Contents
Academic literature on the topic 'Équations de Fokker-Planck stochastiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Équations de Fokker-Planck stochastiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Équations de Fokker-Planck stochastiques"
Moyano, Iván. "Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes." Séminaire Laurent Schwartz — EDP et applications, 2016, 1–22. http://dx.doi.org/10.5802/slsedp.107.
Full textDissertations / Theses on the topic "Équations de Fokker-Planck stochastiques"
Jabir, Jean-François. "Modèles stochastiques lagrangiens de type McKean-Vlasov conditionnel et leur confinement." Nice, 2008. http://www.theses.fr/2008NICE4078.
Full textIn this thesis, we are interested in theoretical aspects related to a new class of stochastic differential equations referred as Lagrangian stochastic models. These models have been introduced to model the properties of particles issued from turbulent flows. Motivated by a recent application of the Lagrangien models to the context of downscaling methods for weather forecasting, we also consider the introduction of boundary conditions in the dynamics. In the frame of nonlinear McKean equations, the Lagrangian stochastic models provide a particular case of non-linear dynamics due to the presence ion the coefficients of conditional distribution. For simplified cases, we establish a well-posedness result and particle approximations. In concern of boundary conditions, we construct a confined stochastic system within general domain for the prototypic “mean no-permeability” condition. In the case where the confinement domain is the hyper plane, we obtain existence and uniqueness results for the considered dynamics, and prove the accuracy of our model. For more general domains, we study the conditional McKean-Vlasov-Fokker-Planck equation satisfied by the law of the systems. We develop the notions of super- and sub-Maxwellians solutions, ensuring the existence of Gaussian bounds for the solution of the equation
De, Moor Sylvain. "Limites diffusives pour des équations cinétiques stochastiques." Electronic Thesis or Diss., Rennes, École normale supérieure, 2014. http://www.theses.fr/2014ENSR0001.
Full textThis thesis presents several results about stochastic partial differential equations. The main subject is the study of diffusive limits of kinetic models perturbed with a random term. We also present a result about the regularity of a class of stochastic partial differential equations and a result of existence and uniqueness of invariant measures for a stochastic Fokker-Planck equation.First, we give three results of approximation-diffusion in a stochastic context. The first one deals with the case of a kinetic equation with a linear operator of relaxation whose velocity equilibrium has a power tail distribution at ininity. The equation is perturbed with a Markovian process. This gives rise to a stochastic fluid fractional limit. The two remaining results consider the case of the radiative transfer equation which is a non-linear kinetic equation. The equation is perturbed successively with a cylindrical Wiener process and with a Markovian process. In both cases, we are led to a stochastic Rosseland fluid limit.Then, we introduce a result of regularity for a class of quasilinear stochastic partial differential equations of parabolic type whose random term is driven by a cylindrical Wiener process.Finally, we study a Fokker-Planck equation with a noisy force governed by a cylindrical Wiener process. We prove existence and uniqueness of solutions to the problem and then existence and uniqueness of invariant measures to the equation
Vaillant, Olivier (1971 ). "Une méthode particulaire stochastique à poids aléatoires pour l'approximation de solutions statistiques d'équations de McKean-Vlasov-Fokker-Plank." Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11004.
Full textDebbi, Latifa. "Equations aux dérivées partielles déterministes et stochastiques avec opérateurs fractionnaires." Nancy 1, 2006. http://www.theses.fr/2006NAN10046.
Full textThis thesis treats application of fractional calculus in stochastic analysis. In the first part, the definition of the the multidimensional Riesz-Feller fractional differential operator is extended to higher order. The operator obtained generalizes several known fractional differential and pseudodifferential operators. High order fractional Fokker-Plank equations are studied in both the probabilistic and the quasiprobabilistic approaches. In particular, the solutions are represented via stable Lévy processes and generalization of Airy's function. In the second part, onedimensional stochastic fractional partial differential equations perturbed by space-time white noise are considered. The existence and the uniqueness of field solutions and of L2solutions are proved under different Lipschtz conditions. Spatial and temporal Hölder exponents of the field solutions are obtained. Further, equivalence between several definitions of L2solutions is proven. In particular, Fourier transform is used to give meaning to some stochastic fractional partial differential equations
Alrachid, Houssam. "Analyse mathématique de méthodes numériques stochastiques en dynamique moléculaire." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1115/document.
