartingale spéciale, ou plus généralement, un processus de Dirichlet spécial faible, nous identifions les solutions des EDSRs considérées via le processus $X$ et la solution $u$ d’une EDP intégro-différentielle associée
In the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
APA, Harvard, Vancouver, ISO, and other styles
6

Bandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005.

Full text
Abstract:
Dans le présent document on aborde trois divers thèmes liés au contrôle et au calcul stochastiques, qui s'appuient sur la notion d'équation différentielle stochastique rétrograde (EDSR) dirigée par une mesure aléatoire. Les trois premiers chapitres de la thèse traitent des problèmes de contrôle optimal pour différentes catégories de processus markoviens non-diffusifs, à horizon fini ou infini. Dans chaque cas, la fonction valeur, qui est l'unique solution d'une équation intégro-différentielle de Hamilton-Jacobi-Bellman (HJB), est représentée comme l'unique solution d'une EDSR appropriée. Dans le premier chapitre, nous contrôlons une classe de processus semi-markoviens à horizon fini; le deuxième chapitre est consacré au contrôle optimal de processus markoviens de saut pur, tandis qu'au troisième chapitre, nous examinons le cas de processus markoviens déterministes par morceaux (PDMPs) à horizon infini. Dans les deuxième et troisième chapitres les équations d'HJB associées au contrôle optimal sont complètement non-linéaires. Cette situation survient lorsque les lois des processus contrôlés ne sont pas absolument continues par rapport à la loi d'un processus donné. Etant donné ce caractère complètement non-linéaire, ces équations ne peuvent pas être représentées par des EDSRs classiques. Dans ce cadre, nous avons obtenu des formules de Feynman-Kac non-linéaires en généralisant la méthode de la randomisation du contrôle introduite par Kharroubi et Pham (2015) pour les diffusions. Ces techniques nous permettent de relier la fonction valeur du problème de contrôle à une EDSR dirigée par une mesure aléatoire, dont une composante de la solution subit une contrainte de signe. En plus, on démontre que la fonction valeur du problème de contrôle originel non dominé coïncide avec la fonction valeur d'un problème de contrôle dominé auxiliaire, exprimé en termes de changements de mesures équivalentes de probabilité. Dans le quatrième chapitre, nous étudions une équation différentielle stochastique rétrograde à horizon fini, dirigée par une mesure aléatoire à valeurs entières μ sur ℝ+ x E, où E est un espace lusinien, avec compensateur de la forme v(dt dx) = dAt φt(dx). Le générateur de cette équation satisfait une condition de Lipschitz uniforme par rapport aux inconnues. Dans la littérature, l'existence et unicité pour des EDSRs dans ce cadre ont été établies seulement lorsque A est continu ou déterministe. Nous fournissons un théorème d'existence et d'unicité même lorsque A est un processus prévisible, non décroissant, continu à droite. Ce résultat s’applique par exemple, au cas du contrôle lié aux PDMPs. En effet, quand μ est la mesure de saut d'un PDMP sur un domaine borné, A est prévisible et discontinu. Enfin, dans les deux derniers chapitres de la thèse nous traitons le calcul stochastique pour des processus discontinus généraux. Dans le cinquième chapitre, nous développons le calcul stochastique via régularisations des processus à sauts qui ne sont pas nécessairement des semimartingales. En particulier nous poursuivons l'étude des processus dénommés de Dirichlet faibles, dans le cadre discontinu. Un tel processus X est la somme d'une martingale locale et d'un processus adapté A tel que [N, A] = 0, pour toute martingale locale continue N. Pour une fonction u: [0, T] x ℝ → ℝ de classe C⁰′¹ (ou parfois moins), on exprime un développement de u(t, Xt), dans l'esprit d'une généralisation du lemme d'Itô, lequel vaut lorsque u est de classe C¹′². Le calcul est appliqué dans le sixième chapitre à la théorie des EDSRs dirigées par des mesures aléatoires. Dans de nombreuses situations, lorsque le processus sous-jacent X est une semimartingale spéciale, ou plus généralement, un processus de Dirichlet spécial faible, nous identifions les solutions des EDSRs considérées via le processus X et la solution u d’une EDP intégro-différentielle associée
In the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure μ on ℝ+ x E, where E is a Lusin space, with compensator v(dt,dx)=dAt φ(dx). The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when A is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e. when A is a right-continuous nondecreasing predictable process. Those results are relevant, for example, in the frameworkof control problems related to PDMPs. Indeed, when μ is the jump measure of a PDMP on a bounded domain, then A is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process X is the sum of a local martingale and an adapted process A such that [N,A] = 0, for any continuouslocal martingale N.Given a function u:[0,T] x ℝ → R, which is of class C⁰′¹ (or sometimes less), we provide a chain rule type expansion for u(t, Xt), which constitutes a generalization of Itô's lemma being valid when u is of class C¹′².This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process X is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions (Y,Z,U) of the considered BSDEs via the process X and the solution u to an associated integro PDE
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Hao. "Equations différentielles stochastiques rétrogrades réfléchies et applications au problème d'investissement réversible et aux équations aux dérivées partielles." Le Mans, 2009. http://cyberdoc.univ-lemans.fr/theses/2009/2009LEMA1013.pdf.

Full text
Abstract:
L'objet de cette thèse est d'étudier l'existence et l'unicité de solutions des équations différentielles stochastiques rétrogrades réfléchies puis de lier cette notion à des problèmes tels que l'investissement réversible ou bien le problème d'arrête et de reprise, le jeu stochastique différentiel de somme nulle (mixte type ou Dynkin type), ou alors l'interprétation probabiliste de solutions faibles des équations intégrales aux dérivées partielles, au sens de viscosité ou au sens Sobolev dans les cadres différents
The main objective of the thesis is to study the existence and uniqueness of solutions of reflected backward stochastic differential equations and to relate this notion to the study of the problems such as the reversible investment or so-called optimal switching problem, the mixed zero-sum stochastic differential games and the probabilistic interpretation of the weak solution of partial differential equations, either in viscosity sense or in Sobolev space under different framework
APA, Harvard, Vancouver, ISO, and other styles
8

Chaudru, de Raynal Paul Éric. "Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00954417.

Full text
Abstract:
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
APA, Harvard, Vancouver, ISO, and other styles
9

Kharroubi, Idris. "EDS Rétrogrades et Contrôle Stochastique Séquentiel en Temps Continu en Finance." Phd thesis, Université Paris-Diderot - Paris VII, 2009. http://tel.archives-ouvertes.fr/tel-00439542.

Full text
Abstract:
Nous étudions le lien entre EDS rétrogrades et certains problèmes d'optimisation stochas- tique ainsi que leurs applications en finance. Dans la première partie, nous nous intéressons à la représentation par EDSR de problème d'optimisation stochastique séquentielle : le contrôle impul- sionnel et le switching optimal. Nous introduisons la notion d'EDSR contrainte à sauts et montrons qu'elle donne une représentation des solutions de problème de contrôle impulsionnel markovien. Nous lions ensuite cette classe d'EDSR aux EDSRs à réflexions obliques et aux processus valeurs de problèmes de switching optimal. Dans la seconde partie nous étudions la discrétisation des EDSRs intervenant plus haut. Nous introduisons une discrétisation des EDSRs contraintes à sauts utilisant l'approximation par EDSRs pénalisées pour laquelle nous obtenons la convergence. Nous étudions ensuite la discrétisation des EDSRs à réflexions obliques. Nous obtenons pour le schéma proposé une vitesse de convergence vers la solution continument réfléchie. Enfin dans la troisième partie, nous étudions un problème de liquidation optimale de portefeuille avec risque et coût d'exécution. Nous considérons un marché financier sur lequel un agent doit liquider une position en un actif risqué. L'intervention de cet agent influe sur le prix de marché de cet actif et conduit à un coût d'exécution modélisant le risque de liquidité. Nous caractérisons la fonction valeur de notre problème comme solution minimale d'une inéquation quasi-variationnelle au sens de la viscosité contrainte.
APA, Harvard, Vancouver, ISO, and other styles
10

Salhi, Rym. "Contributions to quadratic backward stochastic differential equations with jumps and applications." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.

Full text
Abstract:
Cette thèse porte sur l'étude des équations différentielles stochastiques rétrogrades (EDSR) avec sauts et leurs applications.Dans le chapitre 1, nous étudions une classe d'EDSR lorsque le bruit provient d'un mouvement Brownien et d'une mesure aléatoire de saut indépendante à activité infinie. Plus précisément, nous traitons le cas où le générateur est à croissance quadratique et la condition terminale est non bornée. L'existence et l'unicité de la solution sont prouvées en combinant à la fois la procédure d'approximation monotone et une approche progressive. Cette méthode permet de résoudre le cas où la condition terminale est non bornée.Le chapitre 2 est consacré aux EDSR avec sauts généralisées doublement réfléchies sous des hypothèses d’intégrabilités faibles. Plus précisément, on montre l'existence d'une solution pour un générateur à croissance quadratique stochastique et une condition terminale non bornée. Nous montrons également, dans un cadre approprié, la connexion entre notre classe d’équations différentielles stochastiques rétrogrades et les jeu à somme nuls.Dans le chapitre 3, nous considérons une classe générale d'EDSR progressive-rétrograde couplée avec sauts de type Mackean Vlasov sous une condition faible de monotonicité. Les résultats d'existence et d'unicité sont établis sous deux classes d'hypothèses en se basant sur des schémas de perturbations soit de l’équation différentielle stochastique progressive, soit de l’équation différentielle stochastique rétrograde. On conclut le chapitre par un problème de stockage optimal d’énergie dans un parc électrique de type champs moyen
This thesis focuses on backward stochastic differential equation with jumps and their applications. In the first chapter, we study a backward stochastic differential equation (BSDE for short) driven jointly by a Brownian motion and an integer valued random measure that may have infinite activity with compensator being possibly time inhomogeneous. In particular, we are concerned with the case where the driver has quadratic growth and unbounded terminal condition. The existence and uniqueness of the solution are proven by combining a monotone approximation technics and a forward approach. Chapter 2 is devoted to the well-posedness of generalized doubly reflected BSDEs (GDRBSDE for short) with jumps under weaker assumptions on the data. In particular, we study the existence of a solution for a one-dimensional GDRBSDE with jumps when the terminal condition is only measurable with respect to the related filtration and when the coefficient has general stochastic quadratic growth. We also show, in a suitable framework, the connection between our class of backward stochastic differential equations and risk sensitive zero-sum game. In chapter 3, we investigate a general class of fully coupled mean field forward-backward under weak monotonicity conditions without assuming any non-degeneracy assumption on the forward equation. We derive existence and uniqueness results under two different sets of conditions based on proximation schema weither on the forward or the backward equation. Later, we give an application for storage in smart grids
APA, Harvard, Vancouver, ISO, and other styles
11

Kazi-Tani, Mohamed Nabil. "Etude des EDS rétrogrades avec sauts et problèmes de gestion du risque." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00782154.

Full text
Abstract:
Cette thèse traite d'une part, de questions de gestion, de mesure et de transfert du risque et d'autre part, de problèmes d'analyse stochastique à sauts avec incertitude de modèle. Le premier chapitre est consacré à l'analyse des intégrales de Choquet, comme mesures de risque monétaires non nécessairement invariantes en loi. Nous établissons d'abord un nouveau résultat de représentation des mesures de risque comonotones, puis un résultat de représentation des intégrales de Choquet en introduisant la notion de distorsion locale. Ceci nous permet de donner ensuite une forme explicite à l'inf-convolution de deux intégrales de Choquet, avec des exemples illustrant l'impact de l'absence de la propriété d'invariance en loi. Nous nous intéressons ensuite à un problème de tarification d'un contrat de réassurance non proportionnelle, contenant des clauses de reconstitution. Après avoir défini le prix d'indifférence relatif à la fois à une fonction d'utilité et à une mesure de risque, nous l'encadrons par des valeurs facilement implémentables. Nous passons alors à un cadre dynamique en temps. Pour cela, nous montrons, en adoptant une approche par point fixe, un théorème d'existence de solutions bornées pour une classe d'équations différentielles stochastiques rétrogrades (EDSRs dans la suite) avec sauts et à croissance quadratique. Sous une hypothèse additionnelle classique dans le cadre à sauts, ou sous une hypothèse de convexité du générateur, nous établissons un résultat d'unicité grâce à un principe de comparaison. Nous analysons les propriétés des espérances non linéaires correspondantes. En particulier, nous obtenons une décomposition de Doob-Meyer des surmartingales non-linéaires ainsi que leur régularité en temps. En conséquence, nous en déduisons facilement un principe de comparaison inverse. Nous appliquons ces résultats à l'étude des mesures de risque dynamiques associées, sur une filtration engendrée à la fois par un mouvement brownien et par une mesure aléatoire à valeurs entières, à leur repésentation duale, ainsi qu'à leur inf-convolution, avec des exemples explicites. La seconde partie de cette thèse concerne l'analyse de l'incertitude de modèle, dans le cas particulier des EDSRs du second ordre avec sauts. Nous imposons que ces équations aient lieu au sens presque-sûr, pour toute une famille non dominée de mesures de probabilités qui sont solution d'un problème de martingales sur l'espace de Skorohod. Nous étendons d'abord la définition des EDSRs du second ordre, telles que définies par Soner, Touzi et Zhang, au cas avec sauts. Pour ce faire, nous démontrons un résultat d'agrégation au sens de Soner, Touzi et Zhang sur l'espace des trajectoires càdlàg. Ceci nous permet, entre autres, d'utiliser une version quasi-sûre du compensateur de la mesure des sauts du processus canonique. Nous montrons alors un résultat d'existence et d'unicité pour notre classe d'EDSRs du second ordre. Ces équations sont affectées par l'incertitude portant à la fois sur la volatilité et sur les sauts du processus qui les dirige.
APA, Harvard, Vancouver, ISO, and other styles
12

Manai, Arij. "Some contributions to backward stochastic differential equations and applications." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1022.

Full text
Abstract:
Cette thèse est consacrée à l'étude des équations différentielles stochastiques rétrogrades (EDSR) et leurs applications. Dans le chapitre 1, on étudie le problème de maximisation de l'utilité de la richesse terminale où le prix de l'actif peut être discontinue sous des contraintes sur les stratégies de l'agent. Nous nous concentrons sur l'EDSR dont la solution représente l'utilité maximale, ce qui permet de transférer des résultats sur les EDSR quadratiques, en particulier les résultats de stabilité, au problème de maximisation d'utilité. Dans le chapitre 2, nous considèrons le problème de valorisation d'options Américaines des points de vue théorique et numérique en s'appuyant sur la représentation du prix de l'option comme solution de viscosité d'une équation parabolique non linéaire. Nous étendons le résultat prouvé dans [Benth, Karlsen and Reikvam 2003] pour un put ou call Américain à un cas plus général dans un cadre multidimensionnel. Nous proposons deux schémas numériques inspirés par les processus de branchement. Nos expériences numériques montrent que l'approximation du générateur discontinu, associé à l'EDP, par des polynômes locaux n'est pas efficace tandis qu'une simple procédure de randomisation donne de très bon résultats. Dans le chapitre 3, nous prouvons des résultats d'existence et d'unicité pour une classe générale d'équations progressives-rétrogrades à champs moyen sous une condition de monotonicité faible et une hypothèse non-dégénérescence sur l'équation progressive et nous donnons une application dans le domaine de stockage d'énergie dans le cas où la production d'électricité est imprévisible
This thesis is dedicated to the study of backward stochastic differential equations (BSDEs) and their applications. In chapter 1, we study the problem of maximizing the utility from terminal wealth where the stock price may jump and there are investment constraints on the agent 's strategies. We focus on the BSDE whose solution represents the maximal utility, which allows transferring results on quadratic BSDEs, in particular the stability results, to the problem of utility maximisation. In chapter 2, we consider the problem of pricing American options from theoretical and numerical sides based upon an alternative representation of the value of the option in the form of a viscosity solution of a parabolic equation with a nonlinear reaction term. We extend the viscosity solution characterization proved in [Benth, Karlsen and Reikvam 2003] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting. We address two new numerical schemes inspired by the branching processes. Our numerical experiments show that approximating the discontinuous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results. In chapter 3, we prove existence and uniqueness results for a general class of coupled mean-field forward-backward SDEs with jumps under weak monotonicity conditions and without the non-degeneracy assumption on the forward equation and we give an application in the field of storage in smart grids in the case where the production of electricity is unpredictable
APA, Harvard, Vancouver, ISO, and other styles
13

Mu, Tingshu. "Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.

Full text
Abstract:
Cette thèse est relative aux Equations Différentielles Stochastique Rétrogrades (EDSRs) réfléchies avec deux obstacles et leurs applications aux jeux de switching de somme nulle, aux systèmes d’équations aux dérivées partielles, aux problèmes de mean-field. Il y a deux parties dans cette thèse. La première partie porte sur le switching optimal stochastique et est composée de deux travaux. Dans le premier travail, nous montrons l’existence de la solution d’un système d’EDSR réfléchies à obstacles bilatéraux interconnectés dans le cadre probabiliste général. Ce problème est lié à un jeu de switching de somme nulle. Ensuite nous abordons la question de l’unicité de la solution. Et enfin nous appliquons les résultats obtenus pour montrer que le système d’EDP associé à une unique solution au sens viscosité, sans la condition de monotonie habituelle. Dans le second travail, nous considérons aussi un système d’EDSRs réfléchies à obstacles bilatéraux interconnectés dans le cadre markovien. La différence avec le premier travail réside dans le fait que le switching ne s’opère pas de la même manière. Cette fois-ci quand le switching est opéré, le système est mis dans l’état suivant importe peu lequel des joueurs décide de switcher. Cette différence est fondamentale et complique singulièrement le problème de l’existence de la solution du système. Néanmoins, dans le cadre markovien nous montrons cette existence et donnons un résultat d’unicité en utilisant principalement la méthode de Perron. Ensuite, le lien avec un jeu de switching spécifique est établi dans deux cadres. Dans la seconde partie nous étudions les EDSR réfléchies unidimensionnelles à deux obstacles de type mean-field. Par la méthode du point fixe, nous montrons l’existence et l’unicité de la solution dans deux cadres, en fonction de l’intégrabilité des données
This thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
APA, Harvard, Vancouver, ISO, and other styles
14

Ghannoum, Abir. "EDSs réfléchies en moyenne avec sauts et EDSs rétrogrades de type McKean-Vlasov : étude théorique et numérique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM068.

Full text
Abstract:
Cette thèse est consacrée à l'étude théorique et numérique de deux principaux sujets de recherche: les équations différentielles stochastiques (EDSs) réfléchies en moyenne avec sauts et les équations différentielles stochastiques rétrogrades (EDSRs) de type McKean-Vlasov.Le premier travail de ma thèse établit la propagation du chaos pour les EDSs réfléchies en moyenne avec sauts. Nous avons étudié dans un premier temps l'existence et l'unicité d'une solution. Nous avons développé ensuite un schéma numérique via le système de particules. Enfin nous avons obtenu une vitesse de convergence pour ce schéma.Le deuxième travail de ma thèse consiste à étudier les EDSRs de type McKean-Vlasov. Nous avons prouvé l'existence et l'unicité de solutions de telles équations, et nous avons proposé une approximation numérique basée sur la décomposition en chaos de Wiener ainsi que sa vitesse de convergence.Le troisième travail de ma thèse s'intéresse à une autre type de simulation pour les EDSRs de type McKean-Vlasov. Nous avons proposé un schéma numérique basé sur l'approximation du mouvement brownien par une marche aléatoire et nous avons obtenu une vitesse de convergence pour ce schéma.Par ailleurs, quelques exemples numériques dans ces trois travaux permettent de constater l'efficacité de nos schémas et les vitesses de convergences annoncées par les résultats théoriques
This thesis is devoted to the theoretical and numerical study of two main subjects in the context of stochastic differential equations (SDEs): mean reflected SDEs with jumps and McKean-Vlasov backward SDEs.The first part of my thesis establishes the propagation of chaos for the mean reflected SDEs with jumps. First, we study the existence and uniqueness of a solution. Then, we develop a numerical scheme based on the particle system. Finally, we obtain the rate of convergence of this scheme.The second part of my thesis studies the McKean-Vlasov backward SDEs. In this case, we prove the existence and uniqueness of a solution for such equations. Then, thanks to the Wiener chaos expansion, we provide a numerical approximation. Moreover, the convergence rate of this approximation is also determined.The third part of my thesis proposes another type of simulation for the McKean-Vlasov backward SDEs. Due to the approximation of Brownian motion by a scaled random walk, we develop a numerical scheme and we get its convergence rate.In addition, a few numerical examples in these three parts are given to illustrate the efficiency of our schemes and their convergence rates stated by the theoretical results
APA, Harvard, Vancouver, ISO, and other styles
15

Jing, Shuai. "Quelques applications de la théorie d'EDSR : EDDSR fractionnaire et propriétés de régularité des EDP-Intégrales." Phd thesis, Université de Bretagne occidentale - Brest, 2011. http://tel.archives-ouvertes.fr/tel-00904183.

Full text
Abstract:
Dans la première partie de ma thèse, en adaptant l'idée de Jien et Ma (2010), l'objectif principal est étudier les équations différentielles doublement stochastiques rétrogrades, semi-linéaires ou nonlinéaires, régies par un mouvement brownien standard et un mouvement brownien fractionnaire indépendant, ainsi que les équations différentielles partielles stochastiques associées régies par le mouvement brownien fractionnaire. Pour le cas semi-linéaire, dans un papier en collaboration avec Jorge A. Leόn (CINVESTAV, Mexique), nous utilisons le calcul de Malliavin dans le cadre du mouvement brownien fractionnaire et la transformation de Girsanov anticipative. Pour le cas nonlinéaire, nous appliquons la transformation de Doss-Sussmann. Dans la deuxième partie nous étudions la régularité, à savoir la continuité de Lipschitz conjointe et la semiconcavité conjointe, de la solution de viscosité pour une classe générale d'équations aux dérivées partielles-intégrales non locales de type Hamilton-Jacobi-Bellman. Pour cette fin nous employons l'interprétation stochastique par une équation différentielle stochastique rétrograde contrôlée avec sauts, en appliquant du changement de temps pour le mouvement brownien et la transformation de Kulik pour la mesure aléatoire de Poisson. Notre travail est une généralisation des travaux de Buckdahn, Cannarsa et Quincampoix (2010) et Buckdahn, Huang et Li (2011).
APA, Harvard, Vancouver, ISO, and other styles
16

Zou, Yiyi. "Couverture d'options dans un marché avec impact et schémas numériques pour les EDSR basés sur des systèmes de particules." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED074/document.

Full text
Abstract:
La théorie classique de la valorisation des produits dérivés se repose sur l'absence de coûts de transaction et une liquidité infinie. Ces hypothèses sont toutefois ne plus véridiques dans le marché réel, en particulier quand la transaction est grande et les actifs non-liquides. Dans ce marché imparfait, on parle du prix de sur-réplication puisque la couverture parfaite est devenue parfois infaisable.La première partie de cette thèse se concentre sur la proposition d’un modèle qui intègre à la fois le coût de transaction et l’impact sur le prix du sous-jacent. Nous commençons par déduire la dynamique de l’actif en temps continu en tant que la limite de la dynamique en temps discret. Sous la contrainte d’une position nulle sur l’actif au début et à la maturité, nous obtenons une équation quasi-linéaire pour le prix du dérivé, au sens de viscosité. Nous offrons la stratégie de couverture parfaite lorsque l’équation admet une solution régulière. Quant à la couverture d’une option européenne “covered” sous la contrainte gamma, le principe de programme dynamique utilisé précédemment n'est plus valide. En suivant les techniques du cible stochastique et de l’équation différentielle partielle, nous démontrons que le prix de la sur-réplication est devenue une solution de viscosité d’une équation non linéaire de type parabolique. Nous construisons également la stratégie ε-optimale, et proposons un schéma numérique.La deuxième partie de cette thèse est consacrée aux études sur un nouveau schéma numérique d'EDSR, basé sur le processus de branchement. Nous rapprochons tout d’abord le générateur Lipschitzien par une suite de polynômes locaux, puis appliquons l’itération de Picard. Chaque itération de Picard peut être représentée en termes de processus de branchement. Nous démontrons la convergence de notre schéma sur l’horizon temporel infini. Un exemple concret est discuté à la fin dans l’objectif d’illustrer la performance de notre algorithme
Classical derivatives pricing theory assumes frictionless market and infinite liquidity. These assumptions are however easily violated in real market, especially for large trades and illiquid assets. In this imperfect market, one has to consider the super-replication price as perfect hedging becomes infeasible sometimes.The first part of this dissertation focuses on proposing a model incorporating both liquidity cost and price impact. We start by deriving continuous time trading dynamics as the limit of discrete rebalancing policies. Under the constraint of holding zero underlying stock at the inception and the maturity, we obtain a quasi-linear pricing equation in the viscosity sense. A perfect hedging strategy is provided as soons as the equation admits a smooth solution. When it comes to hedging a covered European option under gamma constraint, the dynamic programming principle employed previously is no longer valid. Using stochastic target and partial differential equation smoothing techniques, we prove the super-replication price now becomes the viscosity solution of a fully non-linear parabolic equation. We also show how ε-optimal strategies can be constructed, and propose a numerical resolution scheme.The second part is dedicated to the numerical resolution of the Backward Stochastic Differential Equation (BSDE). We propose a purely forward numerical scheme, which first approximates an arbitrary Lipschitz driver by local polynomials and then applies the Picard iteration to converge to the original solution. Each Picard iteration can be represented in terms of branching diffusion systems, thus avoiding the usual estimation of conditional expectation. We also prove the convergence on an unlimited time horizon. Numerical simulation is also provided to illustrate the performance of the algorithm
APA, Harvard, Vancouver, ISO, and other styles
17

Ouknine, Anas. "Μοdèles affines généralisées et symétries d'équatiοns aux dérivés partielles." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR085.

