Dissertations / Theses on the topic 'Équations Différentielles à Retardement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Équations Différentielles à Retardement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Monsel, Thibault. "Deep Learning for Partially Observed Dynamical Systems." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG113.
Full textPartial Differential Equations (PDEs) are the cornerstone of modeling dynamical systems across various scientific disciplines. Traditionally, scientists employ a rigorous methodology to interact with physical processes, collect empirical data, and derive theoretical models. However, even when these models align closely with observed data, which is often not the case, the necessary simplifications made for study and simulation can obscure our understanding of the underlying phenomena.This thesis explores how data acquired from dynamical systems can be utilized to improve and/or derive better models. The manuscript focuses particularly on partially observed dynamics, where the system's full state is not completely measured or observed. Through the theory of partially observed systems, including the Mori-Zwanzig formalism and Takens' theorem, we motivate a non-Markovian structure, specifically Delay Differential Equations (DDEs).By combining the expressive power of neural networks with DDEs, we propose novel models for partially observed systems. As neural network-based DDEs (Neural DDEs) are still in their infancy, we extend the current state of the art in this field by studying and benchmarking Neural DDE models with a-priori known arbitrary delay types across a variety of dynamical systems. These benchmarks include systems, with time-dependent and state-dependent delays. Building upon these investigations, we then explore the parameterization of constant delays in Neural DDEs. Our findings demonstrate that introducing learnable constant delays, as opposed to fixed delay configurations, results in improved overall performance in dynamical system modeling and fitting.We then apply the non-Markovian Neural DDEs with learnable constant delays to dynamical system closure and correction modeling, demonstrating improved long-term accuracy compared to Ordinary Differential Equation terms. Lastly, we explore the use of Neural DDEs in the context of Model Predictive Control (MPC) for controlling dynamical systems
Lazrag, Lanouar. "Intégrabilité des équations différentielles." Thesis, Lyon, École normale supérieure, 2012. http://www.theses.fr/2012ENSL0782.
Full textThis thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Full textThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Lassoued, Dhaou. "Fonctions presque-périodiques et Équations Différentielles." Phd thesis, Université Panthéon-Sorbonne - Paris I, 2013. http://tel.archives-ouvertes.fr/tel-00942969.
Full textLassoued, Rafika. "Contributions aux équations d'évolution frac-différentielles." Thesis, La Rochelle, 2016. http://www.theses.fr/2016LAROS001/document.
Full textIn this thesis, we are interested in fractional differential equations. We begin by studying a time fractional differential equation. Then we study three fractional nonlinear systems ; the first system contains a fractional Laplacian, while the others contain a time fractional derivative in the sense of Caputo. In the second chapter, we establish the qualitative properties of the solution of a time fractional equation which describes the evolution of certain species. The existence and uniqueness of the global solution are proved for certain values of the initial condition. In this case, the asymptotic behavior of the solution is dominated by t^α. Under another condition, the solution blows-up in a finite time. The solution profile and the blow-up time estimate are established and a numerical confirmation of these results is presented. The chapters 4, 5 and 6 are dedicated to the study of three fractional systems : an anomalous diffusion system which describes the propagation of an infectious disease in a confined population with a SIR type, the time fractional Brusselator and a time fractional reaction-diffusion system with a balance law. The study includes the global existence and the asymptotic behavior. The existence and uniqueness of the local solution for the three systems are obtained by the Banach fixed point theorem. However, the asymptotic behavior is investigated by different techniques. For the first system our results are proved using semi-group estimates and the Sobolev embedding theorem. Concerned the time fractional Brusselator, the used technique is based on an argument of feedback. Finally, a maximal regularity result is used for the last system
Touzet, Frédéric. "Équations différentielles admettant des solutions liouvilliennes." Rennes 1, 1995. http://www.theses.fr/1995REN10136.
