Academic literature on the topic 'Epitaxial Devices'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epitaxial Devices.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Epitaxial Devices"

1

Metzner, H., Th Hahn, Chr Schmiga, J. H. Bremer, D. Borchert, W. R. Fahrner, and M. Seibt. "Epitaxial heterojunction devices." Solar Energy Materials and Solar Cells 49, no. 1-4 (December 1997): 337–42. http://dx.doi.org/10.1016/s0927-0248(97)00074-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baierhofer, Daniel, Bernd Thomas, F. Staiger, B. Marchetti, C. Förster, and Tobias Erlbacher. "Correlation of Extended Defects with Electrical Yield of SiC MOSFET Devices." Defect and Diffusion Forum 426 (June 6, 2023): 11–16. http://dx.doi.org/10.4028/p-i82158.

Full text
Abstract:
The quality of the silicon carbide (SiC) epitaxial layer, i.e., layer homogeneities and extended defect densities, is of highest importance for high power 4H-SiC trench metal-oxide-semiconductor field effect transistors (Trench-MOSFET) devices. Especially, yield for devices with a large chip area is severely impacted by extended defects. Previously, devices had to be fully manufactured to effectively gauge the impact of a reduction in extended defect densities in the epitaxial layers on device yield. The production of devices such as Trench-MOSFETs is an extensive procedure. Therefore, a correlation between extended defects in the epitaxial layer and electrical device failure would allow to reliably estimate the impact of process changes during epitaxial layer deposition on electrical device yield.For this reason, n-type epitaxial layers were grown on around 1,000 commercially available 150 mm 4H-SiC Si-face substrates, which received a chemical wet cleaning prior to the epitaxy deposition. Substrates with lowest micro-pipe density from two different suppliers were used. The wafers were characterized with the corresponding device layout for defects utilizing surface microscopy as well as ultraviolet photoluminescence techniques. Subsequently, these wafers were used to produce more than 500,000 Trench-MOSFET devices. All devices have been tested on wafer level for their initial electrical integrity.With these methods a precise correlation between extended defects in the epitaxial layer and electrical failures on wafer level could be found. The influence of different substrates on the defect-based yield prediction regarding the electrical yield on wafer level is discussed. Additionally, a calculated kill-ratio is presented and the severity of defect classes on initial device failure, e.g., stacking faults, and their key failures modes are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Sambri, A., D. Isarakorn, A. Torres-Pardo, S. Gariglio, Pattanaphong Janphuang, D. Briand, O. Stéphan, et al. "Epitaxial Piezoelectric Pb(Zr0.2Ti0.8)O3 Thin Films on Silicon for Energy Harvesting Devices." Smart Materials Research 2012 (April 22, 2012): 1–7. http://dx.doi.org/10.1155/2012/426048.

Full text
Abstract:
We report on the properties of ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) thin films grown epitaxially on (001) silicon and on the performance of such heterostructures for microfabricated piezoelectric energy harvesters. In the first part of the paper, we investigate the epitaxial stacks through transmission electron microscopy and piezoelectric force microscopy studies to characterize in detail their crystalline structure. In the second part of the paper, we present the electrical characteristics of piezoelectric cantilevers based on these epitaxial PZT films. The performance of such cantilevers as vibration energy transducers is compared with other piezoelectric harvesters and indicates the potential of the epitaxial approach in the field of energy harvesting devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Feng, Qi, Wenqi Wei, Bin Zhang, Hailing Wang, Jianhuan Wang, Hui Cong, Ting Wang, and Jianjun Zhang. "O-Band and C/L-Band III-V Quantum Dot Lasers Monolithically Grown on Ge and Si Substrate." Applied Sciences 9, no. 3 (January 23, 2019): 385. http://dx.doi.org/10.3390/app9030385.

Full text
Abstract:
Direct epitaxial growth of III-V heterostructure on CMOS-compatible silicon wafer offers substantial manufacturing cost and scalability advantages. Quantum dot (QD) devices are less sensitive to defect and temperature, which makes epitaxially grown III-V QD lasers on Si one of the most promising technologies for achieving low-cost, scalable integration with silicon photonics. The major challenges are that heteroepitaxial growth of III-V materials on Si normally encounters high densities of mismatch dislocations, antiphase boundaries and thermal cracks, which limit the device performance and lifetime. This paper reviews some of the recent developments on hybrid InAs/GaAs QD growth on Ge substrates and highly uniform (111)-faceted hollow Si (001) substrates by molecular beam epitaxy (MBE). By implementing step-graded epitaxial growth techniques, the emission wavelength can be tuned into either an O band or C/L band. Furthermore, microcavity QD laser devices are fabricated and characterized. The epitaxially grown III-V/IV hybrid platform paves the way to provide a promising approach for future on-chip silicon photonic integration.
APA, Harvard, Vancouver, ISO, and other styles
5

Radhakrishnan, Rahul, Tony Witt, Seungchul Lee, and Richard Woodin. "Design of Silicon Carbide Devices to Minimize the Impact of Variation of Epitaxial Parameters." Materials Science Forum 858 (May 2016): 177–80. http://dx.doi.org/10.4028/www.scientific.net/msf.858.177.

Full text
Abstract:
Optimized design of Silicon Carbide (SiC) power devices depends, besides power device physics, also on consideration of basic properties and technological readiness of the material. This paper presents a novel analysis of the dependence of variation of epitaxial doping and thickness on the determination of the optimum design point of SiC devices. We introduce electric field at epitaxy-substrate interface as a useful parameter in controlling the dependence of device parameters on epitaxy. Using this method as criterion for design can improve the robustness of SiC devices to epitaxial variation and hence the process yield.
APA, Harvard, Vancouver, ISO, and other styles
6

Vaz, C. A. F., Y. J. Shin, M. Bibes, K. M. Rabe, F. J. Walker, and C. H. Ahn. "Epitaxial ferroelectric interfacial devices." Applied Physics Reviews 8, no. 4 (December 2021): 041308. http://dx.doi.org/10.1063/5.0060218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Waldmann, Daniel, Johannes Jobst, Florian Speck, Thomas Seyller, Michael Krieger, and Heiko B. Weber. "Gated Epitaxial Graphene Devices." Materials Science Forum 717-720 (May 2012): 675–78. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.675.

Full text
Abstract:
A bottom gate scheme is presented to tune the charge density of epitaxial graphene via a gate voltage while leaving the surface open for further manipulation or investigation. Depending on the doping concentration of the buried gate layer, the temperature and illumination, the bottom gate structure can be operated in two regimes with distinct capacitances. A model is proposed, which quantitatively describes the gate operation. The model is verified by a control experiment with an illuminated gate structure using UV light. Using UV illumination the Schottky capacitor (SC) regime, which provides improved gate efficiency, can be used even at low temperatures.
APA, Harvard, Vancouver, ISO, and other styles
8

Jokerst, N. M. "Integrated Optoelectronics Using Thin Film Epitaxial Liftoff Materials and Devices." Journal of Nonlinear Optical Physics & Materials 06, no. 01 (March 1997): 19–48. http://dx.doi.org/10.1142/s0218863597000034.

Full text
Abstract:
The separation of single crystal thin film epitaxial compound semiconductor layers from a lattice matched growth substrate through selective etching, with subsequent bonding of the epitaxial thin film devices onto host substrates, is an emerging tool for multi-material, hybrid integration. Progress to date in this area, presented herein, includes advanced thin film devices, thin film material separation and device integration processing techniques, and thin film material and device integration with host substrates which include silicon circuitry, polymers, glass, and lithium niobate.
APA, Harvard, Vancouver, ISO, and other styles
9

First, Phillip N., Walt A. de Heer, Thomas Seyller, Claire Berger, Joseph A. Stroscio, and Jeong-Sun Moon. "Epitaxial Graphenes on Silicon Carbide." MRS Bulletin 35, no. 4 (April 2010): 296–305. http://dx.doi.org/10.1557/mrs2010.552.

Full text
Abstract:
AbstractThis article reviews the materials science of graphene grown epitaxially on the hexagonal basal planes of SiC crystals and progress toward the deterministic manufacture of graphene devices. We show that the growth of epitaxial graphene on Si-terminated SiC(0001) differs from growth on the C-terminated SiC(0001) surface, resulting in, respectively, strong and weak coupling to the substrate and to successive graphene layers. Monolayer epitaxial graphene on either surface displays the expected electronic structure and transport characteristics of graphene, but the non-graphitic stacking of multilayer graphene on SiC(0001) determines an electronic structure much different from that of graphitic multilayers on SiC(0001). This materials system is rich in subtleties, and graphene grown on the two polar faces of SiC differs in important ways, but all of the salient features of ideal graphene are found in these epitaxial graphenes, and wafer-scale fabrication of multi-GHz devices already has been achieved.
APA, Harvard, Vancouver, ISO, and other styles
10

GIBB, SHAWN R., JAMES R. GRANDUSKY, MARK MENDRICK, and LEO J. SCHOWALTER. "PERFORMANCE OF PSEUDOMORPHIC ULTRAVIOLET LEDs GROWN ON BULK ALUMINUM NITRIDE SUBSTRATES." International Journal of High Speed Electronics and Systems 20, no. 03 (September 2011): 497–504. http://dx.doi.org/10.1142/s0129156411006787.

Full text
Abstract:
Low dislocation density pseudomorphic epitaxial layers of Al x Ga 1- x N have been grown on c -face AlN substrates prepared from high quality bulk crystals. As reported previously, pseudomorphic growth yields very low dislocation density layers with atomically smooth surfaces throughout the active region of a full LED device structure. An advantage of the low dislocation density is the ability to n -type dope the high aluminum content Al x Ga 1- x N (x ~ 70%) epitaxial layers required for UVLED devices to obtain sheet resistances less than 350 Ohm/square for 0.5 μm thick layers. Here, we report on the characterization of our pseudomorphic epitaxial AlGaN layers via cathodoluminescence (CL) and on-wafer and initial packaged level characterization of fully fabricated pseudomorphic ultraviolet LEDs (PUVLEDs) with an emission wavelength between 250 - 265 nm. An additional benefit of PUVLED devices is the ability to run these devices at high input powers and current densities. Further, the aforementioned low dislocation density of the epitaxial structure results in improved device performance over previously published data. Mean output powers of greater than 4 mW were obtained on-wafer prior to thinning and roughening while output powers as high as 45 mW were achieved for packaged devices.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Epitaxial Devices"

1

Butt, Ali Muhammad. "New Photonic devices based on NLO(non-linear optical) crystalline waveguides." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/403372.

Full text
Abstract:
El RbTiOPO4 és un cristall de òptica no lineal amb alts coeficients electró-òptics i un llindar de dany òptic elevat, això el converteix en un material potencial per aplicacions electro-òptiques. Actualment hi ha un interès en el desenvolupament de components òptics basats en materials dielèctrics, identificat com un tema de recerca punter per Europa Horitzó 2020. La finalitat d’aquesta tesis és explorar el RTP com a plataforma dielèctrica per dispositius fotònics, que tenen aplicacions en les telecomunicacions i en el sensat biològic. En aquesta tesis s’han crescut materials monocristal•lins en volum de RTP, K:RTP i Na:KTP pel mètode de Top seeded solution growth. Els cristalls obtinguts són òptims per ser utilitzats com a plataforma per fabricar guies d’ona i com a substrats pel creixement de capes epitaxials. Capes epitaxials de (Yb,Nb):RTP sobre RTP(001), RTP sobre K:RTP(001) i K.:RTP(100), i KTP sobre Na:KTP(001) s’han crescut per la metodologia de liquid phase epitaxy. Aquesta metodologia ha permès obtenir capes monocristal•lines amb una interfase d’alta qualitat cristal•lina La fabricació de guies d’ona ha esta realitzada per RIE i ICP-RIE. Es reporta en aquesta tesis, un avanç en el coneixement del procés de etching del RTP. El mètode d’intercanvi iònic, amb Cs+ com ió, s’ha utilitzat per produir guies rectes, corbes i MZ. Degut a l’alta conductivitat iònica del RTP al llarg de la direcció c cristal•logràfica, l’ intercanvi iònic és altament factible i gairebé unidireccional. S’ha obtingut exitosament el procés de guiat de llum en totes les guies d’ona fabricades. Pels Y-splitters i els MZ fabricats sobre els cristalls RTP/(Yb,Nb):RTP/RTP(001) estructurats amb RIE sobre la capa activa o bé el substrat, la guia obtinguda és monomode amb polarització TM a 1550 nm. Les pèrdues de propagació són de 3.5 dB/cm. Per les guies d’ona rectes fabricades sobre RTP/(Yb,Nb):RTP/RTP(001) per estructuració del recobriment per ICP-RIE, les pèrdues de propagació són 0.376 dB/cm a 1550 nm.
El RbTiOPO4 es un cristal de óptica no-lineal con altos coeficientes electro ópticos y un límite de daño óptico elevado, eso lo convierte en una potencial material para aplicaciones electrópticas. Actualmente existe un gran interés en el desarrollo de componentes ópticos basados en materiales dieléctricos, esto ha sido identificado como un tema puntero de investigación por Europa Horizonte 2020. La finalidad de esta tesis es explorar el RTP cómo plataforma dieléctrica para dispositivos fotónicos, que tienen aplicaciones en les telecomunicaciones y en el sensado biológico. En esta tesis, se han crecido materiales monocristalinos en volumen de RTP, K:RTP y Na:KTP por el método de Top seeded solution growth. Los cristales crecidos son óptimos para ser utilizados como plataforma para fabricar guías de onda y como sustratos para el crecimiento de capas epitaxiales. Capas epitaxiales de (Yb,Nb):RTP sobre RTP(001), RTP sobre K:RTP(001) yK.:RTP(100), i KTP sobre Na:KTP(001) se han crecido mediante la metodología de liquid phase epitaxy. Esta metodología ha permitido obtener capes monocristalinas con una interfase de alta calidad cristalina. La fabricación de guías de onda se ha hecho por RIE y ICP-RIE: Se reporta en esta tesis un avance en el conocimiento del proceso de etching en el RTP. El método de intercambio iónico, con Cs+ como ion, se ha utilizado para producir guías de onda rectas, curvas y MZ. Debido a la alta conductividad iónica del RTP a lo largo de la dirección c cristalográfica, el intercambio iónico es altamente factible y casi unidireccional. Se ha obtenido el guiado con éxito en todas las guías de onda fabricadas. En los Y-Splitters y MZ fabricados sobre los cristales RTP/(Yb,Nb):RTP/RTP(001) estructurados con RIE sobre la capa activa o bien el sustrato, la guía obtenida es monomodo con la polarización TM a 1550 nm. Las pérdidas de propagación son de 3.5 dB/cm. Para las guías de onda rectes fabricadas sobre RTP/(Yb,Nb):RTP/RTP(001) por estructuración del recubrimiento por ICP-RIE, las pérdidas por propagación son de 0.376 dB/cm a 1550 nm.
RbTiOPO4 is a non-linear optical crystal with high electro-optic coefficients and high optical damage threshold, which makes it suitable for electro-optic applications. There’s a current interest in developing dielectric based photonic components for integrated optics, identified as a topic of research by the Europe Horizon 2020. The aim of this thesis is to explore RTP for dielectric based photonic platforms, which have applications in telecommunications and biosensing. In this thesis is reported the successful grow of bulk single crystals of RTP, K:RTP and Na:RTP by Top Seeded Solution Growth technique. The crystals obtained are suitable to be used as platforms to fabricate optical waveguides and for substrates for growth of epitaxial layers. Epitaxial layers of (Yb,Nb):RTP were grown on RTP(001), RTP was grown on K:RTP(001) and K:RTP(100) and KTP was grown on Na:KTP(001) by Liquid phase epitaxy. This methodology allows obtaining a single crystalline layer, with high quality crystalline interface. Waveguide fabrication was performed by RIE and ICP-RIE. Advancement in this etching process on RTP is reported in this thesis. Cs+ ion exchange method was used to produce straight, bends and MZ waveguides. Due to the RTP high ionic conductivity along the c crystallographic direction, ion exchange is highly feasible and almost unidirectional. Waveguiding of the fabricated channel waveguides has been successful. For the Y-Splitter and MZ waveguides fabricated on the RTP/(Yb,Nb):RTP/RTP(001) crystals, by structuring the active layer or the substrate by RIE, the waveguides obtained were single mode in TM polarization at 1550 nm. The propagation loss was 3.5 dB/cm. For straight waveguides fabricated on the RTP/(Yb,Nb):RTP/RTP(001), by structuring the cladding by ICP-RIE, the propagation losses were 0.376 dB/cm at 1550 nm. The waveguides fabricated by Cs+ ion exchange have larger losses due to inhomogeneity on the Cs exchange among different ferroelectric domains present in the structure.
APA, Harvard, Vancouver, ISO, and other styles
2

Wilkinson, Scott Tolbert. "Photonic devices for optical interconnects using epitaxial liftoff." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herrera, Daniel. "Sulfur Implanted GaSb for Non-Epitaxial Photovoltaic Devices." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93767.

Full text
Abstract:
Gallium antimonide (GaSb) is a promising low-bandgap binary substrate for the fabrication of various infrared-based optoelectronic devices, particularly thermophotovoltaics (TPV). In order to make GaSb-based technologies like TPV more widely available, non-epitaxial dop- ing methods for GaSb must be pursued. Ion implantation is relatively unexplored for GaSb, and can offer advantages over the more common method of zinc diffusion, including higher flexibility with regards to substrate type and control over the resulting doping profile. Pre- vious work has shown beryllium (Be+) implantation to be a suitable method for fabricating a diode in an n-type GaSb substrate, opening the possibility for other ions to be considered for implanting into both n-type and p-type substrates. This work identifies sulfur (S+) as another species to investigate for this purpose. To do so, material and electrical characterization was done on S+ and beryllium implanted GaSb films grown onto a semi-insulating gallium arsenide (GaAs) substrate. X-ray Diffraction spectroscopy (XRD) and Atomic Force Microscopy (AFM) indicate that the post-implant anneal of 600 for 10 s repaired the implant damage in the bulk material, but left behind a damaged surface layer composed of coalesced vacancies. While the beryllium implant resulted in moderate doping concentrations corresponding to an activation percentage near 15 %, Hall Effect data showed that implanting S+ ions induced a strongly p-type behavior, with hole concentrations above 1 × 19 cm^3 and sheet hole densities 3.5 times higher than the total implanted dose. This strong p-type behavior is attributed to the remaining lattice damage caused by the implant, which induces a large density of acceptor-like defect states near the valence band edge. This technique was used on an unintentionally-doped p-type GaSb substrate to create a + /p junction. The implant process succeeded in producing a potential barrier similar to that of a hole-majority camel diode with a thin delta-doped region suitable for collecting diffused carriers from the p-type substrate. A post-fabrication etching process had the effect of strongly increasing the short circuit current density to as high as 41.8 mA/cm^2 and the open circuit voltage as high as 0.21 V by simultaneously removing a high carrier recombination surface layer. This etching process resulted in a broadband spectral response, giving internal quantum efficiencies greater than 90 %.
Doctor of Philosophy
Thermophotovoltaics (TPV) is a technology that converts light and other forms of electromagnetic energy into electrical power, much like a typical solar panel. However, instead of sunlight, the energy source used in a TPV system is a terrestrial heat source at a temperature range of 1250–1750 ◦C, whose radiation is primarily infrared (IR). The IR-absorbing qualities and commercial availability of the compound semiconductor gallium antimonide (GaSb) have made it a key component in the development of absorber devices for TPV-related systems. GaSb-based devices have most often been fabricated using epitaxy, a method in which layer(s) of material are ‘grown’ in a layer-by-layer fashion atop a substrate GaSb wafer to induce an interface between negatively-charged (n-type) and positively-charged (p-type) regions. In order to improve upon the scalability of TPV production, device fabrication methods for GaSb that avoid the use of epitaxy are sought after as a lower-cost alternative. In this work, sulfur ion implantation is examined as one of these methods, in which elemental sulfur ions are injected at a high energy into a p-type GaSb substrate. The implanted ions then alter the charge characteristics at the surface of the material, producing an electric field from which a photovoltaic (PV) device can be fabricated. The results of this study showed that by implanting sulfur ions, an extremely p-type (p++) layer was formed at the surface of the GaSb substrate, which was attributed to residual damage induced by the implant process. The resulting interface between the p++ surface and the moderately p-type GaSb substrate was found to induce an electric field suitable for a PV device. Removing the excess surface damage away from the device’s metal contacts resulted in an improvement in the output electrical currents, with measured values being significantly higher than that of other devices made using more common non-epitaxial fabrication methods. The success of this work demonstrates the advantages of using a p-type GaSb substrate in place of an n-type substrate, and could help diversify the types of TPV-related devices that can be produced.
APA, Harvard, Vancouver, ISO, and other styles
4

Nagaredd, Venkata Karthik. "Fabrication, functionalisation and characterisation of epitaxial graphene devices." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2877.

Full text
Abstract:
Graphene has attracted considerable attention in recent years due to its remarkable material properties and its potential for applications in next-generation nanoelectronics. In particular, the high specific surface area, extremely high electrical conductivity and exceptionally low electrical noise make graphene an ideal material for surface-sensitive applications such as chemical sensing, biological sensing and DNA sequencing. The surface cleanliness of graphene devices is critical for these applications, along with low contact resistance at metal/graphene interfaces. In addition, having pristine surface is also essential to carry out controlled functionalisation of graphene to target its chemical reactions with designated analyte species. However, it was found that conventional lithography processing techniques used for graphene device fabrication significantly contaminates the graphene surface with resist residues, which cannot be removed by any known organic solvents. The presence of such chemical contamination degrades the intrinsic properties of graphene and also significantly affects the performance of graphene based electronic devices. In this thesis, two methods were developed to address this issue, where, for the first method, rapid thermal annealing of graphene devices was performed in N2/H2 atmosphere, whilst for the second method, a metal sacrificial layer was used to prevent graphene from coming into direct with photoresist during the lithography process. Chemical, electrical, structural and surface morphological analysis showed that clean graphene surfaces can be achieved by both these methods, which allowed the intrinsic properties of graphene to be measured. In addition to surface contamination, the performance of graphene devices is also limited by contact resistance associated with the metal-graphene interface, where an unique challenge arise as charge carriers are injected from a three-dimensional metal film into a two-dimensional graphene sheet. The quantitative analysis of the data demonstrates that highly reactive metals such as Ti destroys the graphene lattice and results in high contact resistance, whereas metals with higher work functions and lower lattice mismatch to graphene (such as Ni) was found to result in significantly lower contact resistance. The work function, binding energy, diffusion energy and the lattice mismatch of the deposited metals were used to explain the electrical and structural characteristics of different types of metal/graphene interfaces. ABSTRACT vi In order to enhance the chemical reactivity of graphene surfaces, controlled functionalisation of epitaxial graphene films using electron-beam generated oxygen plasma has been demonstrated at room temperature. It was found that oxygen functionalisation not only introduces different oxygen functional groups onto the graphene surface, but also results in strain relaxation, in which the intrinsic compressive strain present in epitaxial graphene film decreased progressively with the increasing plasma pressure. A detailed study on the effect of e-beam plasma treatment on the chemical, electrical, structural and morphological characteristics of epitaxial graphene films have been investigated from initial to advanced oxidation stages. Finally, the effectiveness of oxygen functionalised graphene as a chemical sensor for detecting a wide range of polar chemical vapours in the ambient atmosphere has been demonstrated. The sensing characteristics of oxygen functionalised graphene devices showed ultra-fast response (10 s) and recovery times (100 s) to different chemical vapours, whilst unfunctionalised graphene sensors showed considerably weaker sensitivity and extremely slow recovery time in the range of ∼1.5 to 2 hours. A strong correlation between the dipole moment of the chemical and the magnitude of the response was observed, in which oxygen functionalised sensors displayed a twofold increase in the sensitivity over un-functionalised sensors with the increasing dipole moment from 2.0 D to 4.1 D. The sensing properties of graphene and the effect of oxygen functionalization on sensor responses were critically examined in an effort to provide a detailed understanding on the graphene sensing mechanism and provide a pathway for future advancements in the graphene sensor research.
APA, Harvard, Vancouver, ISO, and other styles
5

Turnbull, Aidan Gerard. "Relaxation in epitaxial layers of III-V compounds." Thesis, Durham University, 1992. http://etheses.dur.ac.uk/5709/.

Full text
Abstract:
Semiconductor devices can be fabricated by growing III-V heteroepitaxial layers which are coherently strained to a III-V substrate. The relaxation of layer lattice strain through the nucleation of misfit dislocations near the interface causes a drop in performance for these devices. This thesis uses two non destructive x-ray techniques to examine relaxation in III-V epitaxial layers; double crystal diflractometry and x- ray topography. The dynamical and kinematical theories of x-ray diffraction are discussed in chapter 2. The apparatus used for double crystal diffractometry and x-ray topography and the theory of operation of these techniques is discussed in chapter 3. The properties of misfit dislocations in III-V epitaxial layers and the critical layer thickness at which relaxation occurs are discussed in chapter 4.Double crystal diffractometry and x-ray topography have been used to examine relaxation in epitaxial layers of AlAs on GaAs, InGaAs on GaAs, GaAsSb on GaAs, InGaAs on InP and an InGaAs superlattice on InP. All layers were deposited on 001 orientated substrates. Asymmetric double crystal rocking curves have been analysed using a novel technique which allows deduction of the position of an hhl layer reflection in reciprocal space. The layer unit cell parameters in the [110] and iTO] directions are determined from this. Individual misfit dislocation lines can be resolved by topography for dislocation line densities less than 0.2 μm(^-1)In each of these samples the layer relaxation was found to be asymmetric about the (110) directions. The sensitivity of diffractometry and topography to the detection of layer relaxation has been compared for samples with different thicknesses and dislocation line densities. The resolution of these techniques to the determination of layer relaxation has been shown to meet for a 1 μm layer of AlAs on GaAs. Tilt between the epitaxial layer lattice and the substrate has been measured for coherently strained and partially relaxed epitaxial layers grown on 001 orientated substrates. The lattice tilt in (110) directions was found to increase with misfit dislocation line density in these directions. Two theoretical models have been developed describing the relationship between lattice tilt and misfit dislocation line density and the tilts predicted by these compared with experiment. At high dislocation densities measurements of layer relaxation by diffractometry indicate that the images recorded by topography represent bundles of misfit dislocations and not individual dislocation fines. The number of dislocation lines per bundle was found to decrease with decreasing layer relaxation. Bunching of misfit dislocations into dislocation bundles is also observed on topographs from a low dislocation density sample where the individual dislocation hues are resolved. Screw dislocations in a strained layer and an interaction between two 60 dislocations to form a mixed dislocation have been characterised using Burgers vector analysis. Interference fringes have been observed on 004 double crystal rocking curves recorded from an ultra thin In GaAs layer sandwiched between a GaAs substrate and a GaAs cap. The position and intensity of these fringes was found to be sensitive to the composition and thickness of the In GaAs layer. Comparison between simulated and experimental rocking curve data allowed determination of the layer thickness to within a single monolayer and layer composition to within 0.5%. Topography of this sample showed that the dislocation line density varied from zero to 0.12 μm(^-1)across the wafer. The critical layer thickness and Indium concentration at which the first few misfit dislocation fines were observed was measured as 162 ± 2 A and 17 ± 0.5 %.
APA, Harvard, Vancouver, ISO, and other styles
6

Williams, Erica Jane. "Applications of epitaxial growth to semiconductor and superconductor devices." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xuebin. "Epitaxial graphene films on SiC : growth, characterization, and devices /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24670.

Full text
Abstract:
Thesis (Ph.D.)--Physics, Georgia Institute of Technology, 2008.
Committee Chair: de Heer, Walter; Committee Member: Chou, Mei-Yin; Committee Member: First, Phillip; Committee Member: Meindl, James; Committee Member: Orlando, Thomas
APA, Harvard, Vancouver, ISO, and other styles
8

Hargis, Marian Crawford. "Metal-Semiconductor-Metal photodetectors and their integration via epitaxial liftoff." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/15800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ul, Hassan Jawad. "Epitaxial Growth and Characterization of SiC for High Power Devices." Doctoral thesis, Linköpings universitet, Halvledarmaterial, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17440.

Full text
Abstract:
Silicon Carbide (SiC) is a semiconductor with a set of superior properties, including wide bandgap, high thermal conductivity, high critical electric field and high electron mobility. This makes it an excellent material for unipolar and bipolar electronic device applications that can operate under high temperature and high power conditions. Despite major advancements in SiC bulk growth technology, during last decade, the crystalline quality of bulk grown material is still not good enough to be used as the active device structure. Also, doping of the material through high temperature diffusion is not possible while ion implantation leads to severe damage to the crystalline quality of the material. Therefore, to exploit the superior quality of the material, epitaxial growth is a preferred technology for the active layers in SiC-based devices. Horizontal Hot-wall chemical vapor deposition is probably the best way to produce high quality epitaxial layers where complete device structure with different doping type or concentrations can be grown during a single growth run. SiC exists in many different polytypes and to maintain the polytype stability during epitaxial growth, off-cut substrates are required to utilize step-flow growth. The major disadvantage of growth on off-cut substrates is the replication of basal plane dislocations from the substrate into the epilayer. These are known to be the main source of degradation of bipolar devices during forward current injection. The bipolar degradation is caused by expanding stacking faults which increases the resistance and leads to fatal damage to the device. Structural defects replicated from the substrate are also important for the formation of defects in the epitaxial layer. In this thesis we have developed an epitaxial growth process to reduce the basal plane dislocations and the bipolar degradation. We have further studied the properties of the epitaxial layer with a focus on morphological defects and structural defects in the epitaxial layer. The approach to avoid basal plane dislocation penetration from the substrate is to grow on nominally on-axis substrate. The main obstacle with on-axis growth is to avoid the formation of parasitic 3C polytype inclusions. The first results (Paper 1) on epitaxial growth on nominally on-axis Si-face substrates showed that the 3C inclusions nucleated at the beginning of the growth and expand laterally without following any particular crystallographic direction. Also, the extended defects in the substrate like micropipes, clusters of threading screw and edge dislocations do not give rise to 3C inclusion. The substrate surface damage was instead found to be the main source. To improve the starting surface different in-situ etching conditions were studied (Paper 2) and Si-rich conditions were found to effectively remove the substrate surface damages with lowest roughness and more importantly uniform distribution of steps on the surface. Therefore, in-situ etching under Si-rich conditions was performed before epitaxial growth. Using this 100 % 4H polytype was obtained in the epilayer on full 2” wafer (Paper 3) using an improved set of growth parameters with Si-rich conditions at the beginning of the growth. Simple PiN diodes were processed on the on-axis material, and tested for bipolar degradation. More than 70 % of these (Paper 4) showed a stable forward voltage drop during constant high current injection. High voltage power devices require thick epitaxial layers with low doping. In addition, the high current needs large area devices with a reduced number of defects. Growth and properties of thick epilayers have been studied in details (Paper 5) and the process parameters in Horizontal Hotwall chemical vapor deposition reactor are found to be stable during the growth of over 100 µm thick epilayers. An extensive study of epitaxial defect known as the carrot defect has been conducted to investigate the structure of the defect and its probable relation to the extended defects in the substrate (Paper 6). Other epitaxial defects observed and studied were different in-grown stacking faults which frequently occur in as-grown epilayers (Paper 7) and also play an important role in the device performance. Minority carrier lifetime is an important property especially for high power bipolar devices. The influence of structural defects on minority carrier lifetime has been studied (Paper 8) in several epilayers, using a unique high resolution photoluminescence decay mapping. The technique has shown the influence on carrier lifetime from different structural defects, and also revealed the presence of non-visible structural defects such as dislocations and stacking faults, normally not observed with standard techniques.
Kiselkarbid (SiC) är en halvledare med överlägsna materialegenskaper, stort bandgap, hög termisk konduktivitet, hög kritisk fältstyrka och hög elektron mobilitet. Dessa gör den till ett utmärkt material för unipolära och bipolära komponenter som kan användas vid höga temperaturer, höga spänningar och höga strömmar. Trots stora framsteg under de senaste åren inom SiC bulk tillväxt, är material kvalitén hos bulk material fortfarande inte tillräckligt bra för att användas för aktiva skikt i komponenterna. Dessutom är dopning av materialet genom diffusion vid höga temperaturer inte möjligt, medan dopning via jonimplantation ger upphov till stora skador i kristallstrukturen. Därför behövs epitaxiell tillväxt av de aktive skikten i SiC baserade komponenter, för att fullt kunna utnyttja materialets egenskaper. Horisontell CVD (Hot-Wall Chemical Vapor Deposition) är en av de bästa tekniker att producera epitaxiella skikt med hög kvalité, där kompletta komponent strukturer med olika dopnings typ och koncentrationer kan växas i samma körning. SiC existerar i många polytyper och för att bibehålla polytype stabiliteten under tillväxt, används substrat med lutande kristallplan för använda s.k. step-flow tillväxt. En stor nackdel med substrat med lutande kristallplan är dock att dislokationer i basalplanet kommer att propagera från substratet in i det epitaxiella skiktet under tillväxten. Dessa dislokationer är den huvudsakliga orsaken till den degradering av bipolära komponenter som uppstår då höga strömmar går igenom komponenten. Den bipolära degraderingen orsakas av expanderade staplingsfel, som successivt ökar resistansen och slutligen förstörs komponenten. Strukturella defekter som replikeras från substratet är ofta även orsaken till kritiska defekter som skapas i det epitaxiella skiktet under tillväxt. I den här avhandlingen har vi utvecklat en epitaxiell som minskar problemet med basalplans dislokationer och bipolär degradering. Vi har även studerat egenskaper hos de epitaxiella skikten med fokus på morfologiska och strukturella defekter. Tekniken att hindra dislokationerna att replikeras in i de epitaxiella skikten bygger på att använda substrat utan lutning hos kristallplanen, s.k. on-axis substrat. Det hittills stora problemet med att växa på on-axis substrat har varit svårigheterna att bibehålla polytyp stabiliteten och undvika framförallt 3C polytyp inklusioner. Första försöken (Papper 1) försöken att växa epitaxi på on-axis substrat på Si sidan visade att 3C inklusionerna alltid startade i början av tillväxten för att sedan sprida sig lateralt under den fortsatta tillväxten. Vi kunde också visa att strukturella defekter som mikropipor, eller kluster av skruv- eller kant- dislokationer inte orsakade 3C inklusionerna. Den dominerande orsaken till 3C inklusionerna var istället skador eller repor på substratets yta. För att förbättra ytan innan den epitaxiella tillväxten studerade vi olika in-situ etsningar av ytan (Papper 2), och vi fann att etsning under Si dominerande förhållanden effektivast tog bort de flesta skador på substratets yta och gav en yta med minst ojämnheter. Dessutom skapades en homogen fördelning av atomära steg på ytan, och denna förbehandling användes sedan inför den epitaxiella tillväxten. Genom att dessutom optimera tillväxt förhållandena i inledningen av tillväxten kunde vi till 100% bibehålla samma polytyp från substratet in i det epitaxiella skiktet för hela 2” substrat (Papper 3). Enkla bipolära PiN dioder tillverkades och testades med avseende på bipolär degradering och mer än 70% av dioderna (Papper 4) visade ett stabilt framspänningsfall vid höga strömtätheter. Kraftkomponenter för höga spänningar kräver tjocka epitaxiella skikt med låg dopning. Dessutom, för höga strömmar krävs komponenter med stor aktiv area där kravet på lägre defekt täthet blir allt viktigare. Vi har i detalj studerat tillväxt och egenskaper av tjocka skikt (Papper 5), och funnit att de flesta material egenskaperna är stabila vid tillväxt av över 100 mm tjocka skikt i vår horisontella CVD reaktor. Vi har även i detalj studerat uppkomst och egenskaper av en av de mest kritiska epitaxiella defekterna, dem s.k. moroten (Papper 6). Speciellt har vi studerat dess uppkomst i relation till strukturella defekter i substratet. Vi har även studerat ända epitaxiella defekter i form av olika typer av staplingsfel (Papper 7), som även dessa har stor inverkan på komponenter. Livstiden för minoritetsladdningsbärarna är en viktig egenskap hos speciellt bipolära komponenter. I (Papper 8) har vi studerat hur denna påverkas av strukturella defekter i de epitaxiella skikten. Vi har använt en unik mätmetod för att optiskt kunna mäta över hela skivor, med hög upplösning. Mätningarna har lyckats påvisa hur olika strukturella defekter påverkar livstiden, och även kunnat visa på förekomsten av defekter som inte har upptäckts med andra mätmetoder.
APA, Harvard, Vancouver, ISO, and other styles
10

Hållstedt, Julius. "Integration of epitaxial SiGe(C) layers in advanced CMOS devices /." Stockholm : Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4498.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Epitaxial Devices"

1

Lasers and Electro-optics Society (Institute of Electrical and Electronics Engineers). Meeting. LEOS 1991: Summer Topical Meetings on Epitaxial Materials and In-situ Processing for Optoelectronic Devices, July 29-31, 1991 and Microfabrication for Photonics and Optoelectronics, July 31-August 2,1991. New York, N.Y: Institute of Electrical and Electronics Engineers, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

L, Gunshor Robert, and Nurmikko Arto V, eds. II-VI blue/green light emitters: Device physics and epitaxial growth. San Diego: Academic Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Symposium A on Semiconductor Materials for Optoelectronic Devices and OEICs (1993 Strasbourg, France). Semiconductor materials for optoelectronics and LTMBE materials: Proceedings of Symposium A on Semiconductor Materials for Optoelectronic Devices, OEICs, and Photonics and Symposium B on Low Temperature Molecular Beam Epitaxial III-V Materials: Physics and Applications of the 1993 E-MRS Spring Conference, Strasbourg, France, May 4-7, 1993. Amsterdam: North-Holland, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ionized-cluster beam deposition and epitaxy. Park Ridge, N.J., U.S.A: Noyes Publications, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thin-film deposition: Principles and practice. New York: McGraw-Hill, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.

Full text
Abstract:
This article reviews the experimental progress in hybrid superconducting devices based on quantum wires, in the form of semiconductor nanowires or carbon nanotubes, which are coupled to superconducting electrodes. It also presents a series of recent examples which illustrate the key phenomena that have allowed detailed investigations of important scenarios, including individual impurities on superconductors and proximitized systems that may hold Majorana quasiparticles. After describing experimental aspects of hybrid devices, including materials and fabrication techniques, the article considers superconducting junctions with normal quantum dots (QDs). It then turns to experiments on superconductivity-enhanced QD spectroscopy, sub-gap states in hybrid QDs, and non-local signals in Cooper pair splitter devices. Finally, it discusses the growth of epitaxial semiconductor–superconductor nanowire hybrids.
APA, Harvard, Vancouver, ISO, and other styles
8

The control of stoichiometry in epitaxial semiconductor structures: Interfacial chemistry, property relations : a workshop reivew. [Washington, D.C: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Epitaxial Materials and In-Situ Processing for Optoelectronic Devices, July 29-31, 1991, Sheraton Newport Beach, Newport Beach, California/91Th0347-5. Ieee, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.

Full text
Abstract:
This Handbook consolidates some of the major scientific and technological achievements in different aspects of the field of nanoscience and technology. It consists of theoretical papers, many of which are linked with current and future nanodevices, molecular-based materials and junctions (including Josephson nanocontacts). Self-organization of nanoparticles, atomic chains, and nanostructures at surfaces are further described in detail. Topics include: a unified view of nanoelectronic devices; electronic and transport properties of doped silicon nanowires; quasi-ballistic electron transport in atomic wires; thermal transport of small systems; patterns and pathways in nanoparticle self-organization; nanotribology; and the electronic structure of epitaxial graphene. The volume also explores quantum-theoretical approaches to proteins and nucleic acids; magnetoresistive phenomena in nanoscale magnetic contacts; novel superconducting states in nanoscale superconductors; left-handed metamaterials; correlated electron transport in molecular junctions; spin currents in semiconductor nanostructures; and disorder-induced electron localization in molecular-based materials.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Epitaxial Devices"

1

Shchukin, Vitaly A., Nikolai N. Ledentsov, and Dieter Bimberg. "Devices Based on Epitaxial Nanostructures." In NanoScience and Technology, 315–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07066-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richter, Wolfgang, Kerstin Knorr, Thomas Zettler, and Martin Zorn. "Real Time Monitoring of Epitaxial Growth." In Heterostructure Epitaxy and Devices, 11–20. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roytburd, Alexander L. "Elastic Domains in Ferroelectric Epitaxial Films." In Thin Film Ferroelectric Materials and Devices, 71–90. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6185-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wood, Colin E. C. "Epitaxial Growth for Sub Micron Structures." In The Physics of Submicron Semiconductor Devices, 179–94. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2382-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Shiguang, Xianghui Zeng, Yuandong Dai, Yifei Hu, Huaming Jiang, Rangjiao Liu, and Jiazhang Li. "High-T c Epitaxial Junctions and DC-SQUIDs." In Superconducting Devices and Their Applications, 127–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Horváth, ZS J., and L. Dozsa. "Electrical Characteristics of Epitaxial Al/AlxGa1-xAs/n-Al0.25Ga0.75As Heterostructures." In Heterostructure Epitaxy and Devices, 91–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Novák, J. "Characterisation of the Epitaxial Layers Using the Lift-Off Technique." In Heterostructure Epitaxy and Devices, 173–81. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mele, A., A. Giardini, and R. Teghil. "Thin Film Epitaxial Growth by Laser Ablation." In Frontiers in Nanoscale Science of Micron/Submicron Devices, 67–83. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samajdar, D. P., and S. Dhar. "Transport of Nitrogen Atoms During the Liquid Phase Epitaxial Growth of InGaAsN." In Physics of Semiconductor Devices, 783–85. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Teisseyre, H., M. Leszczynski, T. Suski, P. Perlin, J. Jun, I. Grzegory, M. BoČkowski, et al. "Comparison of Physical Properties of Bulk Crystals and Epitaxial Layers of GaN." In Heterostructure Epitaxy and Devices, 225–28. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Epitaxial Devices"

1

Gourley, P. L., R. M. Biefeld, T. J. Drummond, and T. E. Zipperian. "Epitaxial Semiconductor Optical Interference Devices." In Semiconductor Conferences, edited by Gottfried H. Doehler and Joel N. Schulman. SPIE, 1987. http://dx.doi.org/10.1117/12.940839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DAPKUS, P. DANIEL, J. S. OSINSKI, K. M. DZURKO, and S. G. HUMMEL. "Advanced epitaxial techniques for optoelectronic devices." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1990. http://dx.doi.org/10.1364/ofc.1990.wb3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Vasconcelos, Elder A., Eronides F. da Silva Jr., Teruaki Katsube, Sadafumi Yoshida, and Yasushiro Nishioka. "Radiation Hardness of Epitaxial and Non-Epitaxial 6H-SiC MOS Capacitors." In 2000 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2000. http://dx.doi.org/10.7567/ssdm.2000.e-1-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, T., Y. Q. Wu, A. Chernyshov, L. P. Rokhinson, M. L. Bolen, M. A. Capano, A. R. Pirkle, et al. "SpinFET on Epitaxial Graphene." In 2009 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2009. http://dx.doi.org/10.7567/ssdm.2009.p-12-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nashimoto, Keiichi. "Epitaxial PLZT waveguide technologies for integrated photonics." In Integrated Optoelectronic Devices 2005, edited by Yakov Sidorin and Christoph A. Waechter. SPIE, 2005. http://dx.doi.org/10.1117/12.589407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, C. A., H. K. Choi, G. W. Turner, D. L. Spears, M. J. Manfra, and G. W. Charache. "Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices." In THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY. ASCE, 1997. http://dx.doi.org/10.1063/1.53289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gaskilla, D. K., J. Moon, J. L. Tedesco, J. A. Robinson, A. L. Friedman, P. M. Campbell, G. G. Jernigan, et al. "GHz devices from epitaxial graphene on SiC." In 2009 International Semiconductor Device Research Symposium (ISDRS 2009). IEEE, 2009. http://dx.doi.org/10.1109/isdrs.2009.5378169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Robinson, J. A., M. J. Hollander, M. La Bella Ⅲ, K. A. Trumbull, R. Cavalero, D. W. Snyder, H. Madan, and S. Datta. "Epitaxial Graphene: Synthesis, Integration, and Nanoscale Devices." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.c-8-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iagallo, A., S. Tanabe, S. Roddaro, M. Takamura, Y. Sekine, H. Hibino, V. Miseikis, et al. "Epitaxial Graphene Devices for Scanning Probe Measurements." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.p-9-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gower, M. C., and N. Vainos. "Thin Epitaxial Films of Photorefractive Materials." In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/pmed.1990.f3.

Full text
Abstract:
Provided they can be satisfactorily fabricated, the use of thin films of photorefractive material as four wave mixing media for real time holographic application is an extremely attractive alternative to the use of the bulk crystal. For example, because guided wave intensities in the film can be very high-even when using lowered cw laser sources, the response time for holographic recording can be very fast. For example, ~100 mW of power coupled in a ~1 cm wide 1µm thick stripe of BaTiO3 film should reduce the response time from ~1 sec at 100 mW/cm2 in the bulk crystal to ~100 µsec in the film. Furthermore, with thin photorefractive films large area real time phase conjugate mirror operation with low powered laser sources can be contemplated.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Epitaxial Devices"

1

Wang, C. A., H. K. Choi, G. W. Turner, D. L. Spears, M. J. Manfra, and G. W. Charache. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/325753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Baohua. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ad1012928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dumin, David J. Epitaxial Reactor Development for Growth of Silicon-on-Insulator Devices. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada184758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Edgar, J. H. Epitaxial Growth of Icosahedral Boride Semiconductors for Novel Energy Conversion Devices. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/861928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, M. A., G. Simin, M. Shur, and R. Gaska. WBGS Epitaxial Materials Development and Scale Up for RF/Microwave-Millimeter Wave Devices. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada432964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haven, Victor E., and Jr. Epitaxial (100) GaAs Thin Films on Sapphire for Surface Acoustic Wave/Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada164252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gregg, Michael, and Kenneth Vaccaro. Development of a Liquid Phase Epitaxial Growth System for Fabrication of Indium Phosphide Based Devices. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada254570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

C.A. Wang, D.A. Shiau, P.G. Murphy, P.W. O'brien, R.K. Huang, M.K. Connors, A.C. Anderson, et al. Wafer Bonding and Epitaxial Transfer of GaSb-based Epitaxy to GaAs for Monolithic Interconnection of Thermophotovoltaic Devices. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/821870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bailey, William. MBE Deposition of Epitaxial Fe1-xVx Films for Low-Loss Ghz Devices; Atomic-Scale Engineering of Magnetic Dynamics. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada459301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chichibu, Shigefusa F., and Kouji Hazu. Investigation and Characterization of Defects in Epitaxial Films for Ultraviolet Light Emitting Devices Using FUV Time-Resolved Photoluminescence, Time-Resolved Cathodoluminescence, and Spatio-Time-Resolved Cathodoluminescence Excited Using Femtosecond Laser Pulses. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada587678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography