Academic literature on the topic 'Equation laplace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Equation laplace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Equation laplace"
Zaki, Ahmad, Syafruddin Side, and N. Nurhaeda. "Solusi Persamaan Laplace pada Koordinat Bola." Journal of Mathematics, Computations, and Statistics 2, no. 1 (May 12, 2020): 82. http://dx.doi.org/10.35580/jmathcos.v2i1.12462.
Full textSanusi, Wahidah, Syafruddin Side, and Beby Fitriani. "Solusi Persamaan Transport dengan Menggunakan Metode Dekomposisi Adomian Laplace." Journal of Mathematics, Computations, and Statistics 2, no. 2 (May 12, 2020): 173. http://dx.doi.org/10.35580/jmathcos.v2i2.12580.
Full textShabestari, R. Mastani, and R. Ezzati. "The Fuzzy Double Laplace Transforms and their Properties with Applications to Fuzzy Wave Equation." New Mathematics and Natural Computation 17, no. 02 (April 23, 2021): 319–38. http://dx.doi.org/10.1142/s1793005721500174.
Full textAbdy, Muhammad, Syafruddin Side, and Reza Arisandi. "Penerapan Metode Dekomposisi Adomian Laplace Dalam Menentukan Solusi Persamaan Panas." Journal of Mathematics, Computations, and Statistics 1, no. 2 (May 19, 2019): 206. http://dx.doi.org/10.35580/jmathcos.v1i2.9243.
Full textNathiya, N., and C. Amulya Smyrna. "Infinite Schrödinger networks." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 31, no. 4 (December 2021): 640–50. http://dx.doi.org/10.35634/vm210408.
Full textRozumniuk, V. I. "About general solutions of Euler’s and Navier-Stokes equations." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 1 (2019): 190–93. http://dx.doi.org/10.17721/1812-5409.2019/1.44.
Full textKamran, Sharif Ullah Khan, Salma Haque, and Nabil Mlaiki. "On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method." Symmetry 15, no. 6 (June 7, 2023): 1214. http://dx.doi.org/10.3390/sym15061214.
Full textKogoj, Alessia E., and Ermanno Lanconelli. "On semilinear -Laplace equation." Nonlinear Analysis: Theory, Methods & Applications 75, no. 12 (August 2012): 4637–49. http://dx.doi.org/10.1016/j.na.2011.10.007.
Full textLu, Guozhen, and Peiyong Wang. "Inhomogeneous infinity Laplace equation." Advances in Mathematics 217, no. 4 (March 2008): 1838–68. http://dx.doi.org/10.1016/j.aim.2007.11.020.
Full textShokhanda, Rachana, Pranay Goswami, Ji-Huan He, and Ali Althobaiti. "An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation." Fractal and Fractional 5, no. 4 (November 4, 2021): 196. http://dx.doi.org/10.3390/fractalfract5040196.
Full textDissertations / Theses on the topic "Equation laplace"
Ubostad, Nikolai Høiland. "The Infinity Laplace Equation." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20686.
Full textFejne, Frida. "The p-Laplace equation – general properties and boundary behaviour." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359721.
Full textMansour, Gihane. "Méthode de décomposition de Domaine pour les équations de Laplace et de Helmholtz : Equation de Laplace non linéaire." Paris 13, 2009. http://www.theses.fr/2009PA132013.
Full textThis work is divided into two parts : First, a domain decomposition method for the resolution of the Poisson equation and the Helmholtz equation in a bounded domain,with Dirich let boundary condition. Second, The study of the Laplace equation, with non linear boundary condition g. Using the Min-Max method. First, we elaborate some essential tools to introduce our equations, then we present two indirect methods for solving the Poisson equation : there laxed barycentric Dirichlet-Neumann algorithm and the symmetric Dirichlet-Neumann algorithm. The first algorithm was introduced and studied by A. Quarteroni, A. Valli. We present in this work a new proof of its convergence. The second scheme presented is new : we give asymmetric version of the Dirichlet-Neumann condition. We prove that this algorithm is convergent. The theoretical results show that both of the discretization methods are convergent and estimation son the error of convergence are given. We test the two methods numerically, using Comsol with Matlab solver. We notice that the symmetric method converges faster than the barycentric one
Rockstroh, Parousia. "Boundary value problems for the Laplace equation on convex domains with analytic boundary." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273939.