Full textCluzeau, Thomas. "Algorithmique modulaire des équations différentielles linéaires." Limoges, 2004. http://aurore.unilim.fr/theses/nxfile/default/151400f3-08fc-4b00-9b80-2c84a3d34aa7/blobholder:0/2004LIMO0012.pdf.
Full textModular methods lead to very efficient algorithms in many areas of computer algebra and particularly for the study of algebraic equations. The goal of this thesis is to show how these modular techniques can be adapted to the differential case and allow to create new algorithms (or to improve existing algorithms) for linear differential equations. The first part deals with the factorisation of differential operators in positive characteristic. The "miracle" in characteristic p is that the problem reduces to linear algebra. Using this fact, we develop algorithm for factoring differential systems. We give the complexity of the distinct steps of this algorithm. Finally, we generalize it to the setting of partial differential systems. The topic of the second part is making Beke's algorithm to compute the exponential solutions of linear differential equations more efficient. This algorithms suffers from two drawbacks : a combinatorial problem and a field problem. We show that combining local "geometric" data (the generalized exponents) and modular "arithmetic" data (the eigenvalues of the p-curvature) allows to decrease the number of combinations usually considered by the algorithm and to reduce the degree of the algebraic extensions of the base field needed to compute the exponential solutions. In the third part, we prove that a similar approach applies to the same problem for difference equations. In the last section, we develop a fully modular algorithm for computing the polynomial solutions of linear differential equations in characteristic zero. We evaluate the relevance of the modular informations that can be obtained for this problem. We give and compare the complexity of our algorithm and that of the existing ones. Finally, thanks to experimental comparisons, we exhibit a class of differential equations for which our modular approach is more relevant than existing algorithms. Most of our algorithms have been implemented in the computer algebra system Maple
Wone, Oumar. "Théorie des invariants des équations différentielles : équations d’Abel et de Riccati." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14481/document.
Full textAbstract
Di, Vizio Lucia. "Etude arithmétique des équations aux q-différences et des équations différentielles." Paris 6, 2000. http://www.theses.fr/2000PA066501.
Full textVilmart, Gilles. "Étude d'intégrateurs géométriques pour des équations différentielles." Phd thesis, Université Rennes 1, 2008. http://tel.archives-ouvertes.fr/tel-00348112.
Full textDans la première partie, on introduit une nouvelle approche de construction d'intégrateurs numériques géométriques d'ordre élevé en s'inspirant de la théorie des équations différentielles modifiées. Le cas des méthodes développables en B-séries est spécifiquement analysé et on introduit une nouvelle loi de composition sur les B-séries. L'efficacité de cette approche est illustrée par la construction d'un nouvel intégrateur géométrique d'ordre élevé pour les équations du mouvement d'un corps rigide. On obtient également une méthode numérique précise pour le calcul de points conjugués pour les géodésiques du corps rigide.
Dans la seconde partie, on étudie dans quelle mesure les excellentes performances des méthodes symplectiques, pour l'intégration à long terme en astronomie et en dynamique moléculaire, persistent pour les problèmes de contrôle optimal. On discute également l'extension de la théorie des équations modifiées aux problèmes de contrôle optimal.
Dans le même esprit que les équations modifiées, on considère dans la dernière partie des méthodes de pas fractionnaire (splitting) pour les systèmes hamiltoniens perturbés, utilisant des potentiels modifiés. On termine par la construction de méthodes de splitting d'ordre élevé avec temps complexes pour les équations aux dérivées partielles paraboliques, notamment les problèmes de réaction-diffusion en chimie.
Chevance, David. "Résolution numérique des équations différentielles stochastiques rétrogrades." Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11080.
Full textRey, Clément. "Étude et modélisation des équations différentielles stochastiques." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1177/document.
Full textThe development of technology and computer science in the last decades, has led the emergence of numerical methods for the approximation of Stochastic Differential Equations (SDE) and for the estimation of their parameters. This thesis treats both of these two aspects. In particular, we study the effectiveness of those methods. The first part will be devoted to SDE's approximation by numerical schemes while the second part will deal with the estimation of the parameters of the Wishart process. First, we focus on approximation schemes for SDE's. We will treat schemes which are defined on a time grid with size $n$. We say that the scheme $ X^n $ converges weakly to the diffusion $ X $, with order $ h in mathbb{N} $, if for every $ T> 0 $, $ vert mathbb{E} [f (X_T) -f (X_T^n)]vert leqslant C_f / h^n $. Until now, except in some particular cases (Euler and Victoir Ninomiya schemes), researches on this topic require that $ C_f$ depends on the supremum norm of $ f $ as well as its derivatives. In other words $C_f =C sum_{vert alpha vert leqslant q} Vert partial_{alpha} f Vert_{ infty}$. Our goal is to show that, if the scheme converges weakly with order $ h $ for such $C_f$, then, under non degeneracy and regularity assumptions, we can obtain the same result with $ C_f=C Vert f Vert_{infty}$. We are thus able to estimate $mathbb{E} [f (X_T)]$ for a bounded and measurable function $f$. We will say that the scheme converges for the total variation distance, with rate $h$. We will also prove that the density of $X^n_T$ and its derivatives converge toward the ones of $X_T$. The proof of those results relies on a variant of the Malliavin calculus based on the noise of the random variable involved in the scheme. The great benefit of our approach is that it does not treat the case of a particular scheme and it can be used for many schemes. For instance, our result applies to both Euler $(h = 1)$ and Ninomiya Victoir $(h = 2)$ schemes. Furthermore, the random variables used in this set of schemes do not have a particular distribution law but belong to a set of laws. This leads to consider our result as an invariance principle as well. Finally, we will also illustrate this result for a third weak order scheme for one dimensional SDE's. The second part of this thesis deals with the topic of SDE's parameter estimation. More particularly, we will study the Maximum Likelihood Estimator (MLE) of the parameters that appear in the matrix model of Wishart. This process is the multi-dimensional version of the Cox Ingersoll Ross (CIR) process. Its specificity relies on the square root term which appears in the diffusion coefficient. Using those processes, it is possible to generalize the Heston model for the case of a local covariance. This thesis provides the calculation of the EMV of the parameters of the Wishart process. It also gives the speed of convergence and the limit laws for the ergodic cases and for some non-ergodic case. In order to obtain those results, we will use various methods, namely: the ergodic theorems, time change methods or the study of the joint Laplace transform of the Wishart process together with its average process. Moreover, in this latter study, we extend the domain of definition of this joint Laplace transform
Vilmart, Gilles. "Étude d’intégrateurs géométriques pour des équations différentielles." Rennes 1, 2008. ftp://ftp.irisa.fr/techreports/theses/2008/vilmart.pdf.
Full textThe aim of the work described in this thesis is the construction and the study of structure-preserving numerical integrators for differential equations, which share some geometric properties of the exact flow, for instance symmetry, symplecticity of Hamiltonian systems, preservation of first integrals, Poisson structure, etc. . . In the first part, we introduce a new approach to high-order structure-preserving numerical integrators, inspired by the theory of modified equations (backward error analysis). We focus on the class of B-series methods for which a new composition law called substitution law is introduced. This approach is illustrated with the derivation of the Preprocessed Discrete Moser-Veselov algorithm, an efficient and high-order geometric integrator for the motion of a rigid body. We also obtain an accurate integrator for the computation of conjugate points in rigid body geodesics. In the second part, we study to which extent the excellent performance of symplectic integrators for long-time integrations in astronomy and molecular dynamics carries over to problems in optimal control. We also discuss whether the theory of backward error analysis can be extended to symplectic integrators for optimal control. The third part is devoted to splitting methods. In the spirit of modified equations, we consider splitting methods for perturbed Hamiltonian systems that involve modified potentials. Finally, we construct splitting methods involving complex coefficients for parabolic partial differential equations with special attention to reaction-diffusion problems in chemistry
Maghnouji, Abderrahman. "Problèmes elliptiques et paraboliques dans des domaines non-réguliers." Lille 1, 1992. http://www.theses.fr/1992LIL10161.
Full textRhodes, Rémi. "Homogénéisation en milieu aléatoire." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11044.
Full textGenerally speaking, works exposed in this thesis deal with homogenization in random media by means of stochastic tools. On the first hand, the homogenization property is proved for second order parabolic linear equations under divergence form with time/space dependent stationary coefficients. We further take into account different time/space scalings. We point out that we deal with possible degeneracies of the diffusion matrix. On the other hand, we establish the homogenization property for second order parabolic linear equations under divergence form with locally ergodic coefficients. This work is thus distinguished from classical translation invariant models. As previously, the diffusion matrix is allowed to be degenerate
Sanchez-Pedreno, Guillen Salvador. "Equations différentielles hautement non linéaires." Mulhouse, 1989. http://www.theses.fr/1989MULH0113.
Full textSbihi, Karima. "Etude de quelques E. D. P. Non linéaires dans L1 avec des conditions générales sur le bord." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/SBIHI_Karima_2006.pdf.
Full textGmira, Abdelilah. "Comportements asymptotiques et singularités des solutions de problèmes quasi-linéaires." Tours, 1989. http://www.theses.fr/1989TOUR4005.
Full textVoirol, François-Xavier. "Etudes de quelques équations élliptiques fortement non linéaires." Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Voirol.Francois_Xavier.SMZ9468.pdf.
Full textPerez, Sylvie. "Identification et homogénéisation de paramètres dans des équations aux dérivées partielles." Pau, 1999. http://www.theses.fr/1999PAUU3016.
Full textRipoll, Olivier. "Géométrie des tissus du plan et équations différentielles." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2005. http://tel.archives-ouvertes.fr/tel-00011928.
Full textEl, Asri Brahim. "Switching optimal et équations différentielles stochastiques rétrogrades réfléchies." Le Mans, 2010. http://cyberdoc.univ-lemans.fr/theses/2010/2010LEMA1003.pdf.
Full textWe study optimal switching and Lр-solution for doubly reflected backward stochastic differential equations. In the first part, we show existence and uniqueness of a solution for a system of m variational partial differential inequalities with inter-connected obstacles. This system is the deterministic version of the Verification Theorem of the Markovian optimal m-states switching problem. The switching cost functions are arbitrary. In the second part we study the problem of the deterministic version of the Verification Theorem for the optimal m-states switching in infinite horizon under Markovian framework with arbitrary switching cost functions. The problem is formulated as an extended impulse control problem and solved by means of probabilistic tools such as the Snell envelop of processes and reflected backward stochastic differential equations. A viscosity solutions approach is employed to carry out a fine analysis on the associated system of m variational inequalities with inter-connected obstacles. We show that the vector of value functions of the optimal problem is the unique viscosity solution to the system. Finally in the third part, we deal the problem of existence and uniqueness of a solution for à backward stochastic differential equation (BSDE for short) with two strictly separated continuous reflecting barriers in the case when the terminal value, the generator and the obstacle process are Lр-integrable with р Є (1, 2). The main idea is to use the concept of local solution to construct the global one. As applications, we obtain new results in zerosum Dynkin games and in double obstacle variational inequalities theories
Royer, Manuela. "Équations différentielles stochastiques rétrogrades et martingales non linéaires." Rennes 1, 2003. http://www.theses.fr/2003REN1A018.
Full textHamidi, Said. "Méthodes numériques pour les équations différentielles non anticipatives." Nancy 1, 1988. http://www.theses.fr/1988NAN10492.
Full textIbaouene, Youcef. "Processus Weyl presque périodique et équations différentielles stochastiques." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMR120.
Full textThe thesis deals essentialy with a class of abstract dfferential equations with Weyl almost periodic coefficients, and comprises two part. The first part is devoted to the deterministic problems, in a first step, we study the existence and uniqueness of bounded Weyl almost periodic solution to the linear abstract differential equation u’ (t) = Au(t) + f(t); t ∈ R; in a Banach space X, where A : D(A) ⊂ X → X is a linear (unbounded) operator which generates an exponentially stable C0-semigroup on X and f : R → X is a Weyl almost periodic function. Finally, in a second step, always in the same frame, we consider the semi-linear differential equation u’ (t) = Au(t) + f(t; u(t)); t ∈ R ; where f(t; u) is a Weyl almost periodic in t ∈ R; uniformly with respect compact subsets of X. The second part, is concerned with the stochastic case. Precisely, we examine the existence and uniqueness of Weyl almost periodic solution in law to the abstract semilinear stochastic evolution equation on a Hilbert separable space
Vanhems, Anne. "Estimation non paramétrique de solutions d' équations différentielles." Toulouse 1, 2001. http://www.theses.fr/2001TOU10102.
Full textThe objective of our work is to make statistical inference on functional parameters which are solutions of differential equations depending on the data distribution. Such problems are often encountered in economics, physics, finance, where the interest parameters are solutions of differential equations
Popier, Alexandre François Roland. "Equations différentielles stochastiques rétrogrades avec condition finale singulière." Aix-Marseille 1, 2004. http://www.theses.fr/2004AIX11037.
Full textBelaud, Yves. "Méthode semi-classique et propriétés d'annulation asymptotique de solutions d'équations de diffusion non-linéaires." Tours, 2002. http://www.theses.fr/2002TOUR4018.
Full textMessaoudi, Abdellatif. "Homogénéisation des équations de Ginzburg-Landau." Paris 12, 2005. https://athena.u-pec.fr/primo-explore/search?query=any,exact,990002312360204611&vid=upec.
Full textThis thesis deals with the study of the asymptotic behavior of solutions of an elliptic partial differential equation type of second order, related to the model of Ginzburg-Landau. The asymptotic study is carried out according to two parameters, the parameter ε of Ginzburg-Landau and the parameter of homogeneization δ. We have extended all the available results of the minimization problem of the Ginzburg-Landau energy function from the case of the Laplacian (A = I) to the general case with a Hermitian matrix A = (aij(x))i,j=1,2 of smooth complex entries. We also showed that the class of problems minimizing the generalized Ginzburg-Landau energy is stable in the homogeneization sense. Indeed the two convergences commute, even thought there is not necessary uniqueness of the solution
Gaudron, Guillaume. "Convergence en loi d'EDS et d'EDS Rétrogrades : application à l'homogénéisation d'EDP linéaires ou semilinéaires." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11010.
Full textMassa-Turpin, Isabelle. "Sur l'interprétation probabiliste de solutions faibles D'EDP : contrôle stochastique optimal sous observations partielles et équations différentielles stochastiques rétrogrades." Valenciennes, 2004. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/be5e6f25-dba7-491b-aa3c-07d7f6306048.
Full textThe thesis is divided in two parts. It deals with viscosity solutions of variational inequalities or quasi-variational inequalities in the first section. More precisely, we are interested in the caracterization of value functions associated to optimal stochastic control problems of a partially observed diffusion. These problems consisting of continuously acting controls combined with impulse controls or stopping times. The second part is devoted to the link between solutions of semilinear PDEs and the solutions of BSDEs. We first study double barrier BSDEs with jumps. We then prove that the solution of the FBSDE provides a viscosity solution of a parabolic integral-differential partial equation with two obstacles. Next we state the connection between Sobolev solutions of PDEs and the ones of BSDE as an application of a norm equivalence result
Sfaxi, Mourad. "Analyse asymptotique de problèmes d'évolution dégénérés dans des structures hétérogènes et anisotropes." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11022.
Full textSouplet, Philippe. "Propriétés globales de quelques équations d’évolution non linéaires du second ordre." Paris 6, 1994. http://www.theses.fr/1994PA066261.
Full textGuen, Rahma. "Sur l’existence de solutions pour l’équation de van der Pol et pour certaines équations différentielles du second ordre, en présence d’impulsions ; sur la moyennisation pour les équations différentielles floues." Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8861.
Full textAmmar, Kaouther. "Solutions entropiques et renormalisées de quelques E. D. P. Non linéaire dans L1." Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13237.
Full textRichou, Adrien. "Étude théorique et numérique des équations différentielles stochastiques rétrogrades." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00543719.
Full textMorlais, Marie-Amélie. "Équations différentielles stochastiques rétrogrades à croissance quadratique et applications." Rennes 1, 2007. https://tel.archives-ouvertes.fr/tel-00179388.
Full textIn my PhDthesis, I have been mainly interested in the theoretical study of Backward Stochastic Differential Equations (BSDEs) with quadratic growth. The other major part of my study consists in focusing on applications to finance and especially in the classical utility maximization problem under portfolio constraints. To this end, I have extended results for non linear BSDEs by using martingale methods already known in the brownian setting to solve this problem in more general filtrations
Loumi, Moulay Taïeb. "Intégration stochastique multivoque et application aux équations différentielles multivoques." Montpellier 2, 1986. http://www.theses.fr/1986MON20181.
Full textCesars, Jasmine. "Inférence statistique et équations différentielles stochastiques. Applications en hydrologie." Thesis, Antilles, 2019. http://www.theses.fr/2019ANTI0428.
Full textStochastic differential equations (SDE) are often used to model random phenomenain continuous time. This is the case for SDE whose solution are diffusion processesdescribing propagations of diseases or financial stocks. The study of SDE governed bya Wiener process (or Brownian motion) has made good progress in recent years, butthe SDE governed by Levy processes jump are less studied due to their complexity.In this PhD work, we are interested in SDE with jumps, having an explicit solutionsuch as the Black-Scholes model governed by a Poisson process associated withstochastic jumps. The Langevin process with random jumps is also studied. Thedistributional properties of these models are presented, in particular the fact thatthe direct or transformed solutions of the associated SDE can be processes withindependent increments. The link with the probabilistic characteristics of the jumpamplitudes is highlighted. In practice, the observation of a solution process of theseSDE can be carried out only in discrete time whereas it is a continuous time process.The results, which we have obtained concerning the laws of probability associatedwith discrete time observations, allow to establish conditional likelihood useful forstatistical inference on the model parameters. Thus, the study of the logarithm of thelikelihood ratio is conducted in the case of the Black-Scholes model with jumps andchange points. A change point test about the intrinsic rate of decrease is proposedas well as methods of numerical simulations of the SDE solutions. Scripts writtenin the programming environment allows to generate artificial data sets offeringpossibilities to test inferential tools. An application in hydrology is carried out fromdata concerning Guadeloupe and from the HYDRO bank
Varvenne, Maylis. "Ergodicité des équations différentielles stochastiques fractionnaires et problèmes liés." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30046.
Full textIn this thesis, we focus on three problems related to the ergodicity of stochastic dynamics with memory (in a discrete-time or continuous-time setting) and especially of Stochastic Differential Equations (SDE) driven by fractional Brownian motion. In the first chapter, we study the long-time behavior of a general class of discrete-time stochastic dynamics driven by an ergodic and stationary Gaussian noise. Following the seminal paper written by Hairer (2005) on the ergodicity of fractional SDE (see also Fontbona-Panloup (2017) and Deya-Panloup-Tindel (2019)), we first build a Markovian structure above the dynamics, we show existence and uniqueness of the invariant distribution and then we exhibit some upper-bounds on the rate of convergence to equilibrium in terms of the asymptotic behavior of the covariance function of the Gaussian noise (or more precisely, of the asymptotic behavior of the coefficients appearing in its moving average representation). The second chapter establishes long-time concentration inequalities both for functionals of the whole solution on an interval [0,T] of an additive fractional SDE and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and continuous-time occupation measures of the process. The last chapter, which uses the results developed in Chapter 2, is a joint work with Panloup and Tindel which focuses on the parametric estimation of the (non-linear) drift term in an additive fractional SDE. We use a minimum contrast estimation based on the identification of the invariant distribution (for which we build an approximation from discrete-time observations of the SDE). We provide consistency results as well as non-asymptotic estimates of the corresponding quadratic error. Some of our results are illustrating through numerical discussions. We also give some examples for which the identifiability condition related to our estimation procedure (intrinsically linked to the invariant distribution) is fulfilled
Benoaga, Alin Laurentiu. "Problèmes d'existence en temps grand pour des équations de Kein-Gordon non-linéaires." Paris 13, 2006. http://www.theses.fr/2006PA132025.
Full textBinda, Olivier. "Suite auto-décrite de Golomb et équations fonctionnelles associées." Nancy 1, 2004. http://docnum.univ-lorraine.fr/public/SCD_T_2004_0167_BINDA.pdf.
Full textIn this thesis, we study the asymptotic bahavior of Golomb's sequence u={1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,. . . }, which is the only non-decreasing sequence of integers with u(1)=1 and where u(n) is the number of occurences of n in the sequence u={u(1),u(2),. . . }. We prove that each solution of the differential equation f'(x)=1/f(f(x)) admits an asymptotic development and we obtain relations between it's coefficients. We compare Golomb'sequence to one of these solutions and we prove that Golomb's sequence admits such an asymptotic development too
Nguyen, Thi Thao. "Approximation et simulation d'équations différentielles stochastiques singulières." Orléans, 2003. http://www.theses.fr/2003ORLE2032.
Full textChallal, Samia. "Homogénéisation des équations de viscoélasticité et quelques structures discrètes." Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Challal.Samia.SMZ943.pdf.
Full textIn this thesis, we study two problems of Homogenization. The first one consists of passing to a limit in the elasticity type equations with instantaneous memory which describe the displacements of a viscous, compressible and barotropic fluid, in perforated area with tiny holes periodically distributed. In the asymptotic problem, along memory phenomenon appears on. In the second problem, we justify for some examples of discret structures, the convergence of the non-homogeneous problem to the homogeneous one, obtained by P. Verna using a formal asymptotic expansion
Warnault, Guillaume. "Solutions stables pour des EDPs elliptiques semi-linéaires impliquant l'opérateur biharmonique." Amiens, 2009. http://www.theses.fr/2009AMIE0105.
Full textBen, Hamed Bassem. "Sur les déformations isomonodromiques et la stabilité des équations différentielles." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00599446.
Full textLakrib, Mustapha. "Stroboscopie et moyennisation dans les équations différentielles fonctionnelles à retard." Phd thesis, Université de Haute Alsace - Mulhouse, 2004. http://tel.archives-ouvertes.fr/tel-00444149.
Full textAurouet, Julien. "Normalisation de champs de vecteurs holomorphes et équations différentielles implicites." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00944657.
Full textMatusinski, Mickael. "ÉQUATIONS DIFFÉRENTIELLES À COEFFICIENTS DANS DES CORPS DE SÉRIES GÉNÉRALISÉES." Phd thesis, Université de Bourgogne, 2007. http://tel.archives-ouvertes.fr/tel-00366152.
Full textElanhari, Ahmed. "Singularités des équations différentielles implicites du 1er ordre sur ℝ." Lyon 1, 1985. http://www.theses.fr/1985LYO11663.
Full text