Full text
Abstract:
Cette thèse se consacre à étudier les symétries de Lie d'une classe particulière d'équations différentielles partielles (EDP), désignée sous le nom d'équation de Kolmogorov rétrograde. Cette équation joue un rôle essentiel dans le cadre des modèles financiers, notamment en lien avec le modèle de Longstaff-Schwartz, qui est largement utilisé pour la valorisation des options et des produits dérivés.Dans un contexte plus générale, notre étude s'oriente vers l'analyse des symétries de Lie de l'équation de Kolmogorov rétrograde, en introduisant un terme non linéaire. Cette généralisation est significative, car l'équation ainsi modifiée est liée à une équation différentielle stochastique rétrograde et progressive (EDSRP) via la formule de Feynman-Kac généralisée (non linéaire). Nous nous intéressons également à l'exploration des symétries de cette équation stochastique, ainsi qu'à la manière dont les symétries de l'EDP sont connectées à celles de l'EDSRP.Enfin, nous proposons un recalcul des symétries de l'équation différentielle stochastique rétrograde (EDSR) et de l'EDSRP, en adoptant une nouvelle approche. Cette approche se distingue par le fait que le groupe de symétries qui opère sur le temps dépend lui-même du processus $Y$, qui constitue la solution de l'EDSR. Cette dépendance ouvre de nouvelles perspectives sur l'interaction entre les symétries temporelles et les solutions des équations
This thesis is dedicated to studying the Lie symmetries of a particular class of partialdifferential equations (PDEs), known as the backward Kolmogorov equation. This equa-tion plays a crucial role in financial modeling, particularly in relation to the Longstaff-Schwartz model, which is widely used for pricing options and derivatives.In a broader context, our study focuses on analyzing the Lie symmetries of thebackward Kolmogorov equation by introducing a nonlinear term. This generalization issignificant, as the modified equation is linked to a forward backward stochastic differ-ential equation (FBSDE) through the generalized (nonlinear) Feynman-Kac formula.We also examine the symmetries of this stochastic equation and how the symmetriesof the PDE are connected to those of the BSDE.Finally, we propose a recalculation of the symmetries of the BSDE and FBSDE,adopting a new approach. This approach is distinguished by the fact that the symme-try group acting on time itself depends also on the process Y , which is the solutionof the BSDE. This dependence opens up new perspectives on the interaction betweentemporal symmetries and the solutions of the equations
APA, Harvard, Vancouver, ISO, and other styles
18

Chevance, David. "Résolution numérique des équations différentielles stochastiques rétrogrades." Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11080.

Full text
Abstract:
La premiere partie de cette these a pour objet la construction d'un algorithme probabiliste pour resoudre numeriquement des equations differentielles stochastiques retrogrades (edsr) dans le cas markovien, ou l'equation est associee a un processus forward solution d'une eds. Nous decrivons un premier algorithme qui repose sur une double discretisation de l'equation, en temps et en espace, et utilise des simulations de trajectoires du processus forward. La discretisation en temps est une extension du schema d'euler pour les eds, ou l'on a remplace le mouvement brownien par une marche aleatoire. On introduit ensuite une approximation supplementaire en projetant a chaque instant de discretisation le processus forward sur l'ensemble des trajectoires simulees. On evite ainsi une complexite algorithmique qui serait exponentielle. Nous montrons une vitesse de convergence pour cet algorithme dans le cadre de la dimension 1. Nous presentons aussi une variante de ce algorithme, adaptee a des edsr dont les parametres sont moins reguliers, en remplacant notamment le schema d'euler dans la discretisation du processus forward par le schema de milshtein. Cela nous permet ensuite d'ecrire un algorithme de discretisation d'edsr reflechies. Dans une seconde partie, nous analysons l'approximation de macmillan, et barone-adesi et whaley, utilisee en finance pour estimer le prix d'une option americaine. En ecrivant le prix de l'option americaine comme la solution d'une certaine equation differentielle stochastique retrograde reflechie, nous obtenons une borne generale pour l'erreur de l'approximation et nous montrons que l'approximation converge vers le prix exact quand la volatilite du sous-jacent tend vers zero. Nous proposons ensuite une deuxieme demonstration, plus elementaire, de ce resultat asymptotique, en faisant intervenir le prix d'un put perpetuel.
APA, Harvard, Vancouver, ISO, and other styles
19

Amami, Rim. "Contrôle impulsionnel appliqué à la gestion de changement de technologie dans une entreprise." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1561/.

Full text
Abstract:
Nous étudions un problème de contrôle impulsionnel en horizon infini. Notre objectif est de déterminer une stratégie optimale qui maximise la fonction valeur de la firme. Dans la première partie de la thèse, nous supposons que la firme décide à des instants aléatoires de changer de technologie et la valeur de la firme (par exemple une recapitalisation) et nous montrons que la fonction valeur de ce type de problème satisfait le principe de programmation dynamique. Dans la deuxième partie, on s'intéresse à résoudre le problème de contrôle dans le cas des instants d'impulsions déterministes en utilisant des exemples de noyaux de transition. Enfin, la troisième partie est consacrée à étendre au cas de l'horizon infini des résultats concernant les équations différentielles stochastiques rétrogrades réfléchies à double barrière. Les propriétés de l'enveloppe de Snell permettent de ramener notre problème à montrer l'existence d'un couple de processus continus, ce qui permet d'exhiber une méthode constructive d'une solution optimale du contrôle impulsionnel
We study an impulse control problem with switching technology in infinite horizon. Our goal is to look for an optimal strategy which maximizes the firm value function. In the first part of this thesis, we assume that the firm decides at certain time (impulse time) to switch the technology and the firm value (for example a recapitalization). We show that the value function for such problems satisfies a dynamic programming principle. In the second part, we solve the impulse control problem in case of deterministic impulse times on specific transition kernel examples. The third part is devoted to extend to the infinite horizon case results of double barrier reflected backward stochastic differential equations. The properties of the Snell envelope reduce our problem to the existence of a pair of continuous processes, which allows to exhibit a constructive solution of the optimal impulse control
APA, Harvard, Vancouver, ISO, and other styles
20

Mastrolia, Thibaut. "Une étude de la régularité de solutions d'EDS Rétrogrades et de leurs utilisations en finance." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090066.

Full text
Abstract:
Dans cette thèse, nous donnerons tout d'abord des conditions sur les paramètres d’une EDSR à générateur lipschitzien ou à croissance quadratique telles que les processus solutions de l’EDSR admettent des densités par rapport à la mesure de Lebesgue. Puis, nous donnerons des conditions sur les paramètres d’une EDSR non-markovienne à générateur lipschitzien ou quadratique telles que les processus solutions de l’EDSR admettent une dérivée de Malliavin, à l’aide d’une nouvelle caractérisation de cette dérivée. Ce résultat nous fournira une nouvelle structure interne des espaces de Malliavin que nous étudierons. Nous donnerons ensuite des conditions nous assurant que des solutions d’EDSR non-markoviennes à générateurs lipschitziens stochastiques sont différentiables au sens de Malliavin en utilisant cette caractérisation. Nous ferons ensuite une analyse de densités pour les lois des solutions de telles EDSR et nous appliquerons nos résultats à la biologie. Enfin, nous étudierons deux exemples d’utilisations des EDSR en finance. On s’intéressera tout d’abord à un problème de maximisation d’utilité avec un horizon aléatoire que nous réduirons à l’analyse d’un nouveau type d’EDSR à coefficients singuliers et nous illustrerons nos résultats par des simulations numériques. Puis, nous résoudrons un problème de type Principal/Agent sous volatilité incertaine
In the first part of this PhD thesis, we give conditions on the parameters of Lipschitz and quadratic growth BSDEs such that the laws of the components Y and Z of the solutions to such BSDEs admit densities with respect to the Lebesgue measure. We then provide conditions on the parameters of non-Markovian Lipschitz or quadratic growth BSDEs such that the components Y and Z of their solutions are Malliavin differentiable. We obtain these conditions by applying a new characterization of the Malliavin differentiability, as an Lp convergence criterion of difference quotients. This result provide also a new characterization of the Malliavin-Sobolev spaces that we study in detail. To finish this first theoretical part, we provide conditions ensuring that solutions of non-Markovian stochastic-Lipschitz BSDEs are Malliavin differentiable by applying the characterization of the Malliavin differentiability obtained. We then analyse the existence of densities for the laws of the components of solutions to such BSDEs and we apply our result to a model of gene expression. In the second part of this thesis, we investigate financial problems dealing with BSDEs. We first solve a utility maximization problem with a random horizon, characterized by an exogenous default time. We reduce it to the analysis of a specific BSDE, which we call BSDE with singular coefficients, when the default time is assumed to be bounded. We give conditions ensuring the existence and the uniqueness of solutions to such BSDE and we illustrate our results by numerical simulations. Then, we solve a Principal/Agent problem with ambiguity, in which the "Nature" impacts both the utilities of the Agent and the Principal, charaterized by sets of probability measures which modify the volatility
APA, Harvard, Vancouver, ISO, and other styles
21

Royer, Manuela. "Équations différentielles stochastiques rétrogrades et martingales non linéaires." Rennes 1, 2003. http://www.theses.fr/2003REN1A018.

Full text
Abstract:
Introduites par E. Pardoux et S. Peng, les Equations Différentielles Stochastiques Rétrogrades ont fait l'objet de nombreux travaux. On peut les étudier suivant plusieurs points de vue. Dans une première partie, on améliore des résultats d'existence et d'unicité pour les solutions d'EDSR à horizon aléatoire lorsque le générateur est strictement monotone, puis monotone. Le fort lien qui existe entre les EDSR et les Equations aux Dérivées Partielles permet de donner une approche probabiliste pour des EDP elliptiques. Dans une seconde partie, on s'intéresse à la notion d'espérance non linéaire, qui est une généralisation de l'espérance classique dans la mesure où elle en vérifie les propriétés essentielles, hormis la linéarité. On se place dans le cadre où les trajectoires ne sont pas continues en considérant une filtration engendrée par un mouvement brownien et un processus de Poisson. On établit un théorème de décomposition de Doob-Meyer pour les surmartingales non linéaires.
APA, Harvard, Vancouver, ISO, and other styles
22

Popier, Alexandre François Roland. "Equations différentielles stochastiques rétrogrades avec condition finale singulière." Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hdhiri, Ibtissam. "Equations différentielles stochastiques rétrogrades et applications." Le Mans, 2006. http://cyberdoc.univ-lemans.fr/theses/2006/2006LEMA1028.pdf.

Full text
Abstract:
Cette thèse porte principalement sur l'étude des équations différentielles stochastiques rétrogrades, souvent notées EDSRs et leurs applications. Dans la première partie, on s'interesse aux EDSRs réfléchies sur deux barrières distinctes. On montre l'existence de la solution pour un générateur continu à croissance quadratique. Par la suite, on résout un problème de jeux de somme nulle sensibles au risque. Comme application à la finance, on s'intéresse à l'option américaine de jeu sous l'incertitude de K night. Dans la seconde partie, on considère un problème du type options réelles dit d'arrêt et de reprise lorsque le bruit provient d'un mouvement Brownien et d'une mesure de Poisson indépendante. Ce problème est résolu grâce à l'enveloppe de Snell et aux EDSRs réfléchies à sauts. Nous énonçons un résultat de vérification stochastique qui sera démontré par la suite. Lorsque le bruit est Markovien, nous montrons que le problème est lié à un système d'EIDPs, ce qui nous permet d'établir un résultat de vérification déterministe. Finalement, nous considérons le même problème avec des jonctions d'utilité exponentielles
This thesis deals with the Backward stochastic differential equations (BSDEs for short) and their applications. The first part is devoted to the double barrier refiected BSDEs. We show the existence of a solution for su ch equations when the barriers are completely separate and the generator is continuous with quadratic growth. As an application we solve the risk-sensitive mixed zero-sum stochastic differential game. Ln addition we deal with recallable options under K nightian uncertainty. Ln the second part, we focus on a real option problem namely the starting and stopping problem when the noise is driven by a Brownian motion and an independent Poisson process. This problem is tackled in using the notion of Snell envelope and BSDEs with jumps. We de rive a stochastic verification theorem which we show later that is satisfied. LVhen the random noise stems from a standard SDE with jumps we show that the problem is related to a system of two variational inequalities, hence we give a deterministic verification result. Finally, we deal with the problem with exponential utilities
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.

Full text
Abstract:
Cette thèse est composée de trois parties. Dans la première nous montrons l'existence et l'unicité de la solution continue et à croissance polynomiale, au sensviscosité, du système non linéaire de m équations variationnelles de type intégro-différentiel à obstacles unilatéraux interconnectés. Ce système est lié au problème du switching optimal stochastique lorsque le bruit est dirigé par un processus de Lévy. Un cas particulier du système correspond en effet à l’équation d’Hamilton-Jacobi-Bellman associé au problème du switching et la solution de ce système n’est rien d’autre que la fonction valeur du problème. Ensuite, nous étudions un système d’équations intégro-différentielles à obstacles bilatéraux interconnectés. Nous montrons l’existence et l’unicité des solutions continus à croissance polynomiale, au sens viscosité, des systèmes min-max et max-min. La démarche conjugue les systèmes d’EDSR réfléchies ainsi que la méthode de Perron. Dans la dernière partie nous montrons l’égalité des solutions des systèmes max-min et min-max d’EDP lorsque le bruit est uniquement de type diffusion. Nous montrons que si les coûts de switching sont assez réguliers alors ces solutions coïncident. De plus elles sont caractérisées comme fonction valeur du jeu de switching de somme nulle
There are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
APA, Harvard, Vancouver, ISO, and other styles
25

Hibon, Hélène. "Équations différentielles stochastiques rétrogrades quadratiques et réfléchies." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S007/document.

Full text
Abstract:
Cette thèse s'intéresse à une étude variée des EDSRs. Une grande partie des résultats sont obtenus sous l'hypothèse d'une croissance de type quadratique du générateur en sa dernière variable. Un premier lien entre EDSRs quadratiques unidimensionnelles et théorie des jeux nous amène à développer des résultats avec générateurs convexes. La théorie du contrôle optimal nécessite quant à elle de traiter du cas multidimensionnel, dans lequel existence et unicité globales ne sont obtenues que pour des générateurs diagonalement quadratiques. Les résultats majeurs sur les EDSRs réfléchies (dont la solution est contrainte à rester dans un domaine) concernent des générateurs Lipschitziens. C'est dans ce cadre que nous développons un résultat de propagation du chaos, avec une contrainte portant sur la loi de la solution plutôt que sur sa trajectoire. Nous dressons enfin un pont entre EDSRs quadratiques et EDSRs réfléchies grâce aux EDSRs quadratiques de type champ moyen. Nous donnons plusieurs nouveaux résultats sur la possibilité de résoudre une équation quadratique dont le générateur dépend également de la moyenne des deux variables
In this thesis, we are interested in studying variously Backward Stochastic Differential Equations. A large proportion of the results are obtained under the assumption that the driver is of quadratic growth in its last variable. A first link between one-dimensional quadratic BSDEs and game theory leads us to develop results with convex drivers. Optimal control theory requires as for it to deal with the multidimensional case, in which global existence and uniqueness are obtained only for diagonaly quadratic drivers. Major achievements in reflected BSDEs (whose solution is constrained to remain in a domain) are reached for Lipschitz drivers. We develop a result of chaos propagation in this setting, with a constraint on the law of the solution rather than on its path. We finaly build bridge between quadratic BSDEs and reflected BSDEs thanks to mean field quadratic BSDEs. We give several new results on solvability of a quadratic BSDE whose driver depends also on the mean of both variables
APA, Harvard, Vancouver, ISO, and other styles
26

Richou, Adrien. "Étude théorique et numérique des équations différentielles stochastiques rétrogrades." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00543719.

Full text
Abstract:
Dans un premier temps, nous étudions une nouvelle classe d'équations différentielles stochastiques rétrogrades (notées EDSRs) qui sont reliées à des conditions de Neumann semi-linéaires relatives à des phénomènes ergodiques. La particularité de ces problèmes est que la constante ergodique apparaît dans la condition au bord. Nous étudions l'existence et l'unicité de solutions pour de telles EDSRs ergodiques ainsi que le lien avec les équations aux dérivées partielles et nous appliquons ces résultats à des problèmes de contrôle ergodique optimal. Dans une deuxième partie nous généralisons des travaux de P. Briand et Y. Hu publiés en 2008. Ces derniers ont prouvé un résultat d'unicité pour les solutions d'EDSRs quadratiques de générateur convexe et de condition terminale non bornée ayant tous leurs moments exponentiels finis. Nous prouvons que ce résultat d'unicité reste vrai pour des solutions qui admettent uniquement certains moments exponentiels finis, ces moments étant reliés de manière naturelle à ceux présents dans le théorème d'existence. Nous améliorons aussi la formule de Feynman-Kac non linéaire prouvée par P. Briand et Y. Hu. Enfin, nous nous intéressons à la résolution numérique d'EDSRs quadratiques markoviennes dont la condition terminale est bornée. Nous estimons dans un premier temps des bornes déterministes sur le processus Z. Nous donnons ensuite un nouveau schéma de discrétisation en temps dont la particularité est que la grille de discrétisation est non uniforme. Enfin nous obtenons une vitesse de convergence pour ce schéma. Par ailleurs, quelques simulations numériques permettent d'étudier l'efficacité de notre nouveau schéma dans un cadre pratique.
APA, Harvard, Vancouver, ISO, and other styles
27

Morlais, Marie-Amélie. "Équations différentielles stochastiques rétrogrades à croissance quadratique et applications." Rennes 1, 2007. https://tel.archives-ouvertes.fr/tel-00179388.

Full text
Abstract:
Dans cette thèse, l’étude menée consiste à établir de nouveaux résultats théoriques concernant des problèmes d’existence et d’unicité pour des Equations Différentielles Stochastiques Rétrogrades (EDSR) à croissance quadratique. Ceci a notamment pour but de permettre la résolution d’un problème de mathématiques financières, à savoir la maximisation de l’utilité exponentielle d’un portefeuille sous contraintes. Généralisant des résultats déjà connus en filtration brownienne pour les EDSR quadratiques, ce travail permet ainsi d’apporter des réponses au problème financier dans des contextes plus généraux
In my PhDthesis, I have been mainly interested in the theoretical study of Backward Stochastic Differential Equations (BSDEs) with quadratic growth. The other major part of my study consists in focusing on applications to finance and especially in the classical utility maximization problem under portfolio constraints. To this end, I have extended results for non linear BSDEs by using martingale methods already known in the brownian setting to solve this problem in more general filtrations
APA, Harvard, Vancouver, ISO, and other styles
28

Gaudron, Guillaume. "Convergence en loi d'EDS et d'EDS Rétrogrades : application à l'homogénéisation d'EDP linéaires ou semilinéaires." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11010.

Full text
Abstract:
Certaines solutions d'edp paraboliques ou elliptiques, lineaires ou semilineaires, peuvent s'obtenir par l'intermediaire de processus stochastiques solutions d'eds. Le but de cette these est de combiner ces formules probabilistes avec des resultats de convergence en loi, pour etablir des theoremes limites pour certaines edp a coefficients aleatoires ou periodiques. La premiere partie de ce travail (chapitres 2 et 3) traite d'un exemple de convergence de diffusions soumises a un champ de vitesse turbulent aleatoire qui depend d'un petit parametre. En etablissant leur convergence en loi, et grace au lien classique entre les edp et les diffusions, nous retrouvons les lois d'echelles anomales mises en evidence par avellaneda et majda pour ce modele simple de turbulence et nous ameliorons les resultats concernant les edp associees. Ce qui est original c'est de profiter du fait que les diffusions sous-jacentes sont explicites pour d'une part etablir la convergence en loi sans utiliser une forme de theoreme central-limite et d'autre part identifier la limite. La deuxieme partie (chapitres 4 a 6) comporte l'etude de la convergence en loi d'edsr associees a des edp paraboliques ou elliptiques semi-lineaires. La encore, nous profitons du lien existant entre les edsr et certains types de solutions d'edp non lineaires pour obtenir des resultats d'homogeneisation pour ces edp. L'originalite de ce travail, outre le fait qu'il utilise la theorie recente des edsr, est d'essayer de savoir pour quel type de non-lineaire on peut obtenir des resultats interessants sans supposer de comportement a priori sur la forme de l'equation limite. L'approche est tres naturelle et la methode employee s'applique a des solutions d'edp a coefficients aussi bien aleatoires que periodiques. L'idee de ce travail est que l'on peut autoriser dans l'edp une fonction nonlineaire de la solution et de son gradient qui soit un polynome du second degre par rapport au gradient.
APA, Harvard, Vancouver, ISO, and other styles
29

Mu, Rui. "Jeux différentiels stochastiques de somme non nulle et équations différentielles stochastiques rétrogrades multidimensionnelles." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1004/document.

Full text
Abstract:
Cette thèse traite les jeux différentiels stochastiques de somme non nulle (JDSNN) dans le cadre de Markovien et de leurs liens avec les équations différentielles stochastiques rétrogrades (EDSR) multidimensionnelles. Nous étudions trois problèmes différents. Tout d'abord, nous considérons un JDSNN où le coefficient de dérive n'est pas borné, mais supposé uniquement à croissance linéaire. Ensuite certains cas particuliers de coefficients de diffusion non bornés sont aussi considérés. Nous montrons que le jeu admet un point d'équilibre de Nash via la preuve de l'existence de la solution de l'EDSR associée et lorsque la condition d'Isaacs généralisée est satisfaite. La nouveauté est que le générateur de l'EDSR, qui est multidimensionnelle, est de croissance linéaire stochastique par rapport au processus de volatilité. Le deuxième problème est aussi relatif au JDSNN mais les payoffs ont des fonctions d'utilité exponentielles. Les EDSRs associées à ce jeu sont de type multidimensionnelles et quadratiques en la volatilité. Nous montrons de nouveau l'existence d’un équilibre de Nash. Le dernier problème que nous traitons, est un jeu bang-bang qui conduit à des hamiltoniens discontinus. Dans ce cas, nous reformulons le théorème de vérification et nous montrons l’existence d’un équilibre de Nash qui est du type bang-bang, i.e., prenant ses valeurs sur le bord du domaine en fonction du signe de la dérivée de la fonction valeur ou du processus de volatilité. L'EDSR dans ce cas est un système multidimensionnel couplé, dont le générateur est discontinu par rapport au processus de volatilité
This dissertation studies the multiple players nonzero-sum stochastic differential games (NZSDG) in the Markovian framework and their connections with multiple dimensional backward stochastic differential equations (BSDEs). There are three problems that we are focused on. Firstly, we consider a NZSDG where the drift coefficient is not bound but is of linear growth. Some particular cases of unbounded diffusion coefficient of the diffusion process are also considered. The existence of Nash equilibrium point is proved under the generalized Isaacs condition via the existence of the solution of the associated BSDE. The novelty is that the generator of the BSDE is multiple dimensional, continuous and of stochastic linear growth with respect to the volatility process. The second problem is of risk-sensitive type, i.e. the payoffs integrate utility exponential functions, and the drift of the diffusion is unbounded. The associated BSDE is of multi-dimension whose generator is quadratic on the volatility. Once again we show the existence of Nash equilibria via the solution of the BSDE. The last problem that we treat is a bang-bang game which leads to discontinuous Hamiltonians. We reformulate the verification theorem and we show the existence of a Nash point for the game which is of bang-bang type, i.e., it takes its values in the border of the domain according to the sign of the derivatives of the value function. The BSDE in this case is a coupled multi-dimensional system, whose generator is discontinuous on the volatility process
APA, Harvard, Vancouver, ISO, and other styles
30

Morlais, Marie-Amélie. "Equations différentielles stochastiques rétrogrades à croissance quadratique et applications." Phd thesis, Université Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00179388.

Full text
Abstract:
Dans cette thèse, l'étude menée consiste à établir de nouveaux résultats théoriques concernant des problèmes d'existence et d'unicité pour des Equations Différentielles Stochastiques Rétrogrades (EDSR) à croissance quadratique : ceci a pour but de permettre la résolution d'un problème de Mathématiques Financières, à savoir la maximisation de l'utilité (exponentielle) d'un portefeuille sous contraintes. Généralisant des résultats déjà connus en filtration brownienne pour les EDSR quadratiques, ce travail permet ainsi d'apporter des réponses au problème financier dans des contextes plus généraux.
APA, Harvard, Vancouver, ISO, and other styles
31

Gégout-Petit, Anne. "Filtrage d'un processus partiellement observé et équations différentielles stochastiques rétrogrades réfléchies." Aix-Marseille 1, 1995. http://www.theses.fr/1995AIX11006.

Full text
Abstract:
Cette these comprend deux parties independantes. La premiere partie etudie un probleme de perturbation singuliere en filtrage non lineaire lorsque le processus est partiellement observe. Nous proposons un filtre approche de dimension finie pour la partie observee. A l'aide de ce filtre nous construisons un filtre approche de dimension infinie pour la partie non-observee. Il verifie cependant une equation de type zakai ou la dimension de la variable spatiale est plus petite que celle de l'equation de zakai verifiee par le filtre exact. La methode utilisee donne l'erreur d'approximation entre les deux filtres. La deuxieme partie etablit un theoreme d'existence et d'unicite pour la solution des equations differentielles stochastiques retrogrades (e. D. S. R. ) reflechies dans un convexe sans hypotheses de regularite sur celui-ci. Des conditions suffisantes sont d'abord donnees pour que la solution d'une e. D. S. R. Au sens classique reste dans un convexe donne. Nous montrons ensuite que s'il existe une solution au probleme reflechi, alors celle-ci est unique et le processus de reflexion est absolument continu. Nous montrons enfin l'existence par une methode de penalisation
APA, Harvard, Vancouver, ISO, and other styles
32

Rivière, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation." Paris 5, 2005. http://www.theses.fr/2005PA05S028.

Full text
Abstract:
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier
This thesis deals with the forward backward stochastic differential equations, in particular those with a coefficient of progressive diffusion which depends on all unknowns of the problem. We propose an original way to get onto this subject, letting us to reobtain some classical results of existence and uniqueness in the spirit of Pardoux-Tang and Yong's results, and to find a probabilistic representation of a new class of parabolic PDE, in which derivation coefficient of order 2 depends on the gradient of the solution. We also propose an iterative discretization scheme. We prove its convergence and give an evaluation of the error on a particular example
APA, Harvard, Vancouver, ISO, and other styles
33

Matoussi, Anis. "Equations différentielles stochastiques rétrogrades réfléchies à coefficients continus, solutions faibles d'EDPS et d'EDDSR." Le Mans, 1998. http://www.theses.fr/1998LEMA1006.

Full text
Abstract:
Cette thèse a pour objet, d'une part, l'étude des équations différentielles stochastiques rétrogrades réfléchies (EDDSR) et d'autre part, la preuve de l'existence et l'unicité des solutions d'équations aux dérivées partielles stochastiques quasi-linéaires (EDPS), formulées dans un sens faible ; en utilisant des solutions généralisées des équations différentielles doublement stochastiques rétrogrades (EDDSR). Dans la première partie, on s'attache à montrer l'existence d'une solution pour l'EDSR réfléchie sur une ou deux barrières à coefficient non Lipschitz. On s'interroge en effet sur les hypothèses minimales à inclure pour obtenir ce résultat. Dans la seconde partie, on s'intéresse à l'EDPS quasi-lineaire suivante : U/T = LU (T, X) + F(T, X, U(T, X), (*U)(T, X))DT + H(T, X, U(T, X), (*U)(T, X))B/T(T), U(T, X) = G(X) ou G est une distribution. Compte tenu des résultats déjà connus sur ce sujet, nous répondons aux questions suivantes: - dans le cas ou les coefficients F(S, X, Y, Z) et H(S, X, Y, Z) sont linéaires en (Y, Z) et appartiennent à un espace de type Sobolev en X, existe-t-il une formulation faible des EDDSR pour donner une formule de Feynman-Kac pour la solution d'EDPS ? - dans le cas ou les coefficients sont non-linéaires, peut-on montrer l'existence et l'unicite d'une solution de l'EDPS et ainsi généraliser les résultats obtenus par Barles et Lesigne (1997) dans le cadre des EDP standards ?
APA, Harvard, Vancouver, ISO, and other styles
34

Riviere, Olivier. "Equations différentielles stochastiques progressives rétrogrades couplées : équations aux dérivées partielles et discrétisation." Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00011231.

Full text
Abstract:
Ce travail de thèse porte sur les équations différentielles stochastiques progressives rétrogrades, en particulier celles dont le coefficient de diffusion progressif dépend de toutes les inconnues. Nous proposons une manière originale d'aborder le problème, nous permettant de retrouver des résultats classiques d'existence et d'unicité de Pardoux-Tang ou Yong. Nous obtenons de surcroît, en adoptant l'approche Pardoux-Tang en solutions de viscosité, des représentations probabilistes de toute une nouvelle classe d'EDP paraboliques dont les coefficients de dérivation d'ordre 2 dépendent du gradient de la solution. Nous proposons également un schéma de discrétisation itératif dont nous prouvons la convergence et évaluons l'erreur sur un exemple bien particulier.
APA, Harvard, Vancouver, ISO, and other styles
35

Delarue, François. "Equations différentielles stochastiques progressives-rétrogrades : application à l'homogénéisation des EDP quasi-linéaires." Aix-Marseille 1, 2002. http://www.theses.fr/2002AIX11003.

Full text
Abstract:
Les travaux exposés dans cette thèse traitent d'une façon assez générale des équations différentielles stochastiques progressives-rétrogrades (en abrégé EDSPR). De telles équations possèdent entre autres l'intérêt de fournir une représentation probabiliste des solutions d'EDP quasi-linéaires. Dans cette optique, nous sommes motivés par l'étude, à l'aide de cet objet probabiliste, de l'homogénéisation de telles EDP. En réalité, afin de poursuivre au mieux un tel objectif, nous développons dans un premier temps le cadre préexistant de la théorie des EDSPR. Cette première phase de travail nous permet d'établir un résultat supplémentaire d'existence et d'unicité des solutions, nécessitant comme hypothèse principale l'uniforme ellipticité de la matrice de diffusion. Notre démarche consiste à combiner techniques probabilistes et estimations a priori des solutions d'EDP quasi-linéaires. Dans un deuxième temps, nous parvenons à démontrer, à l'aide de techniques purement stochastiques, ces estimations analytiques, et à établir ainsi une preuve exclusivement probabiliste du résultat d'existence et d'unicité précédemment mentionné. Ces travaux préliminaires nous permettent de nous consacrer ensuite à l'application à l'homogénéisation des EDP quasi-linéaires. Dans un premier temps, nous nous attachons au cas d'équations paraboliques à structure périodique, en se fondant à la fois sur des propriétés de stabilité des EDS (progressives)-rétrogrades et sur des techniques de convergence faible. Nous étendons finalement dans un second temps cette approche au cas d'équations à coefficients aléatoires
APA, Harvard, Vancouver, ISO, and other styles
36

Massa-Turpin, Isabelle. "Sur l'interprétation probabiliste de solutions faibles D'EDP : contrôle stochastique optimal sous observations partielles et équations différentielles stochastiques rétrogrades." Valenciennes, 2004. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/be5e6f25-dba7-491b-aa3c-07d7f6306048.

Full text
Abstract:
Cette thèse est scindée en deux. Elle a pour objet, d'une part, l'étude des solutions de viscosité d'inéquations variationnelles ou quasi-variationnelles issues du contrôle stochastique optimal de processus sous observations partielles. Plus précisément, on s'intéresse à la caractérisation de fonctions valeur associées à des problèmes de contrôle continu optimal jumélé avec arrêt ou impulsion. D'autre part, on traite le lien entre les solutions d'Equations Différentielles Partielles semi-linéaires et celles d'Equations Différentielles Stochastiques Rétrogrades (EDSR). On étudie d'abord des EDSR à sauts réfléchies sur deux barrières. On montre alors comment la solution de l'EDS progressive rétrograde génére la solution de viscosité d'une équation intégro-différentielle partielle avec deux obstacles. On établit ensuite le lien entre les solutions de Sobolev d'EDPs et celles d'EDSR comme application directe d'un résultat d'équivalence de normes
The thesis is divided in two parts. It deals with viscosity solutions of variational inequalities or quasi-variational inequalities in the first section. More precisely, we are interested in the caracterization of value functions associated to optimal stochastic control problems of a partially observed diffusion. These problems consisting of continuously acting controls combined with impulse controls or stopping times. The second part is devoted to the link between solutions of semilinear PDEs and the solutions of BSDEs. We first study double barrier BSDEs with jumps. We then prove that the solution of the FBSDE provides a viscosity solution of a parabolic integral-differential partial equation with two obstacles. Next we state the connection between Sobolev solutions of PDEs and the ones of BSDE as an application of a norm equivalence result
APA, Harvard, Vancouver, ISO, and other styles
37

Lemor, Jean-Philippe. "Approximation par projections et simulations de Monte-Carlo des équations différentielles stochastiques rétrogrades." Phd thesis, Ecole Polytechnique X, 2005. http://pastel.archives-ouvertes.fr/pastel-00001396.

Full text
Abstract:
Cette thèse traite de l'approximation des équations différentielles stochastiques rétrogrades (EDSR) par projections et simulations de Monte-Carlo. Les applications envisagées ont rapport aux mathématiques financières. Dans une première partie, nous proposons un premier algorithme dont nous étudions la convergence en fonction de ses paramètres. Ayant montré les limitations de ce premier algorithme, nous étudions dans une deuxième partie un second algorithme pour lequel nous établissons de nouvelles bornes d'erreurs. Celles-ci nous permettent d'obtenir une précision arbitrairement petite dans l'approximation des solutions d'EDSR. Nous étendons dans une troisième partie nos résultats au cas des EDSR rétrogrades qui permettent de modéliser le problème de réplication d'options américaines. Enfin, dans une dernière partie, nous expérimentons numériquement les algorithmes analysés précédemment. En conclusion, nous donnons des pistes pour étendre ce travail.
APA, Harvard, Vancouver, ISO, and other styles
38

Lemor, Jean-Philippe. "Approximation par projections et simulations de Monte-Carlo des équations différentielles stochastiques rétrogrades." Phd thesis, Palaiseau, Ecole polytechnique, 2005. http://www.theses.fr/2005EPXX0063.