Full textMasur, Gökce Tuba. "An Adaptive Surface Finite Element Method for the Laplace-Beltrami Equation." Thesis, KTH, Numerisk analys, NA, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202764.
Full textI den här rapporten presenterar vi en adaptiv finite elementmetod för Laplace-Beltrami ekvationen. Ekvationen är känd som Laplace ekvation på ytor. En finita elementmetod för ytor formuleras för denna partiella differentialekvation vilken implementeras i FEniCS, en open source mjukvara för automatiserad lösning av differentialekvationer. Vi formulerar en mål-orienterad adaptiv nätförfinings-metod baserad på a posteriori feluppskattningar etablerade med hjälp av metoden för dual-viktad residual. Beräkningsexempel presenteras och implementeringen diskuteras
Ricciotti, Diego. "Regularity of solutions of the p-Laplace equation in the Heisenberg group." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/5708/.
Full textCorreia, Joaquim, Costa Fernando da, Sackmone Sirisack, and Khankham Vongsavang. "Burgers' Equation and Some Applications." Master's thesis, Edited by Thepsavanh Kitignavong, Faculty of Natural Sciences, National University of Laos, 2017. http://hdl.handle.net/10174/26615.
Full textConsiglio, Armando. "Time-fractional diffusion equation and its applications in physics." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13704/.
Full textChin, P. W. M. (Pius Wiysanyuy Molo). "Contribution to qualitative and constructive treatment of the heat equation with domain singularities." Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/28554.
Full textPichon, Eric. "Novel Methods for Multidimensional Image Segmentation." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7504.
Full textBooks on the topic "Equation laplace"
Medková, Dagmar. The Laplace Equation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74307-3.
Full textHomer, Matthew Stuart. The Laplace tidal wave equation. Birmingham: University of Birmingham, 1989.
Find full textLindqvist, Peter. Notes on the Infinity Laplace Equation. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31532-4.
Full textRicciotti, Diego. p-Laplace Equation in the Heisenberg Group. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23790-9.
Full textLindqvist, Peter. Notes on the Stationary p-Laplace Equation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14501-9.
Full textL, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textL, Miller Gary, and Langley Research Center, eds. Graph embeddings and Laplacian eigenvalues. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textInstitute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Find full textInstitute for Computer Applications in Science and Engineering., ed. Graph embeddings, symmetric real matrices, and generalized inverses. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.
Find full textT, Leighton, Miller Gary L, and Institute for Computer Applications in Science and Engineering., eds. The path resistance method for bounding the smallest nontrivial eigenvalue of a Laplacian. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textBook chapters on the topic "Equation laplace"
Bassanini, Piero, and Alan R. Elcrat. "Laplace Equation." In Theory and Applications of Partial Differential Equations, 103–211. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1875-8_4.
Full textKeaton, Jeffrey R. "Laplace Equation." In Selective Neck Dissection for Oral Cancer, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_184-1.
Full textKeaton, Jeffrey R. "Laplace Equation." In Encyclopedia of Earth Sciences Series, 580–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73568-9_184.
Full textSalsa, Sandro. "The Laplace Equation." In UNITEXT, 115–78. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_3.
Full textDiBenedetto, Emmanuele. "The Laplace Equation." In Partial Differential Equations, 51–115. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4899-2840-5_3.
Full textDiBenedetto, Emmanuele. "The Laplace Equation." In Partial Differential Equations, 37–86. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4552-6_3.
Full textSalsa, Sandro, and Gianmaria Verzini. "The Laplace Equation." In UNITEXT, 81–147. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15416-9_2.
Full textEpstein, Marcelo. "The Laplace Equation." In Partial Differential Equations, 239–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55212-5_11.
Full textSalsa, Sandro. "The Laplace Equation." In UNITEXT, 115–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31238-5_3.
Full textSalsa, Sandro, Federico M. G. Vegni, Anna Zaretti, and Paolo Zunino. "The Laplace Equation." In UNITEXT, 109–38. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2862-3_4.
Full textConference papers on the topic "Equation laplace"
Valenta, Václav, Václav Šátek, Jiří Kunovský, and Patricia Humenná. "Adaptive solution of Laplace equation." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825996.
Full textBaoquan Geng. "Flow field's Laplace equation and analysis." In 2011 International Conference on Electronics and Optoelectronics (ICEOE). IEEE, 2011. http://dx.doi.org/10.1109/iceoe.2011.6013277.
Full textPichon, Eric, Delphine Nain, and Marc Niethammer. "A Laplace equation approach for shape comparison." In Medical Imaging, edited by Kevin R. Cleary and Robert L. Galloway, Jr. SPIE, 2006. http://dx.doi.org/10.1117/12.651135.
Full textMATSUURA, T., S. SAITOH, and M. YAMAMOTO. "NUMERICAL CAUCHY PROBLEMS FOR THE LAPLACE EQUATION." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0131.
Full textZhou, Bin, Chun-Lai Mu, and Xiao-Lin Yang. "Image Segmentation with a p-Laplace Equation Model." In 2009 2nd International Congress on Image and Signal Processing (CISP). IEEE, 2009. http://dx.doi.org/10.1109/cisp.2009.5303947.
Full textMEDKOVÁ, D. "THE OBLIQUE DERIVATIVE PROBLEM FOR THE LAPLACE EQUATION." In Proceedings of the 3rd ISAAC Congress. World Scientific Publishing Company, 2003. http://dx.doi.org/10.1142/9789812794253_0132.
Full textMajeed, Muhammad Usman, Chadia Zayane-Aissa, and Taous Meriem Laleg-Kirati. "Cauchy problem for Laplace equation: An observer based approach." In 2013 3rd International Conference on Systems and Control (ICSC). IEEE, 2013. http://dx.doi.org/10.1109/icosc.2013.6750929.
Full textBui, K., I. Akkutlu, and B. Li. "Capillary Pressure in Nanopores: Deviation from Young- Laplace Equation." In 79th EAGE Conference and Exhibition 2017 - SPE EUROPEC. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201701569.
Full textLi, Bo, Khoa Bui, and I. Yucel Akkutlu. "Capillary Pressure in Nanopores: Deviation from Young-Laplace Equation." In SPE Europec featured at 79th EAGE Conference and Exhibition. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/185801-ms.
Full textCristofaro, Andrea, Roberto Giambo, and Fabio Giannoni. "Lyapunov Stability Results for the Parabolic p-Laplace Equation." In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550122.
Full textReports on the topic "Equation laplace"
Çitil, Hülya. Solutions of Fuzzy Differential Equation with Fuzzy Number Coefficient by Fuzzy Laplace Transform. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2020. http://dx.doi.org/10.7546/crabs.2020.09.01.
Full textGray, L. J. Program for solving the 3-dimensional LaPlace equation via the boundary element method. [D3LAPL]. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/5065235.
Full textGreengard, L., and V. Rokhlin. A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada316161.
Full textBlumberg, L. N. Analysis of magnetic measurement data by least squares fit to series expansion solution of 3-D Laplace equation. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10185838.
Full textMane S. R. SOLUTIONS OF LAPLACES EQUATION AND MULTIPOLE EXPANSIONS WITH A CURVED LONGITUDINAL AXIS. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/1151263.
Full textBabuska, I., T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj. Study of Superconvergence by a Computer-Based Approach. Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada277537.
Full textBabuska, I., T. Strouboulis, S. K. Gangaraj, and C. S. Upadhyay. Eta%-Superconvergence in the Interior of Locally Refined Meshes of Quadrilaterals: Superconvergence of the Gradient in Finite Element Solutions of Laplace's and Poisson's Equations. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada277242.
Full text