Full textIn computational statistical physics, good sampling techniques are required to obtain macroscopic properties through averages over microscopic states. The main difficulty is that these microscopic states are typically clustered around typical configurations, and a complete sampling of the configurational space is thus in general very complex to achieve. Techniques have been proposed to efficiently sample the microscopic states in the canonical ensemble. An important example of quantities of interest in such a case is the free energy. Free energy computation techniques are very important in molecular dynamics computations, in order to obtain a coarse-grained description of a high-dimensional complex physical system. The first part of this thesis is dedicated to explore an extension of the classical adaptive biasing force (ABF) technique, which is used to compute the free energy associated to the Boltzmann-Gibbs measure and a reaction coordinate function. The problem of this method is that the approximated gradient of the free energy, called biasing force, is not a gradient. The contribution to this field, presented in Chapter 2, is to project the estimated biasing force on a gradient using the Helmholtz decomposition. In practice, the new gradient force is obtained by solving Poisson problem. Using entropy techniques, we study the longtime behavior of the nonlinear Fokker-Planck equation associated with the ABF process. We prove exponential convergence to equilibrium of the estimated free energy, with a precise rate of convergence in terms of the Logarithmic Sobolev inequality constants of the canonical measure conditioned to fixed values of the reaction coordinate. The interest of this projected ABF method compared to the original ABF approach is that the variance of the new biasing force is smaller, which yields quicker convergence to equilibrium. The second part, presented in Chapter 3, is dedicated to study local and global existence, uniqueness and regularity of the mild, Lp and classical solution of a nonlinear Fokker-Planck equation, arising in an adaptive biasing force method for molecular dynamics calculations. The partial differential equation is a semilinear parabolic initial boundary value problem with a nonlocal nonlinearity and periodic boundary conditions on the torus of dimension n, as presented in Chapter 3. The Fokker-Planck equation rules the evolution of the density of a given stochastic process that is a solution to Adaptive biasing force method. The nonlinear term is non local and is used during the simulation in order to remove the metastable features of the dynamics
Gerritsma, Eric. "Continuous and discrete stochastic models of the F1-ATPase molecular motor." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210110.
Full textdoctorat est d’étudier et de décrire les propriétés chimiques et mé-
caniques du moteur moléculaire F1 -ATPase. Le moteur F1 -ATPase
est un moteur rotatif, d’aspect sphérique et d’environ 10 nanomètre
de rayon, qui utilise l’énergie de l’hydrolyse de l’ATP comme car-
burant moléculaire.
Des questions fondamentales se posent sur le fonctionnement de
ce moteurs et sur la quantité de travail qu’il peut fournir. Il s’agit
de questions qui concernent principalement la thermodynamique
des processus irréversibles. De plus, comme ce moteur est de
taille nanométrique, il est fortement influencé par les fluctuations
moléculaires, ce qui nécessite une approche stochastique.
C’est en créant deux modéles stochastiques complémentaires de
ce moteur que nous avons contribué à répondre à ces questions
fondamentales.
Le premier modèle discuté au chapitre 5 de la thèse, est un mod-
èle continu dans le temps et l’espace, décrit par des équations de
Fokker-Planck, est construit sur des résultats expérimentaux.
Ce modèle tient compte d’une description explicite des fluctua-
tions affectant le degré de liberté mécanique et décrit les tran-
sitions entre les différents états chimiques discrets du moteur,
par un processus de sauts aléatoires entre premiers voisins. Nous
avons obtenus des résultats précis concernant la chimie d’hydrolyse
et de synthèse de l’ATP, et pour les dépendences du moteur en les
différentes variables mécaniques, à savoir, la friction et le couple
de force extérieur, ainsi que la dépendence en la température.
Les résultats que nous avons obtenus avec ce modèle sont en ex-
cellent accord avec les observations expérimentales.
Le second modèle est discret dans l’espace et continu dans le
temps et est décrit dans le chapitre 6. L’analyse des résultats
obtenus par simulations numériques montre que le modèle est
en accord avec les observations expérimentales et il permet en
outre de dériver des grandeurs thermodynamiques analytique-
ment, décrites au chapitre 4, ce que le modèle continu ne permet
pas.
La comparaison des deux modèles révele la nature du fonction-
nement du moteur, ainsi que son régime de fonctionnement loin
de l’équilibre. Le second modèle a éte soumis récemment pour
publication.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Belaribi, Nadia. "Aspects probabilistes et numériques relatifs à une équation de type milieux poreux à coefficients irréguliers." Paris 13, 2012. http://scbd-sto.univ-paris13.frintranet/edgalilee_th_2012_belaribi.pdf.
Full textThe main object of this thesis is an evolution problem in L1(Rd) of the type ∂tu(t, x) =1/2xΔβ(u(t, x)), (t, x) ∈ ]0, T ] × Rexpd. (PDE). In our work, we have investigated some theoretical complements related to the (probabilistic) representation of that equation, via a non-linear diffusion process, when the coefficient β is discontinuous or in the case β(u) = um, 0 < m < 1 (“fast diffusion equation”). Even though the theoretical results concern essentially dimension d = 1, we have also establi- shed a uniqueness theorem for a multidimensional Fokker-Planck type with measurable, possibly unbounded and degenerated coefficients. This has been an important tool for the probabilistic representation. We have also established some density estimates (via Malliavin calculus) of the solution of an SDE with smooth unbounded coefficients, with bounded derivatives of each order, uniformly with respect to the initial condition. The main objective of the thesis consists however in the implementation of an interactive particle system algorithm, which approaches the solutions of the PDE. Comparison with recent deterministic numerical techniques have been performed. This has been done in the one dimensional and multidimensional cases
Maillet, Raphaël. "Analyse statistique et probabiliste de systèmes diffusifs en présence de bruit." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD025.
Full textThis thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator, which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth
Marx, Victor. "Processus de diffusion sur l’espace de Wasserstein : modèles coalescents, propriétés de régularisation et équations de McKean-Vlasov." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4065.
Full textThe aim of this thesis is to study a class of diffusive stochastic processes with values in the space of probability measures on the real line, called Wasserstein space if it is endowed with the Wasserstein metric W2. The following issues are mainly addressed in this work: how can we effectively construct a stochastic process satisfying diffusive properties with values in a space of infinite dimension? is there a form of uniqueness, in a strong or a weak sense, satisfied by some of those processes? do those diffusions own smoothing properties, e.g. regularization by noise of McKean-Vlasov equations or e.g. BismutElworthy integration by parts formulae? Chapter I introduces an alternative construction, by smooth approximations, of the particle system defined by Konarovskyi and von Renesse, hereinafter designed by coalescing model. The coalescing model is a random process with values in the Wasserstein space, following an Itô-like formula on that space and whose short-time deviations are governed by the Wasserstein metric, by analogy with the short-time deviations of the standard Brownian motion governed by the Euclidean metric. The regular approximation constructed in this thesis shares those diffusive properties and is obtained by smoothing the coefficients of the stochastic differential equation satisfied by the coalescing model. The main benefit of this variant is that it satisfies uniqueness results which are still open for the coalescing model. Moreover, up to small modifications of its structure, that smooth diffusion owns regularizing properties: this is precisely the object of study of chapters II to IV. In chapter II, an ill-posed McKean-Vlasov equation is perturbed by one of those smooth versions of the coalescing model, in order to restore uniqueness. A connection is made with recent results (Jourdain, Mishura-Veretennikov, Chaudru de Raynal-Frikha, Lacker, Röckner-Zhang) where uniqueness of a solution is proved when the noise is finite dimensional and the drift coefficient is Lipschitz-continuous in total variation distance in its measure argument. In our case, the diffusion on the Wasserstein space allows to mollify the velocity field in its measure argument and so to handle with drift functions having low regularity in both space and measure variables. Lastly, chapters III and IV are dedicated to the study, for a diffusion defined on the Wasserstein space of the circle, of the smoothing properties of the associated semi-group. Applying in chapter III the differential calculus on the Wasserstein space introduced by Lions, a Bismut-Elworthy inequality is obtained, controlling the gradient of the semi-group at those points of the space of probability measures that have a sufficiently smooth density. In chapter IV, a better explosion rate when time tends to zero is established under additional regularity conditions. This leads to a priori estimates for a PDE defined on the Wasserstein space and governed by the diffusion on the torus mentioned above, in the homogeneous case (chapter III) and in the case of a non-trivial source term (chapter IV)
Bect, Julien. "Processus de Markov diffusifs par morceaux : outils analytiques et numériques." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00169791.
Full textNous introduisons dans la première partie du mémoire la notion de processus diffusif par morceaux, qui fournit un cadre théorique général qui unifie les différentes classes de modèles "hybrides" connues dans la littérature. Différents aspects de ces modèles sont alors envisagés, depuis leur construction mathématique (traitée grâce au théorème de renaissance pour les processus de Markov) jusqu'à l'étude de leur générateur étendu, en passant par le phénomène de Zénon.
La deuxième partie du mémoire s'intéresse plus particulièrement à la question de la "propagation de l'incertitude", c'est-à-dire à la manière dont évolue la loi marginale de l'état au cours du temps. L'équation de Fokker-Planck-Kolmogorov (FPK) usuelle est généralisée à diverses classes de processus diffusifs par morceaux, en particulier grâce aux notions d'intensité moyenne de sauts et de courant de probabilité. Ces résultats sont illustrés par deux exemples de modèles multidimensionnels, pour lesquels une résolution numérique de l'équation de FPK généralisée a été effectuée grâce à une discrétisation en volumes finis. La comparaison avec des méthodes de type Monte-Carlo est également discutée à partir de ces deux exemples.