Full text
Abstract:
Cette thèse traite de l'approximation des équations différentielles stochastiques rétrogrades (EDSR) par projections et simulations de Monte-Carlo. Les applications envisagées ont rapport aux mathématiques financières. Dans une première partie, nous proposons un premier algorithme dont nous étudions la convergence en fonction de ses paramètres. Ayant montré les limitations de ce premier algorithme, nous étudions dans une deuxième partie un second algorithme pour lequel nous établissons de nouvelles bornes d'erreurs. Celles-ci nous permettent d'obtenir une précision arbitrairement petite dans l'approximation des solutions d'EDSR. Nous étendons dans une troisième partie nos résultats au cas des EDSR rétrogrades qui permettent de modéliser le problème de réplication d'options américaines. Enfin, dans une dernière partie, nous expérimentons numériquement les algorithmes analysés précédemment. En conclusion, nous donnons des pistes pour étendre ce travail.
APA, Harvard, Vancouver, ISO, and other styles
39

Piozin, Lambert. "Quelques résultats sur les équations rétrogrades et équations aux dérivées partielles stochastiques avec singularités." Thesis, Le Mans, 2015. http://www.theses.fr/2015LEMA1004/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude de quelques problèmes dans le domaine des équations différentielles stochastiques rétrogrades (EDSR), et leurs applications aux équations aux dérivées partielles.Dans le premier chapitre, nous introduisons la notion d'équation différentielle doublement stochastique rétrograde (EDDSR) avec condition terminale singulière. Nous étudions d’abord les EDDSR avec générateur monotone, et obtenons ensuite un résultat d'existence par un schéma d'approximation. Une dernière section établit le lien avec les équations aux dérivées partielles stochastiques, via l'approche solution faible développée par Bally, Matoussi en 2001.Le deuxième chapitre est consacré aux EDSR avec condition terminale singulière et sauts. Comme dans le chapitre précédent la partie délicate sera de prouver la continuité en T. Nous formulons des conditions suffisantes sur les sauts afin d'obtenir cette dernière. Une section établit ensuite le lien entre solution minimale de l'EDSR et équations intégro-différentielles. Enfin le dernier chapitre est dédié aux équations différentielles stochastiques rétrogrades du second ordre (2EDSR) doublement réfléchies. Nous avons établi l'existence et l'unicité de telles équations. Ainsi, il nous a fallu dans un premier temps nous concentrer sur le problème de réflexion par barrière supérieure des 2EDSR. Nous avons ensuite combiné ces résultats à ceux existants afin de donner un cadre correct aux 2EDSRDR. L'unicité est conséquence d'une propriété de représentation et l'existence est obtenue en utilisant les espaces shiftés, et les distributions de probabilité conditionnelles régulières. Enfin une application aux jeux de Dynkin et aux options Israëliennes est traitée dans la dernière section
This thesis is devoted to the study of some problems in the field of backward stochastic differential equations (BSDE), and their applications to partial differential equations.In the first chapter, we introduce the notion of backward doubly stochastic differential equations (BDSDE) with singular terminal condition. A first work consists to study the case of BDSDE with monotone generator. We then obtain existing result by an approximating scheme built considering a truncation of the terminal condition. The last part of this chapter aim to establish the link with stochastic partial differential equations, using a weak solution approach developed by Bally, Matoussi in 2001.The second chapter is devoted to the BSDEs with singular terminal conditions and jumps. As in the previous chapter the tricky part will be to prove continuity in T. We formulate sufficient conditions on the jumps in order to obtain it. A section is then dedicated to establish a link between a minimal solution of our BSDE and partial integro-differential equations.The last chapter is dedicated to doubly reflected second order backward stochastic differential equations (2DRBSDE). We have been looking to establish existence and uniqueness for such equations. In order to obtain this, we had to focus first on the upper reflection problem for 2BSDEs. We combined then these results to those already existing to give a well-posedness context to 2DRBSDE. Uniqueness is established as a straight consequence of a representation property. Existence is obtained using shifted spaces, and regular conditional probability distributions. A last part is then consecrated to the link with some Dynkin games and Israeli options
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Mingyu. "Contributions à l'étude des équations différentielles stochastiques rétrogrades fléchies et applications aux équations et dérivées partielles." Le Mans, 2005. http://cyberdoc.univ-lemans.fr/theses/2005/2005LEMA1004.pdf.

Full text
Abstract:
Dans un premier chapitre, nous avons considéré les équation différentielles stochastiques rétrogrades (EDSRs) réfléchies avec une ou deux barrières continues à droite et limitées à gauche (càdlàg). En utilisant une méthode d'itération de Picard nous avons obtenu l'existence et l'unicité de lasolution de l'EDSR à deux barrières. Nous avons ensuite utilisé une méthode de pénalisation dans le cas d'une barrière. En considérant les solutions (Y n,Zn,Kn) des équations pénalisées comme solutions d'EDSRs réfléchies, on montre que la limite (Y,Z,K) est la solution du problème, parles propriétés de l'enveloppe de Snell et le théorème ”limit monotonic” de Peng (Peng, S. , 1999). Dans le cas de l'équation avec deux barrières càdlàgs, de manière analogue, une généralisation du”limit monotonic” théorème permet de passer à la limite dans les équations pénalisées. Ensuite, la représentation des solutions via les Jeux de Dynkin nous permet d'obtenir que la limite (Y,Z,K)est alors la solution du problème. Dans un second travail, nous avons généralisé ce type de résultat au cas o`u les barrières sont seulement L2, en utilisant toujours une méthode de pénalisation avec la théorie des g-sur-solutions. Dans un second chapitre, nous considérons les EDSRs réfléchies avec une barrière continue,associées à (_, f,L), lorsque _ 2 L2(FT ), f(t, !, y, z) est continue, satisfait des conditions de mono-tonie, de croissance générale en y, et la condition lipschitzienne en z, et lorsque la barrière (Lt)0_t_Test un processus continu progressivement mesurable, qui vérifie certaines conditions d'intégrabilité. Nous avons notamment montré l'existence et l'unicité de la solution dans L2, pour cette équation réfléchie avec temps terminal déterministe. La preuve de l'existence s'effectue en quatre étapes. La première étape consiste à montrer le résultat sous des hypothèses de bornitude pour _, f(t, 0) etL+. La seconde étape (la plus délicate) consiste à relaxer l'hypothèse de bornitude sur L+ ; enfin les deux dernières étapes nous permettent d'obtenir le résultat général, en relaxant les hypothèses de bornitude sur _ et f(t, 0). Les théorèmes de comparaison jouent un rôle important, en nous permettant de passer à la limite dans les équations. Nous avons ensuite étudié le cas o`u le temps terminal est aléatoire. L'existence et l'unicité de la solution sont montrées. Dans un troisième chapitre, nous étudions les EDSRs réfléchies à une barrière dont le générateur satisfait des conditions de monotonie, de croissance générale en y, et une condition de croissance quadratique ou linéaire en z, et lorsque la barrière L est uniformément bornée. Nous montrons l'existence d'une solution par approximation, sous ces conditions. Nous trouvons également une condition nécessaire et suffisante pour le cas f(t, !, y, z) = |z|2 , et construisons sa solution expli-citement. Pour le cas f(t, !, y, z) = |z|p, p 2 (1, 2), nous montrons une condition suffisante. Dans un quatrième chapitre, nous traitons des EDSRs réfléchies avec deux barrières, lorsque satisfait des conditions de monotonie, continuité, croissance générale en y, et de Lipschiz en z,comme dans le second chapitre. Pour les barrières, nous exigeons que L et U soient continues, L < Usur [0, T], et l'hypothèse de Mokobodski. Nous montrons l'existence et l'unicité de la solution pour cette équation. Dans un cinquième chapitre, nous étudions les applications des ESDRs. Une application importante des EDSRs consiste à donner une interprétation probabiliste (Formule de Feynman-Kacnonlinéaire) pour les solutions des équations aux dérivées partielles (EDPs) semi linéaires parabo-liques. Nous appliquons la méthode d'approximation et les résultats de l'EDSR dans (Pardoux,1999), pour l'EDP semi linéaire, dans le sens Sobolev, par la solution de l'EDSR correspondante. Ensuite, nous utilisons la notion de l'EDP avec obstacle (Bally et al. , 2004). Par la même approximation que dans le second chapitre, nous montrons l'interprétation probabiliste de la solution(u, _) de l'EDP par la solution (Y,Z,K) de l'EDSR réfléchie. Ici, nous supposons que l'obstacle hest à croissance polynômiale. Nous prouvons un théorème qui permet de remplacer la fonction test régulière par la fonction test aléatoire sous les conditions de monotonie et de croissance générale,et par ce théorème nous obtenons l'unicité de la solution de l'EDP via l'unicité de la solution del'EDSR ou l'EDSR réfléchie. Enfin dans un dernier chapitre, nous étudions les solutions numériques des EDSRs et présentons des résultats de simulation, et nous appliquons notamment cette technique au calcul des options américaines
In the first chapter, we consider the reflected backward stochastic differential equation (BSDEsin short) with one or two right continuous and left limited (RCLL in short) barriers. Using the Picarditeration method, we obtained the existence and uniqueness of the solution of the reflected BSDEwith two RCLL barriers. Then we use the penalization method to the case of one RCLL barrier. Considering the solutions (Y n,Zn,Kn) of penalized equations as solutions of reflected BSDEs,we prove that the limit (Y,Z,K) is the solution of equation, by properties of Snell envelope andmonotonic limit theorem (Peng S. , 1999). In the case of equation with two RCLL barriers, by theanalogue method, we prove the limit (Y,Z,K) of penalized equation is the solution of problem,by the representation of solutions via Dynkin game. Here we need a generalized monotonic limittheorem, which permit us to pass the limit for penalized equations. In a second work, we have generalized this type of result to the case where barriers are just inL2, by the method of penalization and the theory of g-supersolution. In the second chapter, we consider the reflected BSDEs with one continuous barrier, associatedto (_, f,L), when _ 2 L2(FT ), f(t, !, y, z) is continuous, satisfies monotonic and general increasingconditions on y, and Lipschitz condition on z, and when the barrier (Lt)0_t_T is a progressivelymeasurable continuous process, which verifies certain integrability condition. We have also notable prove the existence and uniqueness of solution in L2, for this reflectedequation with determinist terminal time. The proof of existence is effected by four steps. The firststep consists to prove the result under the boundness condition of _, f(t, 0) et L+. The second step(the most delicate) consists to relax the boundness condition of L+ ; the following two step permitus to obtain the general result, relaxing the boundness condition on _ and f(t, 0). The comparisontheorems play important roles, which help us to pass the limit in the equations. Then we study thecase when the terminal time is a stopping time. The existence and uniqueness of the solution arealso proved. In the third chapter, we have studied the reflected BSDEs with one barrier, whose generator fsatisfies the monotonic and general increasing condition on y, and quadratic and linear condition onz, when the barrier L is uniformly bounded. We prove the existence of a solution by approximation,under these conditions. We also find a necessary and sufficient condition for the case f(t, !, y, z) =|z|2, and construct its solution explicitly. For the case f(t, !, y, z) = |z|p, p 2 (1, 2), we prove asufficient condition. In the forth chapter, we treat the reflected BSDE with two barrier, when f satisfies the mono-tonic, continuous and general increasing conditions on y, and Lipschitz condition on z, like in thesecond chapter. For the barriers, we suppose that L and U are continuous, L < U on [0, T], andMokoboski condition. We prove the existence and uniqueness of the solution for this equation. In the fifth chapter, we study the applications of BSDE. A important application of BSDEconsists to give a probabilistic interpretation (nonlinear Feynman-Kac formula) pour solutions ofsemilinear parabolic partial differential equations. We apply the approximation method and resultsof BSDE in (Pardoux, 1999) for semiliear PDE in Sobolev sense, by the solution of correspondingBSDEs. In following, we use the notion of PDE with obstacle (Bally et al. , 2004). By the sameapproximation in second chapter, we prove the probabilistic interpretation of the solution (u, _) ofPDE by the solution (Y,Z,K) of reflected BSDE. Here, we suppose that the obstacle h is polynomialincreasing. We prove a theorem which permits us to replace the regular test function by the randomtest function under monotonic and general increasing conditions, and by this theorem we obtainthe uniqueness of the solution of PDE from the solution of BSDE or reflected BSDE. Finally, in the last chapter, we study the numerical solutions of BSDEs and present somesimulation results, and we apply this technique to the calculation of American option
APA, Harvard, Vancouver, ISO, and other styles
41

Bourguin, Solesne. "Sur les théorèmes limites et les équations différentielles stochastiques rétrogrades par le calcul de Malliavin." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2011. http://tel.archives-ouvertes.fr/tel-00668819.

Full text
Abstract:
Cette thèse, composée de trois parties, est centrée sur l'application du calcul de \text{Malliavin} à différents domaines de l'analyse stochastique, tels que les théorèmes limites, le calcul stochastique fractionnaire et la régularité des solutions d'équations différentielles stochastiques. La première partie porte sur l'étude asymptotique de modèles de regression fractionnaire et fait appel au calcul stochastique par rapport au mouvement Brownien fractionnaire et au calcul de Malliavin. La deuxième partie est centrée sur la méthode de Stein sur l'espace de Wiener et présente des résultats ayant attrait aux théorèmes limites pour des fonctionnelles de champs Gaussiens (processus moyenne mobile à mémoire longue, sommes autonormalisées) ainsi que des résultats portant sur des propriétés de déconvolution de la loi Gamma. La troisième et dernière partie a pour objet l'étude, par le calcul de Malliavin, des solutions d'équations différentielles stochastiques rétrogrades, et en particulier l'existence de densité ainsi que d'estimées de densité pour ces solutions.
APA, Harvard, Vancouver, ISO, and other styles
42

Lin, Qian. "Backward stochastic differential equations, G-expectations and related topics." Brest, 2011. http://www.theses.fr/2011BRES2042.

Full text
Abstract:
Nous avons d’abord étudié les paiements d’équilibre de Nash pour les jeux différentiels stochastiques avec des fonctionnels de coût non-linéaires. J’ai obtenu un théorème d’existence et un théorème de caractérisation des paiements d’équilibre de Nash. Les résultats obtenus étendent ceux de Buckdahn, Cardaliaguet et Rainer (2004). La généralisation concerne les aspects suivants: Premièrement, nos fonctionnels de coût sont définis par des équations différentielles stochastiques rétrogrades contrôlées, et les processus de contrôles admissibles peuvent dépendre des événements survenus avant le début du jeux. Alors, nos fonctionnels de coût ne sont pas nécessairement déterministes. Deuxièmement, puisque nos fonctionnels de coût sont non-linéaires et peuvent être couplées, je n’ai pu appliquer les méthodes utilisées dans Buckdahn, Cardaliaguet et Rainer. A la place j’ai utilisé la notion de semigroupes stochastiques rétrogrades et la théorie des équations différentielles stochastiques rétrogrades. J’ai étudié également des problèmes sur la G-ésperance, dont la notion de temps local, et j’ai obtenu la formule de Tanaka pour le G-mouvement brownien ainsi que la continuité conjointe du temps local du G-mouvement brownien. En plus, j’ai obtenu une représentation des G-martingales symétriques comme intégrales stochastiques par rapport à un G- mouvement brownien, ce qui généralise le théorème de caractérisation de martingales pour le G-mouvement brownien établi par Xu. Enfin, je me suis intéressé aux équations différentielles doublement stochastiques rétrogrades unidimensionnelles avec coefficients non lipschitziens pour lesquelles j’ai obtenu un résultat d’existence
We first study Nash equilibrium payoffs for nonzero sum stochastic differential games with nonlinear cost functionals. We obtain an existence theorem and a characterization theorem for Nash equilibria. The obtained results extend former ones by Buckdahn, Cardaliaguet ami Rainer (2004). The generalization concerns the following aspects: Firstly, our cost functionals are defined by controlled backward stochastic differential equations, and the admissible control processes depend on events occurring before the beginning of the stochastic differential game. Thus, our cost functionals are not necessarily deterministic. Secondly, since our cost functionals are nonlinear and can be coupled, we cannot apply the methods used in Buckdahn, Cardaliaguet and Rainer. We make use of the notion of stochastic backward and the theory of backward stochastic differential equations. I’ve also been studying selected problems of G-expectations, among them the notion of local time for which I’ve obtained the Tanaka formula for the G-Brownian motion as well as the joint continuity of the local time of the G-Brownian motion. Moreover, I’ve derived a representation of G-martingales as stochastic integrals with respect to G-Brownian motion, which generalizes the martingale characterization theorem for G-Brownian motion established by Xu. Finally, I also have studied one-dimensional backward doubly stochastic differential equations with non-Lipschitz coefficient for which I get an existence result
APA, Harvard, Vancouver, ISO, and other styles
43

Zheng, Ziyu. "Analyse du risque de modèle en finance : équations différentielles stochastiques rétrogrades réfléchies avec temps terminal aléatoire." Aix-Marseille 1, 2002. http://www.theses.fr/2002AIX11044.

Full text
Abstract:
Cette thèse est divisée en trois parties. Les deux premières parties sont consacrées au risque de modèle en finance (évaluation, gestion). La troisième partie est consacrée aux équations différentielles stochastiques rétrogrades réfléchies avec temps terminal aléatoire et à certaines de leurs applications. Dans la première partie, nous étudions la vitesse de convergence de l'approximation numérique de quantiles de la loi d'une composante de (X_t), quand (X_t) est un processus de diffusion et quand on utilise une méthode de Monte-Carlo combinée avec le schéma d'Euler de discrétisation en temps du processus. La vitesse de convergence est obtenue sous deux hypothèses différentes : ou (X_t) a un générateur uniformément hypoelliptique, ou l'inverse de la matrice de covariance de Malliavin de la composante de X_t considérée satisfait une certaine condition (M). Nous montrons ensuite que cette condition (M) est satisfaite dans divers contextes en finance. Dans la deuxième partie, nous nous intéressons au contrôle du risque de modèle. Nous étudions une stratégie qui, en un certain sens, garantit de bonnes performances quel que soit le modèle (inconnu) des actifs sous-jacents utilisés dans le portefeuille de couverture. Nous considérons le problème de contrôle du risque de modèle comme un problème de jeu stochastique à deux joueurs (trader contre marché) et à somme nulle correspondant à une protection 'pire cas'. Nous prouvons que la fonction valeur correspondante est l'unique solution de viscosité d'une équation d'Hamilton-Jacobi-Bellman-Isaacs. La troisième partie de la thèse traite diverses questions relatives à des équations différentielles stochastiques rétrogrades réfléchies avec temps terminal aléatoire, leurs relations avec des jeux de Dynkin et les solutions de viscosité de divers problèmes elliptiques.
APA, Harvard, Vancouver, ISO, and other styles
44

Dumitrescu, Roxana. "Contributions au contrôle stochastique avec des espérances non linéaires et aux équations stochastiques rétrogrades." Thesis, Paris 9, 2015. http://www.theses.fr/2015PA090033/document.

Full text
Abstract:
Cette thèse se compose de deux parties indépendantes qui portent sur le contrôle stochastique avec des espérances non linéaires et les équations stochastiques rétrogrades (EDSR), ainsi que sur les méthodes numériques de résolution de ces équations. Dans la première partie on étudie une nouvelle classe d'équations stochastiques rétrogrades, dont la particularité est que la condition terminale n'est pas fixée mais vérifie une contrainte non linéaire exprimée en termes de "f-espérances". Ce nouvel objet mathématique est étroitement lié aux problèmes de couverture approchée des options européennes où le risque de perte est quantifié en termes de mesures de risque dynamiques, induites par la solution d'une EDSR non linéaire. Dans le chapitre suivant on s'intéresse aux problèmes d'arrêt optimal pour les mesures de risque dynamiques avec sauts. Plus précisément, on caractérise dans un cadre markovien la mesure de risque minimale associée à une position financière comme l'unique solution de viscosité d'un problème d'obstacle pour une équation intégro-différentielle. Dans le troisième chapitre, on établit un principe de programmation dynamique faible pour un problème mixte de contrôle stochastique et d'arrêt optimal avec des espérances non linéaires, qui est utilisé pour obtenir les EDP associées.La spécificité de ce travail réside dans le fait que la fonction de gain terminal ne satisfait aucune condition de régularité (elle est seulement considérée mesurable), ce qui n'a pas été le cas dans la littérature précédente. Dans le chapitre suivant, on introduit un nouveau problème de jeux stochastiques, qui peut être vu comme un jeu de Dynkin généralisé (avec des espérances non linéaires). On montre que ce jeu admet une fonction valeur et on obtient des conditions suffisantes pour l'existence d'un point selle. On prouve que la fonction valeur correspond à l'unique solution d'une équation stochastique rétrograde doublement réfléchie avec un générateur non linéaire général. Cette caractérisation permet d'obtenir de nouveaux résultats sur les EDSR doublement réfléchies avec sauts. Le problème de jeu de Dynkin généralisé est ensuite étudié dans un cadre markovien.Dans la deuxième partie, on s'intéresse aux méthodes numériques pour les équations stochastiques rétrogrades doublement réfléchies avec sauts et barrières irrégulières, admettant des sauts prévisibles et totalement inaccessibles. Dans un premier chapitre, on propose un schéma numérique qui repose sur la méthode de pénalisation et l'approximation de la solution d'une EDSR par une suite d'EDSR discrètes dirigées par deux arbres binomiaux indépendants (un qui approxime le mouvement brownien et l'autre le processus de Poisson composé). Dans le deuxième chapitre, on construit un schéma en discrétisant directement l'équation stochastique rétrograde doublement réfléchie, schéma qui présente l'avantage de ne plus dépendre du paramètre de pénalisation. On prouve la convergence des deux schémas numériques et on illustre avec des exemples numériques les résultats théoriques
This thesis consists of two independent parts which deal with stochastic control with nonlinear expectations and backward stochastic differential equations (BSDE), as well as with the numerical methods for solving these equations.We begin the first part by introducing and studying a new class of backward stochastic differential equations, whose characteristic is that the terminal condition is not fixed, but only satisfies a nonlinear constraint expressed in terms of "f - expectations". This new mathematical object is closely related to the approximative hedging of an European option, when the shortfall risk is quantified in terms of dynamic risk measures, induced by the solution of a nonlinear BSDE. In the next chapter we study an optimal stopping problem for dynamic risk measures with jumps.More precisely, we characterize in a Markovian framework the minimal risk measure associated to a financial position as the unique viscosity solution of an obstacle problem for partial integrodifferential equations. In the third chapter, we establish a weak dynamic programming principle for a mixed stochastic control problem / optimal stopping with nonlinear expectations, which is used to derive the associated PDE. The specificity of this work consists in the fact that the terminal reward does not satisfy any regularity condition (it is considered only measurable), which was not the case in the previous literature. In the next chapter, we introduce a new game problem, which can be seen as a generalized Dynkin game (with nonlinear expectations ). We show that this game admits a value function and establish sufficient conditions ensuring the existence of a saddle point . We prove that the value function corresponds to the unique solution of a doubly reected backward stochastic equation (DRBSDE) with a nonlinear general driver. This characterization allows us to obtain new results on DRBSDEs with jumps. The generalized Dynkin game is finally addressed in a Markovian framework.In the second part, we are interested in numerical methods for doubly reected BSDEs with jumps and irregular barriers, admitting both predictable and totally inaccesibles jumps. In the first chapter we provide a numerical scheme based on the penalisation method and the approximation of the solution of a BSDE by a sequence of discrete BSDEs driven by two independent random walks (one approximates the Brownian motion and the other one the compensated Poisson process). In the second chapter, we construct an alternative scheme based on the direct discretisation of the DRBSDE, scheme which presents the advantage of not depending anymore on the penalization parameter. We prove the convergence of the two schemes and illustrate the theoretical results with some numerical examples
APA, Harvard, Vancouver, ISO, and other styles
45

Possamaï, Dylan. "Voyage au coeur des EDSRs du second ordre et autres problèmes contemporains de mathématiques financières." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00651589.

Full text
Abstract:
Cette thèse présente deux principaux sujets de recherche indépendants, le dernier étant décliné sous la forme de deux problèmes distincts. Dans toute la première partie de la thèse, nous nous intéressons à la notion d'équations différentielles stochastiques rétrogrades du second ordre (dans la suite 2EDSR), introduite tout d'abord par Cheredito, Soner, Touzi et Victoir puis reformulée récemment par Soner, Touzi et Zhang. Nous prouvons dans un premier temps une extension de leurs résultats d'existence et d'unicité lorsque le générateur considéré est seulement continu et à croissance linéaire. Puis, nous poursuivons notre étude par une nouvelle extension au cas d'un générateur quadratique. Ces résultats théoriques nous permettent alors de résoudre un problème de maximisation d'utilité pour un investisseur dans un marché incomplet, à la fois car des contraintes sont imposées sur ses stratégies d'investissement, et parce que la volatilité du marché est supposée être inconnue. Nous prouvons dans notre cadre l'existence de stratégies optimales, caractérisons la fonction valeur du problème grâce à une EDSR du second ordre et résolvons explicitement certains exemples qui nous permettent de mettre en exergue les modifications induites par l'ajout de l'incertitude de volatilité par rapport au cadre habituel. Nous terminons cette première partie en introduisant la notion d'EDSR du second ordre avec réflexion sur un obstacle. Nous prouvons l'existence et l'unicité des solutions de telles équations, et fournissons une application possible au problème de courverture d'options Américaines dans un marché à volatilité incertaine. Le premier chapitre de la seconde partie de cette thèse traite d'un problème de pricing d'options dans un modèle où la liquidité du marché est prise en compte. Nous fournissons des développements asymptotiques de ces prix au voisinage de liquidité infinie et mettons en lumière un phénomène de transition de phase dépendant de la régularité du payoff des options considérées. Quelques résultats numériques sont également proposés. Enfin, nous terminons cette thèse par l'étude d'un problème Principal/Agent dans un cadre d'aléa moral. Une banque (qui joue le rôle de l'agent) possède un certain nombre de prêts dont elle est prête à échanger les intérêts contre des flux de capitaux. La banque peut influencer les probabilités de défaut de ces emprunts en exerçant ou non une activité de surveillance coûteuse. Ces choix de la banque ne sont connus que d'elle seule. Des investisseurs (qui jouent le rôle de principal) souhaitent mettre en place des contrats qui maximisent leur utilité tout en incitant implicitement la banque à exercer une activité de surveillance constante. Nous résolvons ce problème de contrôle optimal explicitement, décrivons le contrat optimal associé ainsi que ses implications économiques et fournissons quelques simulations numériques.
APA, Harvard, Vancouver, ISO, and other styles
46

Lin, Yiqing. "Équations différentielles stochastiques sous les espérances mathématiques non-linéaire et applications." Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00955814.

Full text
Abstract:
Cette thèse est composée de deux parties indépendantes : la première partie traite des équations différentielles stochastiques dans le cadre de la G-espérance, tandis que la deuxième partie présente les résultats obtenus pour les équations différentielles stochastiques du seconde ordre. Dans un premier temps, on considère les intégrales stochastiques par rapport à un processus croissant, et on donne une extension de la formule d'Itô dans le cadre de la G-espérance. Ensuite, on étudie une classe d'équations différentielles stochastiques réfléchies unidimensionnelles dirigées par un G-mouvement brownien. Dans la suite, en utilisant une méthode de localisation, on prouve l'existence et l'unicité de solutions pour les équations différentielles stochastiques dirigées par un G-mouvement brownien, dont les coefficients sont localement lipschitziens. Enfin, dans le même cadre, on discute des problèmes de réflexion multidimensionnelle et on fournit quelques résultats de convergence. Dans un deuxième temps, on étudie une classe d'équations différentielles stochastiques rétrogrades du seconde ordre à croissance quadratique. Le but de ce travail est de généraliser le résultat obtenu par Possamaï et Zhou en 2012. On montre aussi l'existence et l'unicité des solutions pour ces équations, mais sous des hypothèses plus faibles. De plus, ce résultat théorique est appliqué aux problèmes de maximisation robuste de l'utilité du portefeuille en finance.
APA, Harvard, Vancouver, ISO, and other styles
47

Lambart, Céline. "EDSR: analyse de discrétisation et résolution par méthodes de Monte Carlo adaptatives : perturbation de domaines pour les options américaines." Palaiseau, Ecole polytechnique, 2007. http://www.theses.fr/2007EPXX0020.

Full text
Abstract:
Deux thématiques différentes des probabilités numériques et de leurs applications financières sont abordées dans ma thèse: l'une traite de l'approximation et de la simulation d'équations différentielles stochastiques rétrogrades (EDSR), l'autre est liée aux options américaines et les aborde du point de vue de l'optimisation de domaine et des perturbations de frontière. La première partie de ma thèse revisite la question d'analyse de convergence dans la discrétisation en temps d' EDSR markoviennes (Y,Z) en une équation de programmation dynamique de n pas de temps. Nous établissons un développement limité à l'ordre 1 de l'erreur sur (Y,Z) : précisément, l'erreur trajectorielle sur X se transfère intégralement sur l'EDSR et montre ainsi que si X est approché avec précision ou simulé exactement, de meilleurs vitesses sont possibles (en 1/n). La seconde partie de ma thèse s'intéresse à la résolution des EDSR via le procédé de Picard et les méthodes de Monte Carlo séquentielles. Nous avons montré que la convergence de notre algorithme a lieu à vitesse géométrique et avec une précision indépendante au 1er ordre du nombre de simulations. La dernière partie de ma thèse regroupe des premiers résultats sur la valorisation d'options américaines par optimisation de la frontière d'exercice. La clé de voûte de ce type d'approche est la capacité à évaluer un gradient par rapport à la frontière. Le temps continu a été traité par Costantini et al (2006) et cette thèse couvre le cas discret des options Bermuda.
APA, Harvard, Vancouver, ISO, and other styles
48

Lin, Yiqing. "Équations différentielles stochastiques sous les espérances mathématiques non-linéaires et applications." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S012/document.

Full text
Abstract:
Cette thèse est composée de deux parties indépendantes : la première partie traite des équations différentielles stochastiques dans le cadre de la G-espérance, tandis que la deuxième partie présente les résultats obtenus pour les équations différentielles stochastiques du seconde ordre. Dans un premier temps, on considère les intégrales stochastiques par rapport à un processus croissant, et on donne une extension de la formule d'Itô dans le cadre de la G-espérance. Ensuite, on étudie une classe d'équations différentielles stochastiques réfléchies unidimensionnelles dirigées par un G-mouvement brownien. Dans la suite, en utilisant une méthode de localisation, on prouve l'existence et l'unicité de solutions pour les équations différentielles stochastiques dirigées par un G-mouvement brownien, dont les coefficients sont localement lipschitziens. Enfin, dans le même cadre, on discute des problèmes de réflexion multidimensionnelle et on fournit quelques résultats de convergence. Dans un deuxième temps, on étudie une classe d'équations différentielles stochastiques rétrogrades du seconde ordre à croissance quadratique. Le but de ce travail est de généraliser le résultat obtenu par Possamaï et Zhou en 2012. On montre aussi l'existence et l'unicité des solutions pour ces équations, mais sous des hypothèses plus faibles. De plus, ce résultat théorique est appliqué aux problèmes de maximisation robuste de l'utilité du portefeuille en finance
This thesis consists of two relatively independent parts : the first part concerns stochastic differential equations in the framework of the G-expectation, while the second part deals with a class of second order backward stochastic differential equations. In the first part, we first consider stochastic integrals with respect to an increasing process and give an extension of Itô's formula in the G-framework. Then, we study a class of scalar valued reflected stochastic differential equations driven by G-Brownian motion. Subsequently, we prove the existence and the uniqueness of solutions for some locally Lipschitz stochastic differential equations driven by G-Brownian motion. At the end of this part, we consider multidimensional reflected problems in the G-framework, and some convergence results are obtained. In the second part, we study the wellposedness of a class of second order backward stochastic differential equations (2BSDEs) under a quadratic growth condition on their coefficients. The aim of this part is to generalize a wellposedness result for quadratic 2BSDEs by Possamaï and Zhou in 2012. In this thesis, we work under some usual assumptions and deduce the existence and uniqueness theorem as well. Moreover, this theoretical result for quadratic 2BSDEs is applied to solve some robust utility maximization problems in finance
APA, Harvard, Vancouver, ISO, and other styles
49

LASRI, ABDELLAH. "Estimation du gradient pour les équations aux dérivées partielles paraboliques non linéaires et les équations différentielles stochastiques rétrogrades par la méthode de Bernstein." Tours, 1995. http://www.theses.fr/1995TOUR4015.

Full text
Abstract:
Cette thèse s'organise autour de deux thèmes. Le premier concerne les solutions de viscosité continues d'EDP paraboliques non linéaires gérées par un hamiltonien H. Le second se rapporte aux solutions de carré intégrables d'EDS rétrogrades engendrées par un générateur F. Notre but, dans les deux cas, est d'obtenir des estimations de la solution sous certaines propriétés intrinsèques par rapport aux fonctions H et F. Pour cela, nous avons utilisé l'approche dite version faible de la méthode de Bernstein introduite par G. Barles. Les propriétés en question sont appelées conditions de structure. Dans la première partie, nous avons établi une généralisation de cette approche au cas des EDP paraboliques. Ainsi, nous avons obtenu, sous certaines conditions de structure par rapport à H, un résultat de régularité lipschitzienne en x des solutions de viscosité continues. Concernant le comportement de telles solutions par rapport au temps, nous avons établi un résultat de type effets régularisants quand H satisfait certaines hypothèses de croissance. Dans la deuxième partie, nous avons obtenu des estimations à priori des solutions de carré intégrables d'EDSR linéaires ou les coefficients vérifient une certaine condition de structure. Nous avons étendu ce résultat au cas paramètre (resp. Markovien) pour obtenir un résultat de régularité lipschitzienne par rapport à (resp. X) quand F satisfait certaines conditions de structure. Par des techniques similaires, nous avons établi un résultat d'unicité pour les solutions de carré intégrables d'EDSR
APA, Harvard, Vancouver, ISO, and other styles
50

Shardul, Charu. "Contrôle stochastique de type champ moyen en horizon infini et approximation numérique des équations différentielles stochastiques rétrogrades en horizon infini." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0086.

Full text
Abstract:
Dans la première partie de la thèse, nous étudions un problème de contrôle stochastique de type champ moyen en horizon infini où la fonction de coût dépend de la loi du processus d'état. Nous prouvons les conditions nécessaires et suffisantes d'optimalité qui exigent la L-différentiabilité et la L-convexité dans l'espace des mesures pour la fonction de coût instantanée. Ensuite, nous commençons par une application en optimisation de portefeuille du problème de contrôle de type champ moyen en horizon infini. L'objectif est de surperformer une allocation statique dans un portefeuille investi en actions et en actif sans risque en s'appuyant sur une allocation dynamique, en utilisant la vitesse de traitement des actifs comme contrôle avec un critère de minimisation du risque baissier de type champ moyen. Nous avons prouvé les conditions d'optimalité pour le problème de contrôle et établi l'existence et l'unicité de la solution du système couplé d'équations différentielles stochastiques progressives-rétrogrades de type McKean-Vlasov. Nous avons également développé un schéma numérique basé sur les réseaux de neurones pour résoudre une version tronquée dans le temps du problème et fourni des bornes exponentielles pour l'erreur de troncature. Les expériences numériques suggèrent qu'augmenter le multiplicateur du terme de champ moyen incline avec succès la distribution de richesse vers la droite, augmentant ainsi la probabilité d'obtenir une richesse relative plus élevée.Dans une seconde partie, nous étudions l'approximation numérique des équations différentielles stochastiques rétrogrades en horizon infini. Nous avons développé trois schémas numériques. Le premier schéma est basé sur une itération de Picard et utilise une approximation spatiale par grille. Le deuxième schéma est également basé sur un schéma de Picard mais utilise des réseaux de neurones. Le troisième schéma n'est pas basé sur une itération de Picard et repose sur des réseaux de neurones. Nous fournissons également une étude détaillée de l'erreur numérique pour le premier schéma et prouvons des bornes fines sur l'erreur d'approximation, nécessitant des hypothèses supplémentaires pour la contraction. Pour le deuxième schéma, nous prouvons la convergence de l'erreur d'approximation vers zéro lorsque la taille du réseau de neurones augmente. Les expérimentations numériques suggèrent que le troisième schéma est plus performant que les deux premiers lorsque la contraction n'est plus satisfaite
In the first part of this thesis, we study a mean-field stochastic control problem in infinite horizon where the cost functional has dependence on the law of the state process. We prove the necessary and sufficient conditions of optimality which requires L-differentiability and L-convexity in the measure space for the running cost function. Then, we start with an application in portfolio optimization of this mean-field control problem in the infinite horizon. The goal is to outperform a static allocation of stocks and a risk-free asset by using dynamic allocation, using the trading speed of the assets as the control with a downside risk minimization criterion of mean-field type. We prove the conditions of optimality for the control problem and establish the existence and uniqueness of the solution to the corresponding system of coupled McKean-Vlasov forward-backward stochastic differential equations. We also develop a numerical scheme based on neural networks for solving a time-truncated version of the problem and provide exponential bounds for the truncation error. Numerical experiments suggest that increasing the multiplier of the mean-field term successfully skewed the wealth distribution towards right, increasing the probability of higher relative wealth.In a second part, we study numerical approximation of backward stochastic differential equations in infinite horizon. We develop three numerical schemes: The first scheme is based on a Picard procedure and uses grid approximation for the space; the second one is also based on a Picard procedure and uses neural networks; the third scheme does not rely on a Picard procedure and uses neural networks like the second one. We also provide a detailed study of the numerical error for the first scheme and prove tight bounds on the approximation error, requiring additional assumptions for contraction. For the second scheme, we proved the convergence of the approximation error to zero as the size of the neural network increases. Numerical experiments also suggest that the third scheme performs better than the first two schemes when the contraction is not fulfilled
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography