To see the other types of publications on this topic, follow the link: EPR; Optical spectroscopy.

Journal articles on the topic 'EPR; Optical spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'EPR; Optical spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yamaga, M., H. Takeuchi, K. Holliday, P. Macfarlane, B. Henderson, Y. Inoue, and N. Kodama. "EPR and optical spectroscopy of Cr3+doped CaYAIO4." Radiation Effects and Defects in Solids 135, no. 1-4 (December 1995): 223–25. http://dx.doi.org/10.1080/10420159508229840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burkov, V. I., S. V. Gudenko, and L. N. Alyabyeva. "Optical and EPR spectroscopy of a La3Ga5SiO14:Mn crystal." Journal of Experimental and Theoretical Physics 119, no. 4 (October 2014): 723–36. http://dx.doi.org/10.1134/s1063776114100148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fedorov, V. V., T. Konak, J. Dashdorj, M. E. Zvanut, and S. B. Mirov. "Optical and EPR spectroscopy of Zn:Cr:ZnSe and Zn:Fe:ZnSe crystals." Optical Materials 37 (November 2014): 262–66. http://dx.doi.org/10.1016/j.optmat.2014.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Falin, M. L., K. I. Gerasimov, A. M. Leushin, H. Bill, D. Lovy, and T. Sanadze. "EPR and optical spectroscopy of SrF2 doped with Yb3+." Journal of Alloys and Compounds 323-324 (July 2001): 692–95. http://dx.doi.org/10.1016/s0925-8388(01)01040-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gusev, V. A., A. P. Eliseev, E. G. Samoilova, V. P. Solntsev, and A. M. Yurkin. "Optical and EPR spectroscopy of chrysoberyl activated with nickel." Journal of Applied Spectroscopy 48, no. 5 (May 1988): 522–26. http://dx.doi.org/10.1007/bf00663466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

SRINIVASU, CH, M. A. SAMI, A. EDUKONDALU, and SYED RAHMAN. "SYNTHESIS AND SPECTROSCOPY OF SOME QUATERNARY OXYFLUORIDE GLASSES DOPPED WITH COPPER." International Journal of Modern Physics: Conference Series 22 (January 2013): 284–91. http://dx.doi.org/10.1142/s2010194513010246.

Full text
Abstract:
Electron paramagnetic resonance (EPR) and optical absorption spectra of copper ions in xLiF-(50-x)Li2O-20SrO-30Bi2O3 glass system have been studied. MDSC studies showed that the glass transition temperature decreases with LiF content. Optical absorption spectra of the pure glasses reveled that the cut off wave length increased and optical band gap energy decreased with increase in LiF content. EPR spectra of all the glass samples exhibit resonance signals characteristic of Cu2+ ions. The Cu2+ ions are in well-defined axial sites but subjected to small distortion leading to the broadening of the spectra. The spin-Hamiltonian parameter values indicate that the ground state of Cu2+ is d x2 y2 and the site symmetry around Cu2+ ions is tetragonally distorted octahedral. The optical absorption spectra exhibited a broad band corresponding to the d-d transition bands of Cu2+ ion. By correlating EPR and optical absorption data, the bond parameters are evaluated from various techniques.
APA, Harvard, Vancouver, ISO, and other styles
7

Mironova-Ulmane, N., A. I. Popov, A. Antuzevics, G. Krieke, E. Elsts, E. Vasil'chenko, I. Sildos, et al. "EPR and optical spectroscopy of neutron-irradiated Gd3Ga5O12 single crystals." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 480 (October 2020): 22–26. http://dx.doi.org/10.1016/j.nimb.2020.07.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Falin, M. L., V. A. Latypov, B. N. Kazakov, A. M. Leushin, H. Bill, and D. Lovy. "EPR, ENDOR, and optical spectroscopy of the tetragonalYb3+center inKMgF3." Physical Review B 61, no. 14 (April 1, 2000): 9441–48. http://dx.doi.org/10.1103/physrevb.61.9441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nosenko, A. E., R. E. Leshchuk, A. A. Sel’skii, and V. V. Kravchishin. "Optical and EPR spectroscopy of manganese ions in Sr3Ga2Ge4O14 crystals." Journal of Applied Spectroscopy 64, no. 6 (November 1997): 793–97. http://dx.doi.org/10.1007/bf02678862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gaite, J. M., V. V. Izotov, S. I. Nikitin, and S. Y. Prosvirnin. "EPR and optical spectroscopy of impurities in two synthetic beryls." Applied Magnetic Resonance 20, no. 3 (April 2001): 307–15. http://dx.doi.org/10.1007/bf03162283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Anbalagan, G., S. Mukundakumari, K. Sakthi Murugesan, and S. Gunasekaran. "Infrared, optical absorption, and EPR spectroscopic studies on natural gypsum." Vibrational Spectroscopy 50, no. 2 (July 2009): 226–30. http://dx.doi.org/10.1016/j.vibspec.2008.12.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Konovalov, A. A., and V. F. Tarasov. "Millimeter and submillimeter EPR spectroscopy." Radiophysics and Quantum Electronics 50, no. 10-11 (October 2007): 813–22. http://dx.doi.org/10.1007/s11141-007-0072-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kordas, G. "EPR spectroscopy on sol-gel glasses." Journal of Non-Crystalline Solids 147-148 (January 1992): 106–14. http://dx.doi.org/10.1016/s0022-3093(05)80602-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Azarko, I. I., V. Hnatowicz, I. P. Kozlov, E. I. Kozlova, V. B. Odzhaev, and V. N. Popok. "EPR spectroscopy of ion implanted polymer films." Physica Status Solidi (a) 146, no. 2 (December 16, 1994): K23—K27. http://dx.doi.org/10.1002/pssa.2211460239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Reddy, S. Lakshmi, R. L. Frost, G. Sowjanya, N. C. G. Reddy, G. Siva Reddy, and B. J. Reddy. "EPR, UV-Visible, and Near-Infrared Spectroscopic Characterization of Dolomite." Advances in Condensed Matter Physics 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/175862.

Full text
Abstract:
Dolomite mineral samples having white and light green colors of Indian origin have been characterized by EPR, optical, and NIR spectroscopy. The optical spectrum exhibits a number of electronic bands due to presence of Fe(III) ions in the mineral. From EPR studies, the parameters ofgfor Fe(III) andg,A, andDfor Mn(II) are evaluated and the data confirm that the ions are in distorted octahedron. Optical absorption studies reveal that Fe(III) is in distorted octahedron. The bands in NIR spectra are due to the overtones and combinations of water molecules. Thus EPR and optical absorption spectral studies have proven useful for the study of the solid state chemistry of dolomite.
APA, Harvard, Vancouver, ISO, and other styles
16

Falin, M. L., K. I. Gerasimov, V. A. Latypov, A. M. Leushin, H. Bill, and D. Lovy. "EPR and optical spectroscopy of Yb3+ ions in CaF2 and SrF2." Journal of Luminescence 102-103 (May 2003): 239–42. http://dx.doi.org/10.1016/s0022-2313(02)00505-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kolpakova, N. N., S. Waplak, and W. Bednarski. "EPR spectroscopy and optical microscopy study of ferroic states in pyrochlore." Journal of Physics: Condensed Matter 10, no. 41 (October 19, 1998): 9309–16. http://dx.doi.org/10.1088/0953-8984/10/41/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Padlyak, B. V., W. Ryba-Romanowski, R. Lisiecki, V. T. Adamiv, Ya V. Burak, and I. M. Teslyuk. "Synthesis, EPR and optical spectroscopy of the Cr-doped tetraborate glasses." Optical Materials 34, no. 12 (October 2012): 2112–19. http://dx.doi.org/10.1016/j.optmat.2012.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rakhmatullin, R. M., I. N. Kurkin, V. V. Pavlov, and V. V. Semashko. "EPR, optical, and dielectric spectroscopy of Er-doped cerium dioxide nanoparticles." physica status solidi (b) 251, no. 8 (June 10, 2014): 1545–51. http://dx.doi.org/10.1002/pssb.201451116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Neugebauer, Petr, and Anne-Laure Barra. "New Cavity Design for Broad-Band Quasi-Optical HF-EPR Spectroscopy." Applied Magnetic Resonance 37, no. 1-4 (November 16, 2009): 833–43. http://dx.doi.org/10.1007/s00723-009-0092-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bespalov, V. F., M. L. Falin, B. N. Kazakov, A. M. Leushin, I. R. Ibragimov, and G. M. Safiullin. "EPR and optical spectroscopy of Yb3+ ions in single crystal CsCaF3." Applied Magnetic Resonance 11, no. 1 (May 1996): 125–33. http://dx.doi.org/10.1007/bf03163532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Falin, M. L., V. A. Latypov, A. M. Leushin, G. M. Safiullin, A. A. Shakirov, and A. A. Shavelev. "EPR and optical spectroscopy of Yb3+ ions in LiCaAlF6 single crystals." Journal of Alloys and Compounds 812 (January 2020): 152147. http://dx.doi.org/10.1016/j.jallcom.2019.152147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Azamat, D. V., J. Debus, D. R. Yakovlev, V. Yu Ivanov, M. Godlewski, M. Fanciulli, and M. Bayer. "Photo-EPR and magneto-optical spectroscopy of iron centres in ZnO." physica status solidi (b) 247, no. 6 (April 1, 2010): 1517–20. http://dx.doi.org/10.1002/pssb.200983224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tribollet, Jérôme. "Hybrid nanophotonic-nanomagnonic SiC-YiG quantum sensor: II/dark spins quantum sensing with V2 spins and fiber based OP-PELDOR/ODMR." European Physical Journal Applied Physics 90, no. 2 (May 2020): 20103. http://dx.doi.org/10.1051/epjap/2020200063.

Full text
Abstract:
First experiments like optically detected (OD) electron paramagnetic resonance (ODMR), photoluminescence detected RABI oscillations, and optical pumping (OP) assisted pulsed EPR measurements of T2 and T1 of V2 spins in bulk SiC, which were previously demonstrated on various home build EPR spectrometers with free space optics, are here all demonstrated for the first time using a commercial X band pulsed EPR spectrometer combined with a single optical fiber and a standard external photoluminescence setup. Quantum sensing of bulk dark spins dipolar coupled to V2 spins in SiC is also demonstrated here for the first time using single fiber based OP assisted pulsed electron electron double resonance spectroscopy (PELDOR). A spin wave resonance study of model permalloy nanostripes is also presented allowing to check the ferromagnetic nanostripes design. These experiments are first key steps towards the fiber-based integration of the recently proposed SiC-YiG quantum sensor device [J. Tribollet, Eur. Phys. J. Appl. Phys. 90, 20102 (2020)], to a commercially available and worldwide used pulsed EPR spectrometer, with important applications expected in structural biology, surface chemistry, and quantum computing.
APA, Harvard, Vancouver, ISO, and other styles
25

Reddy, S. Lakshmi, R. Rama Subba Reddy, G. Siva Reddy, P. S. Rao, and B. J. Reddy. "Optical absorption and EPR spectra of fuchsite." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59, no. 11 (September 2003): 2603–9. http://dx.doi.org/10.1016/s1386-1425(03)00019-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kordas, George. "FT-EPR spectroscopy in the borate system." Journal of Non-Crystalline Solids 345-346 (October 2004): 45–49. http://dx.doi.org/10.1016/j.jnoncrysol.2004.07.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Müller, St, and J. Dziesiaty. "EPR Spectroscopy of Thulium Impurities in ZnS Crystals." physica status solidi (b) 184, no. 2 (August 1, 1994): 483–97. http://dx.doi.org/10.1002/pssb.2221840222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Demishev, S. V., A. V. Semeno, N. E. Sluchanko, N. A. Samarin, A. A. Pronin, Y. Inagaki, S. Okubo, H. Ohta, Y. Oshima, and L. I. Leonyuk. "Microwave EPR spectroscopy of cobalt-doped germanium cuprate." Physics of the Solid State 46, no. 12 (December 2004): 2238–48. http://dx.doi.org/10.1134/1.1841388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chenier, J. H. B., J. A. Howard, H. A. Joly, B. Mile, and M. Tomietto. "A spectroscopic study of the reaction of gold atoms with CO in a rotating cryostat: formation of a variety of gold carbonyls." Canadian Journal of Chemistry 67, no. 4 (April 1, 1989): 655–61. http://dx.doi.org/10.1139/v89-099.

Full text
Abstract:
Reaction of 197Au atoms with CO has been studied in inert hydrocarbon matrices in a rotating cryostat at 77 K by EPR, FTIR, and UV/visible spectroscopy. Au(CO)2 has been positively identified by FTIR spectroscopy and there is evidence for the formation of AuCO, a gold microcrystallite – CO complex and, upon annealing, Au2(CO)4. Electron paramagnetic resonance spectra are consistent with the formation of Au(CO) (OC) with the magnetic parameters: a13 = 325 MHz, a17 = 44 MHz, and g = 2.0014 and a gold microcrystallite – CO complex with g = 2.014. An intense broad absorption in the optical spectrum at 525 nm is assigned to Au(CO)2 and a less intense narrow band at 320 nm is assigned to AunCO. There is no spectroscopic evidence for the formation of Au(CO)3 in hydrocarbon matrices. Keywords: gold carbonyls, EPR, FTIR, UV/visible, matrix isolation.
APA, Harvard, Vancouver, ISO, and other styles
30

Singh, Vijay, G. Sivaramaiah, J. L. Rao, N. Singh, Anoop K. Srivastava, Pramod K. Singh, S. U. Pawar, H. Gao, and P. Mardina. "Combustion synthesized Fe doped CeO2 powder-characterization, optical absorption and EPR spectroscopy." Journal of Materials Science: Materials in Electronics 27, no. 5 (January 19, 2016): 4494–500. http://dx.doi.org/10.1007/s10854-016-4323-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Falin, M. L., K. I. Gerasimov, V. A. Latypov, A. M. Leushin, S. Schweizer, and J. M. Spaeth. "EPR, ENDOR and optical spectroscopy of Yb3+ ion in KZnF3 single crystals." Journal of Physics and Chemistry of Solids 77 (February 2015): 157–63. http://dx.doi.org/10.1016/j.jpcs.2014.10.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gerasimov, K. I., A. M. Leushin, and M. L. Falin. "EPR and optical spectroscopy of the Yb3+ cubic center in β-PbF2." Physics of the Solid State 43, no. 9 (September 2001): 1675–79. http://dx.doi.org/10.1134/1.1402222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Nosenko, A. E., R. Ye Leshchuk, and B. V. Padlyak. "Optical and epr spectroscopy of impurity manganese ions in disordered Ca3Ga2Ge4O14single crystals." Radiation Effects and Defects in Solids 135, no. 1-4 (December 1995): 55–60. http://dx.doi.org/10.1080/10420159508229805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Giridhar, G., D. Punyaseshudu, M. V. V. K. Srinivas Prasad, M. Venkateswarlu, and G. Srinivas. "EPR and Optical Spectroscopy of Iron Doped Mixed Alkali Cadmium Phosphate Glasses." Acta Physica Polonica A 123, no. 4 (April 2013): 761–65. http://dx.doi.org/10.12693/aphyspola.123.761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yamaga, M., B. Henderson, K. P. O'Donnell, and H. Takeuchi. "EPR and optical spectroscopy of Cr3+ ions in Y3Ga5O12 crystalline thin films." Applied Physics A Solids and Surfaces 54, no. 5 (May 1992): 470–73. http://dx.doi.org/10.1007/bf00324174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Abdulsabirov, R. Yu, M. L. Falin, I. I. Fazlizhanov, B. N. Kazakov, S. L. Korableva, I. R. Ibragimov, G. M. Safiullin, and Zh S. Yakovleva. "EPR and optical spectroscopy of neodymium ions in KMgF3 and KZnF3 crystals." Applied Magnetic Resonance 5, no. 3-4 (December 1993): 377–85. http://dx.doi.org/10.1007/bf03162534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Falin, M. L., V. A. Latypov, A. M. Leushin, and G. M. Safiullin. "EPR and optical spectroscopy of Yb3+ ions in hexagonal perovskite RbMgF3 crystals." Journal of Alloys and Compounds 735 (February 2018): 23–28. http://dx.doi.org/10.1016/j.jallcom.2017.11.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fayazuddin, Md, N. C. Gangi Reddy, G. Siva Reddy, S. Lakshmi Reddy, P. Sambasiva Rao, and R. L. Frost. "Optical absorption and EPR studies on beaverite mineral." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 68, no. 3 (November 2007): 807–10. http://dx.doi.org/10.1016/j.saa.2006.12.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Reddy, R. Rama Subba, S. Lakshmi Reddy, P. S. Rao, and R. L. Frost. "Optical absorption and EPR studies on tenorite mineral." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75, no. 1 (January 2010): 28–31. http://dx.doi.org/10.1016/j.saa.2009.09.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tribollet, Jérôme. "Hybrid nanophotonic-nanomagnonic SiC-YiG quantum sensor: I/theoretical design and properties." European Physical Journal Applied Physics 90, no. 2 (May 2020): 20102. http://dx.doi.org/10.1051/epjap/2020200062.

Full text
Abstract:
Here I present the theory of a new hybrid paramagnetic-ferrimagnetic SiC-YiG quantum sensor. It is designed to allow sub-nanoscale single external spin sensitivity optically detected pulsed electron electron double resonance spectroscopy, using an X band pulsed EPR spectrometer and an optical fiber. The sensor contains one single V2 negatively charged silicon vacancy color center in 4H-SiC, whose photoluminescence is waveguided by a 4H-SiC nanophotonic structure towards an optical fiber. This V2 spin probe is created by ion implantation at a depth of few nanometers below the surface, determined by optically detected paramagnetic resonance under the strong magnetic field gradient of a YiG ferrimagnetic nanostripe located on the back-side of the nanophotonic structure. This gradient also allow the study, slice by slice at nanoscale, of the target paramagnetic sample. The fabrication process of this quantum sensor, its magnetic and optical properties, its external spins sensing properties in a structural biology context, and its integration to a standard commercially available pulsed EPR spectrometer are all presented here.
APA, Harvard, Vancouver, ISO, and other styles
41

Asatryan, G. R., A. P. Skvortsov, and G. S. Shakurov. "Wide-band EPR spectroscopy of YAlO3: Tm3+ single crystals." Physics of the Solid State 55, no. 5 (May 2013): 1039–42. http://dx.doi.org/10.1134/s1063783413050028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mishra, Beena, K. Indira Priyadarsini, M. K. Bhide, R. M. Kadam, and Hari Mohan. "Reactions of Superoxide Radicals with Curcumin: Probable Mechanisms by Optical Spectroscopy and EPR." Free Radical Research 38, no. 4 (April 2004): 355–62. http://dx.doi.org/10.1080/10715760310001660259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Falin, M. L., K. I. Gerasimov, and V. A. Latypov. "EPR and optical spectroscopy of the Tm2+ ion in the KMgF3 single crystal." Journal of Luminescence 132, no. 10 (October 2012): 2537–40. http://dx.doi.org/10.1016/j.jlumin.2012.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Seshamaheswaramma, K., G. Udayabhaskara Reddy, A. Varada Reddy, S. Lakshmi Reddy, R. L. Frost, and Tamio Endo. "EPR and optical absorption spectral studies on sphalerite mineral." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 81, no. 1 (October 2011): 308–12. http://dx.doi.org/10.1016/j.saa.2011.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Reddy, S. Lakshmi, K. Sesha Maheswaramma, G. Siva Reddy, B. J. Reddy, Ray L. Frost, and Tamio Endo. "EPR and optical absorption spectral studies on voglite mineral." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 77, no. 1 (September 2010): 11–15. http://dx.doi.org/10.1016/j.saa.2010.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bıyık, Recep, and Recep Tapramaz. "EPR and Optical Absorption Studies of VO2+ Doped KH2PO4 and KH3C4O8·2H2O Single Crystals." Zeitschrift für Naturforschung A 61, no. 3-4 (April 1, 2006): 171–79. http://dx.doi.org/10.1515/zna-2006-3-410.

Full text
Abstract:
VO2+ doped potassium dihydrogen phosphate (KH2PO4) and potassium tetraoxalate (KH3C4O8 · 2H2O) single crystals and powders are examined by electron paramagnetic resonance and optical absorption spectroscopy. Angular variations of KH2PO4 and KH3C4O8 ·2H2O single crystals show four and two different VO2+ sites, respectively. The local symmetry of VO2+ complexes is nearly axial for both host crystals. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion
APA, Harvard, Vancouver, ISO, and other styles
47

Shakurov, G. S., G. R. Asatryan, L. V. Mingalieva, A. G. Petrosyan, and K. L. Hovhannesyan. "Wideband EPR Spectroscopy of Mo3+ Ions in Yttrium–Aluminum Garnet." Physics of the Solid State 60, no. 10 (October 2018): 2046–49. http://dx.doi.org/10.1134/s1063783418100244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rahal, H. T., R. Awad, A. M. Abdel-Gaber, and D. El-Said Bakeer. "Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles." Journal of Nanomaterials 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/7460323.

Full text
Abstract:
The effect of ethylenediaminetetraacetic acid (EDTA) as a capping agent on the structure, morphology, optical, and magnetic properties of nickel oxide (NiO) nanosized particles, synthesized by coprecipitation method, was investigated. Nickel chloride hexahydrate and sodium hydroxide (NaOH) were used as precursors. The resultant nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). XRD patterns showed that NiO have a face-centered cubic (FCC) structure. The crystallite size, estimated by Scherrer formula, has been found in the range of 28–33 nm. It is noticed that EDTA-capped NiO nanoparticles have a smaller size than pure nanoparticles. Thus, the addition of 0.1 M capping agent EDTA can form a nucleation point for nanoparticles growth. The optical and magnetic properties were investigated by Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption spectroscopy (UV) as well as electron paramagnetic resonance (EPR) and magnetization measurements. FTIR spectra indicated the presence of absorption bands in the range of 402–425 cm−1, which is a common feature of NiO. EPR for NiO nanosized particles was measured at room temperature. An EPR line withgfactor ≈1.9–2 is detected for NiO nanoparticles, corresponding to Ni2+ions. The magnetic hysteresis of NiO nanoparticles showed that EDTA capping recovers the surface magnetization of the nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
49

Ruediger, A., O. Schirmer, S. Odoulov, A. Shumelyuk, and A. Grabar. "Studies of light-induced charge transfer in Sn2P2S6 by combined EPR/optical absorption spectroscopy." Optical Materials 18, no. 1 (October 2001): 123–25. http://dx.doi.org/10.1016/s0925-3467(01)00147-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pawlik, Jürgen, Lileta Gherghel, Stoyan Karabunarliev, and Martin Baumgarten. "Characterization of reduced porphyrinatozinc(II) complexes by EPR/ENDOR/TRIPLE and optical absorption spectroscopy." Chemical Physics 221, no. 1-2 (August 1997): 121–33. http://dx.doi.org/10.1016/s0301-0104(97)00121-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography