Academic literature on the topic 'Epitaxial Devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epitaxial Devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Epitaxial Devices"
Metzner, H., Th Hahn, Chr Schmiga, J. H. Bremer, D. Borchert, W. R. Fahrner, and M. Seibt. "Epitaxial heterojunction devices." Solar Energy Materials and Solar Cells 49, no. 1-4 (December 1997): 337–42. http://dx.doi.org/10.1016/s0927-0248(97)00074-3.
Full textBaierhofer, Daniel, Bernd Thomas, F. Staiger, B. Marchetti, C. Förster, and Tobias Erlbacher. "Correlation of Extended Defects with Electrical Yield of SiC MOSFET Devices." Defect and Diffusion Forum 426 (June 6, 2023): 11–16. http://dx.doi.org/10.4028/p-i82158.
Full textSambri, A., D. Isarakorn, A. Torres-Pardo, S. Gariglio, Pattanaphong Janphuang, D. Briand, O. Stéphan, et al. "Epitaxial Piezoelectric Pb(Zr0.2Ti0.8)O3 Thin Films on Silicon for Energy Harvesting Devices." Smart Materials Research 2012 (April 22, 2012): 1–7. http://dx.doi.org/10.1155/2012/426048.
Full textFeng, Qi, Wenqi Wei, Bin Zhang, Hailing Wang, Jianhuan Wang, Hui Cong, Ting Wang, and Jianjun Zhang. "O-Band and C/L-Band III-V Quantum Dot Lasers Monolithically Grown on Ge and Si Substrate." Applied Sciences 9, no. 3 (January 23, 2019): 385. http://dx.doi.org/10.3390/app9030385.
Full textRadhakrishnan, Rahul, Tony Witt, Seungchul Lee, and Richard Woodin. "Design of Silicon Carbide Devices to Minimize the Impact of Variation of Epitaxial Parameters." Materials Science Forum 858 (May 2016): 177–80. http://dx.doi.org/10.4028/www.scientific.net/msf.858.177.
Full textVaz, C. A. F., Y. J. Shin, M. Bibes, K. M. Rabe, F. J. Walker, and C. H. Ahn. "Epitaxial ferroelectric interfacial devices." Applied Physics Reviews 8, no. 4 (December 2021): 041308. http://dx.doi.org/10.1063/5.0060218.
Full textWaldmann, Daniel, Johannes Jobst, Florian Speck, Thomas Seyller, Michael Krieger, and Heiko B. Weber. "Gated Epitaxial Graphene Devices." Materials Science Forum 717-720 (May 2012): 675–78. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.675.
Full textJokerst, N. M. "Integrated Optoelectronics Using Thin Film Epitaxial Liftoff Materials and Devices." Journal of Nonlinear Optical Physics & Materials 06, no. 01 (March 1997): 19–48. http://dx.doi.org/10.1142/s0218863597000034.
Full textFirst, Phillip N., Walt A. de Heer, Thomas Seyller, Claire Berger, Joseph A. Stroscio, and Jeong-Sun Moon. "Epitaxial Graphenes on Silicon Carbide." MRS Bulletin 35, no. 4 (April 2010): 296–305. http://dx.doi.org/10.1557/mrs2010.552.
Full textGIBB, SHAWN R., JAMES R. GRANDUSKY, MARK MENDRICK, and LEO J. SCHOWALTER. "PERFORMANCE OF PSEUDOMORPHIC ULTRAVIOLET LEDs GROWN ON BULK ALUMINUM NITRIDE SUBSTRATES." International Journal of High Speed Electronics and Systems 20, no. 03 (September 2011): 497–504. http://dx.doi.org/10.1142/s0129156411006787.
Full textDissertations / Theses on the topic "Epitaxial Devices"
Butt, Ali Muhammad. "New Photonic devices based on NLO(non-linear optical) crystalline waveguides." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/403372.
Full textEl RbTiOPO4 es un cristal de óptica no-lineal con altos coeficientes electro ópticos y un límite de daño óptico elevado, eso lo convierte en una potencial material para aplicaciones electrópticas. Actualmente existe un gran interés en el desarrollo de componentes ópticos basados en materiales dieléctricos, esto ha sido identificado como un tema puntero de investigación por Europa Horizonte 2020. La finalidad de esta tesis es explorar el RTP cómo plataforma dieléctrica para dispositivos fotónicos, que tienen aplicaciones en les telecomunicaciones y en el sensado biológico. En esta tesis, se han crecido materiales monocristalinos en volumen de RTP, K:RTP y Na:KTP por el método de Top seeded solution growth. Los cristales crecidos son óptimos para ser utilizados como plataforma para fabricar guías de onda y como sustratos para el crecimiento de capas epitaxiales. Capas epitaxiales de (Yb,Nb):RTP sobre RTP(001), RTP sobre K:RTP(001) yK.:RTP(100), i KTP sobre Na:KTP(001) se han crecido mediante la metodología de liquid phase epitaxy. Esta metodología ha permitido obtener capes monocristalinas con una interfase de alta calidad cristalina. La fabricación de guías de onda se ha hecho por RIE y ICP-RIE: Se reporta en esta tesis un avance en el conocimiento del proceso de etching en el RTP. El método de intercambio iónico, con Cs+ como ion, se ha utilizado para producir guías de onda rectas, curvas y MZ. Debido a la alta conductividad iónica del RTP a lo largo de la dirección c cristalográfica, el intercambio iónico es altamente factible y casi unidireccional. Se ha obtenido el guiado con éxito en todas las guías de onda fabricadas. En los Y-Splitters y MZ fabricados sobre los cristales RTP/(Yb,Nb):RTP/RTP(001) estructurados con RIE sobre la capa activa o bien el sustrato, la guía obtenida es monomodo con la polarización TM a 1550 nm. Las pérdidas de propagación son de 3.5 dB/cm. Para las guías de onda rectes fabricadas sobre RTP/(Yb,Nb):RTP/RTP(001) por estructuración del recubrimiento por ICP-RIE, las pérdidas por propagación son de 0.376 dB/cm a 1550 nm.
RbTiOPO4 is a non-linear optical crystal with high electro-optic coefficients and high optical damage threshold, which makes it suitable for electro-optic applications. There’s a current interest in developing dielectric based photonic components for integrated optics, identified as a topic of research by the Europe Horizon 2020. The aim of this thesis is to explore RTP for dielectric based photonic platforms, which have applications in telecommunications and biosensing. In this thesis is reported the successful grow of bulk single crystals of RTP, K:RTP and Na:RTP by Top Seeded Solution Growth technique. The crystals obtained are suitable to be used as platforms to fabricate optical waveguides and for substrates for growth of epitaxial layers. Epitaxial layers of (Yb,Nb):RTP were grown on RTP(001), RTP was grown on K:RTP(001) and K:RTP(100) and KTP was grown on Na:KTP(001) by Liquid phase epitaxy. This methodology allows obtaining a single crystalline layer, with high quality crystalline interface. Waveguide fabrication was performed by RIE and ICP-RIE. Advancement in this etching process on RTP is reported in this thesis. Cs+ ion exchange method was used to produce straight, bends and MZ waveguides. Due to the RTP high ionic conductivity along the c crystallographic direction, ion exchange is highly feasible and almost unidirectional. Waveguiding of the fabricated channel waveguides has been successful. For the Y-Splitter and MZ waveguides fabricated on the RTP/(Yb,Nb):RTP/RTP(001) crystals, by structuring the active layer or the substrate by RIE, the waveguides obtained were single mode in TM polarization at 1550 nm. The propagation loss was 3.5 dB/cm. For straight waveguides fabricated on the RTP/(Yb,Nb):RTP/RTP(001), by structuring the cladding by ICP-RIE, the propagation losses were 0.376 dB/cm at 1550 nm. The waveguides fabricated by Cs+ ion exchange have larger losses due to inhomogeneity on the Cs exchange among different ferroelectric domains present in the structure.
Wilkinson, Scott Tolbert. "Photonic devices for optical interconnects using epitaxial liftoff." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15059.
Full textHerrera, Daniel. "Sulfur Implanted GaSb for Non-Epitaxial Photovoltaic Devices." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93767.
Full textDoctor of Philosophy
Thermophotovoltaics (TPV) is a technology that converts light and other forms of electromagnetic energy into electrical power, much like a typical solar panel. However, instead of sunlight, the energy source used in a TPV system is a terrestrial heat source at a temperature range of 1250–1750 ◦C, whose radiation is primarily infrared (IR). The IR-absorbing qualities and commercial availability of the compound semiconductor gallium antimonide (GaSb) have made it a key component in the development of absorber devices for TPV-related systems. GaSb-based devices have most often been fabricated using epitaxy, a method in which layer(s) of material are ‘grown’ in a layer-by-layer fashion atop a substrate GaSb wafer to induce an interface between negatively-charged (n-type) and positively-charged (p-type) regions. In order to improve upon the scalability of TPV production, device fabrication methods for GaSb that avoid the use of epitaxy are sought after as a lower-cost alternative. In this work, sulfur ion implantation is examined as one of these methods, in which elemental sulfur ions are injected at a high energy into a p-type GaSb substrate. The implanted ions then alter the charge characteristics at the surface of the material, producing an electric field from which a photovoltaic (PV) device can be fabricated. The results of this study showed that by implanting sulfur ions, an extremely p-type (p++) layer was formed at the surface of the GaSb substrate, which was attributed to residual damage induced by the implant process. The resulting interface between the p++ surface and the moderately p-type GaSb substrate was found to induce an electric field suitable for a PV device. Removing the excess surface damage away from the device’s metal contacts resulted in an improvement in the output electrical currents, with measured values being significantly higher than that of other devices made using more common non-epitaxial fabrication methods. The success of this work demonstrates the advantages of using a p-type GaSb substrate in place of an n-type substrate, and could help diversify the types of TPV-related devices that can be produced.
Nagaredd, Venkata Karthik. "Fabrication, functionalisation and characterisation of epitaxial graphene devices." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2877.
Full textTurnbull, Aidan Gerard. "Relaxation in epitaxial layers of III-V compounds." Thesis, Durham University, 1992. http://etheses.dur.ac.uk/5709/.
Full textWilliams, Erica Jane. "Applications of epitaxial growth to semiconductor and superconductor devices." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239737.
Full textLi, Xuebin. "Epitaxial graphene films on SiC : growth, characterization, and devices /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24670.
Full textCommittee Chair: de Heer, Walter; Committee Member: Chou, Mei-Yin; Committee Member: First, Phillip; Committee Member: Meindl, James; Committee Member: Orlando, Thomas
Hargis, Marian Crawford. "Metal-Semiconductor-Metal photodetectors and their integration via epitaxial liftoff." Diss., Georgia Institute of Technology, 1994. http://hdl.handle.net/1853/15800.
Full textul, Hassan Jawad. "Epitaxial Growth and Characterization of SiC for High Power Devices." Doctoral thesis, Linköpings universitet, Halvledarmaterial, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17440.
Full textKiselkarbid (SiC) är en halvledare med överlägsna materialegenskaper, stort bandgap, hög termisk konduktivitet, hög kritisk fältstyrka och hög elektron mobilitet. Dessa gör den till ett utmärkt material för unipolära och bipolära komponenter som kan användas vid höga temperaturer, höga spänningar och höga strömmar. Trots stora framsteg under de senaste åren inom SiC bulk tillväxt, är material kvalitén hos bulk material fortfarande inte tillräckligt bra för att användas för aktiva skikt i komponenterna. Dessutom är dopning av materialet genom diffusion vid höga temperaturer inte möjligt, medan dopning via jonimplantation ger upphov till stora skador i kristallstrukturen. Därför behövs epitaxiell tillväxt av de aktive skikten i SiC baserade komponenter, för att fullt kunna utnyttja materialets egenskaper. Horisontell CVD (Hot-Wall Chemical Vapor Deposition) är en av de bästa tekniker att producera epitaxiella skikt med hög kvalité, där kompletta komponent strukturer med olika dopnings typ och koncentrationer kan växas i samma körning. SiC existerar i många polytyper och för att bibehålla polytype stabiliteten under tillväxt, används substrat med lutande kristallplan för använda s.k. step-flow tillväxt. En stor nackdel med substrat med lutande kristallplan är dock att dislokationer i basalplanet kommer att propagera från substratet in i det epitaxiella skiktet under tillväxten. Dessa dislokationer är den huvudsakliga orsaken till den degradering av bipolära komponenter som uppstår då höga strömmar går igenom komponenten. Den bipolära degraderingen orsakas av expanderade staplingsfel, som successivt ökar resistansen och slutligen förstörs komponenten. Strukturella defekter som replikeras från substratet är ofta även orsaken till kritiska defekter som skapas i det epitaxiella skiktet under tillväxt. I den här avhandlingen har vi utvecklat en epitaxiell som minskar problemet med basalplans dislokationer och bipolär degradering. Vi har även studerat egenskaper hos de epitaxiella skikten med fokus på morfologiska och strukturella defekter. Tekniken att hindra dislokationerna att replikeras in i de epitaxiella skikten bygger på att använda substrat utan lutning hos kristallplanen, s.k. on-axis substrat. Det hittills stora problemet med att växa på on-axis substrat har varit svårigheterna att bibehålla polytyp stabiliteten och undvika framförallt 3C polytyp inklusioner. Första försöken (Papper 1) försöken att växa epitaxi på on-axis substrat på Si sidan visade att 3C inklusionerna alltid startade i början av tillväxten för att sedan sprida sig lateralt under den fortsatta tillväxten. Vi kunde också visa att strukturella defekter som mikropipor, eller kluster av skruv- eller kant- dislokationer inte orsakade 3C inklusionerna. Den dominerande orsaken till 3C inklusionerna var istället skador eller repor på substratets yta. För att förbättra ytan innan den epitaxiella tillväxten studerade vi olika in-situ etsningar av ytan (Papper 2), och vi fann att etsning under Si dominerande förhållanden effektivast tog bort de flesta skador på substratets yta och gav en yta med minst ojämnheter. Dessutom skapades en homogen fördelning av atomära steg på ytan, och denna förbehandling användes sedan inför den epitaxiella tillväxten. Genom att dessutom optimera tillväxt förhållandena i inledningen av tillväxten kunde vi till 100% bibehålla samma polytyp från substratet in i det epitaxiella skiktet för hela 2” substrat (Papper 3). Enkla bipolära PiN dioder tillverkades och testades med avseende på bipolär degradering och mer än 70% av dioderna (Papper 4) visade ett stabilt framspänningsfall vid höga strömtätheter. Kraftkomponenter för höga spänningar kräver tjocka epitaxiella skikt med låg dopning. Dessutom, för höga strömmar krävs komponenter med stor aktiv area där kravet på lägre defekt täthet blir allt viktigare. Vi har i detalj studerat tillväxt och egenskaper av tjocka skikt (Papper 5), och funnit att de flesta material egenskaperna är stabila vid tillväxt av över 100 mm tjocka skikt i vår horisontella CVD reaktor. Vi har även i detalj studerat uppkomst och egenskaper av en av de mest kritiska epitaxiella defekterna, dem s.k. moroten (Papper 6). Speciellt har vi studerat dess uppkomst i relation till strukturella defekter i substratet. Vi har även studerat ända epitaxiella defekter i form av olika typer av staplingsfel (Papper 7), som även dessa har stor inverkan på komponenter. Livstiden för minoritetsladdningsbärarna är en viktig egenskap hos speciellt bipolära komponenter. I (Papper 8) har vi studerat hur denna påverkas av strukturella defekter i de epitaxiella skikten. Vi har använt en unik mätmetod för att optiskt kunna mäta över hela skivor, med hög upplösning. Mätningarna har lyckats påvisa hur olika strukturella defekter påverkar livstiden, och även kunnat visa på förekomsten av defekter som inte har upptäckts med andra mätmetoder.
Hållstedt, Julius. "Integration of epitaxial SiGe(C) layers in advanced CMOS devices /." Stockholm : Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4498.
Full textBooks on the topic "Epitaxial Devices"
Lasers and Electro-optics Society (Institute of Electrical and Electronics Engineers). Meeting. LEOS 1991: Summer Topical Meetings on Epitaxial Materials and In-situ Processing for Optoelectronic Devices, July 29-31, 1991 and Microfabrication for Photonics and Optoelectronics, July 31-August 2,1991. New York, N.Y: Institute of Electrical and Electronics Engineers, 1991.
Find full textL, Gunshor Robert, and Nurmikko Arto V, eds. II-VI blue/green light emitters: Device physics and epitaxial growth. San Diego: Academic Press, 1997.
Find full textLiquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.
Find full textSymposium A on Semiconductor Materials for Optoelectronic Devices and OEICs (1993 Strasbourg, France). Semiconductor materials for optoelectronics and LTMBE materials: Proceedings of Symposium A on Semiconductor Materials for Optoelectronic Devices, OEICs, and Photonics and Symposium B on Low Temperature Molecular Beam Epitaxial III-V Materials: Physics and Applications of the 1993 E-MRS Spring Conference, Strasbourg, France, May 4-7, 1993. Amsterdam: North-Holland, 1993.
Find full textIonized-cluster beam deposition and epitaxy. Park Ridge, N.J., U.S.A: Noyes Publications, 1988.
Find full textThin-film deposition: Principles and practice. New York: McGraw-Hill, 1995.
Find full textGrove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Full textThe control of stoichiometry in epitaxial semiconductor structures: Interfacial chemistry, property relations : a workshop reivew. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textEpitaxial Materials and In-Situ Processing for Optoelectronic Devices, July 29-31, 1991, Sheraton Newport Beach, Newport Beach, California/91Th0347-5. Ieee, 1991.
Find full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.001.0001.
Full textBook chapters on the topic "Epitaxial Devices"
Shchukin, Vitaly A., Nikolai N. Ledentsov, and Dieter Bimberg. "Devices Based on Epitaxial Nanostructures." In NanoScience and Technology, 315–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07066-6_5.
Full textRichter, Wolfgang, Kerstin Knorr, Thomas Zettler, and Martin Zorn. "Real Time Monitoring of Epitaxial Growth." In Heterostructure Epitaxy and Devices, 11–20. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_2.
Full textRoytburd, Alexander L. "Elastic Domains in Ferroelectric Epitaxial Films." In Thin Film Ferroelectric Materials and Devices, 71–90. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6185-9_3.
Full textWood, Colin E. C. "Epitaxial Growth for Sub Micron Structures." In The Physics of Submicron Semiconductor Devices, 179–94. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2382-0_4.
Full textWang, Shiguang, Xianghui Zeng, Yuandong Dai, Yifei Hu, Huaming Jiang, Rangjiao Liu, and Jiazhang Li. "High-T c Epitaxial Junctions and DC-SQUIDs." In Superconducting Devices and Their Applications, 127–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_20.
Full textHorváth, ZS J., and L. Dozsa. "Electrical Characteristics of Epitaxial Al/AlxGa1-xAs/n-Al0.25Ga0.75As Heterostructures." In Heterostructure Epitaxy and Devices, 91–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_19.
Full textNovák, J. "Characterisation of the Epitaxial Layers Using the Lift-Off Technique." In Heterostructure Epitaxy and Devices, 173–81. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_33.
Full textMele, A., A. Giardini, and R. Teghil. "Thin Film Epitaxial Growth by Laser Ablation." In Frontiers in Nanoscale Science of Micron/Submicron Devices, 67–83. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1778-1_7.
Full textSamajdar, D. P., and S. Dhar. "Transport of Nitrogen Atoms During the Liquid Phase Epitaxial Growth of InGaAsN." In Physics of Semiconductor Devices, 783–85. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_201.
Full textTeisseyre, H., M. Leszczynski, T. Suski, P. Perlin, J. Jun, I. Grzegory, M. BoČkowski, et al. "Comparison of Physical Properties of Bulk Crystals and Epitaxial Layers of GaN." In Heterostructure Epitaxy and Devices, 225–28. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0245-9_43.
Full textConference papers on the topic "Epitaxial Devices"
Gourley, P. L., R. M. Biefeld, T. J. Drummond, and T. E. Zipperian. "Epitaxial Semiconductor Optical Interference Devices." In Semiconductor Conferences, edited by Gottfried H. Doehler and Joel N. Schulman. SPIE, 1987. http://dx.doi.org/10.1117/12.940839.
Full textDAPKUS, P. DANIEL, J. S. OSINSKI, K. M. DZURKO, and S. G. HUMMEL. "Advanced epitaxial techniques for optoelectronic devices." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1990. http://dx.doi.org/10.1364/ofc.1990.wb3.
Full textde Vasconcelos, Elder A., Eronides F. da Silva Jr., Teruaki Katsube, Sadafumi Yoshida, and Yasushiro Nishioka. "Radiation Hardness of Epitaxial and Non-Epitaxial 6H-SiC MOS Capacitors." In 2000 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2000. http://dx.doi.org/10.7567/ssdm.2000.e-1-6.
Full textShen, T., Y. Q. Wu, A. Chernyshov, L. P. Rokhinson, M. L. Bolen, M. A. Capano, A. R. Pirkle, et al. "SpinFET on Epitaxial Graphene." In 2009 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2009. http://dx.doi.org/10.7567/ssdm.2009.p-12-2.
Full textNashimoto, Keiichi. "Epitaxial PLZT waveguide technologies for integrated photonics." In Integrated Optoelectronic Devices 2005, edited by Yakov Sidorin and Christoph A. Waechter. SPIE, 2005. http://dx.doi.org/10.1117/12.589407.
Full textWang, C. A., H. K. Choi, G. W. Turner, D. L. Spears, M. J. Manfra, and G. W. Charache. "Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices." In THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY. ASCE, 1997. http://dx.doi.org/10.1063/1.53289.
Full textGaskilla, D. K., J. Moon, J. L. Tedesco, J. A. Robinson, A. L. Friedman, P. M. Campbell, G. G. Jernigan, et al. "GHz devices from epitaxial graphene on SiC." In 2009 International Semiconductor Device Research Symposium (ISDRS 2009). IEEE, 2009. http://dx.doi.org/10.1109/isdrs.2009.5378169.
Full textRobinson, J. A., M. J. Hollander, M. La Bella Ⅲ, K. A. Trumbull, R. Cavalero, D. W. Snyder, H. Madan, and S. Datta. "Epitaxial Graphene: Synthesis, Integration, and Nanoscale Devices." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.c-8-1.
Full textIagallo, A., S. Tanabe, S. Roddaro, M. Takamura, Y. Sekine, H. Hibino, V. Miseikis, et al. "Epitaxial Graphene Devices for Scanning Probe Measurements." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.p-9-3.
Full textGower, M. C., and N. Vainos. "Thin Epitaxial Films of Photorefractive Materials." In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/pmed.1990.f3.
Full textReports on the topic "Epitaxial Devices"
Wang, C. A., H. K. Choi, G. W. Turner, D. L. Spears, M. J. Manfra, and G. W. Charache. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/325753.
Full textLi, Baohua. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ad1012928.
Full textDumin, David J. Epitaxial Reactor Development for Growth of Silicon-on-Insulator Devices. Fort Belvoir, VA: Defense Technical Information Center, April 1987. http://dx.doi.org/10.21236/ada184758.
Full textEdgar, J. H. Epitaxial Growth of Icosahedral Boride Semiconductors for Novel Energy Conversion Devices. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/861928.
Full textKhan, M. A., G. Simin, M. Shur, and R. Gaska. WBGS Epitaxial Materials Development and Scale Up for RF/Microwave-Millimeter Wave Devices. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada432964.
Full textHaven, Victor E., and Jr. Epitaxial (100) GaAs Thin Films on Sapphire for Surface Acoustic Wave/Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, December 1985. http://dx.doi.org/10.21236/ada164252.
Full textGregg, Michael, and Kenneth Vaccaro. Development of a Liquid Phase Epitaxial Growth System for Fabrication of Indium Phosphide Based Devices. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada254570.
Full textC.A. Wang, D.A. Shiau, P.G. Murphy, P.W. O'brien, R.K. Huang, M.K. Connors, A.C. Anderson, et al. Wafer Bonding and Epitaxial Transfer of GaSb-based Epitaxy to GaAs for Monolithic Interconnection of Thermophotovoltaic Devices. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/821870.
Full textBailey, William. MBE Deposition of Epitaxial Fe1-xVx Films for Low-Loss Ghz Devices; Atomic-Scale Engineering of Magnetic Dynamics. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada459301.
Full textChichibu, Shigefusa F., and Kouji Hazu. Investigation and Characterization of Defects in Epitaxial Films for Ultraviolet Light Emitting Devices Using FUV Time-Resolved Photoluminescence, Time-Resolved Cathodoluminescence, and Spatio-Time-Resolved Cathodoluminescence Excited Using Femtosecond Laser Pulses. Fort Belvoir, VA: Defense Technical Information Center, May 2013. http://dx.doi.org/10.21236/ada587678.
Full text