Academic literature on the topic 'Epigenetic biology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epigenetic biology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Epigenetic biology"
McGowan, Patrick O., and Tania L. Roth. "Epigenetic pathways through which experiences become linked with biology." Development and Psychopathology 27, no. 2 (May 2015): 637–48. http://dx.doi.org/10.1017/s0954579415000206.
Full textGanesan, A. "Epigenetics: the first 25 centuries." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1748 (April 23, 2018): 20170067. http://dx.doi.org/10.1098/rstb.2017.0067.
Full textIvanova, Elitsa, Sandrine Le Guillou, Cathy Hue-Beauvais, and Fabienne Le Provost. "Epigenetics: New Insights into Mammary Gland Biology." Genes 12, no. 2 (February 5, 2021): 231. http://dx.doi.org/10.3390/genes12020231.
Full textLinquist, Stefan, and Brady Fullerton. "Transposon dynamics and the epigenetic switch hypothesis." Theoretical Medicine and Bioethics 42, no. 3-4 (August 2021): 137–54. http://dx.doi.org/10.1007/s11017-021-09548-x.
Full textde Lima Camillo, Lucas Paulo, and Robert B. A. Quinlan. "A ride through the epigenetic landscape: aging reversal by reprogramming." GeroScience 43, no. 2 (April 2021): 463–85. http://dx.doi.org/10.1007/s11357-021-00358-6.
Full textRiddiough, G. "MOLECULAR BIOLOGY: Epigenetic Origins." Science 305, no. 5682 (July 16, 2004): 311b. http://dx.doi.org/10.1126/science.305.5682.311b.
Full textMir, Snober Shabnam, Uzma Afaq, Adria Hasan, Suroor Fatima Rizvi, and Sana Parveen. "Novel Insights into Epigenetic Control of Autophagy in Cancer." OBM Genetics 06, no. 04 (November 8, 2022): 1–45. http://dx.doi.org/10.21926/obm.genet.2204170.
Full textSen, Rwik, and Christopher Barnes. "Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes?" Journal of Developmental Biology 9, no. 2 (May 12, 2021): 20. http://dx.doi.org/10.3390/jdb9020020.
Full textPeixoto, Paul, Pierre-François Cartron, Aurélien A. Serandour, and Eric Hervouet. "From 1957 to Nowadays: A Brief History of Epigenetics." International Journal of Molecular Sciences 21, no. 20 (October 14, 2020): 7571. http://dx.doi.org/10.3390/ijms21207571.
Full textPacini, Clare, and Magdalena J. Koziol. "Bioinformatics challenges and perspectives when studying the effect of epigenetic modifications on alternative splicing." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1748 (April 23, 2018): 20170073. http://dx.doi.org/10.1098/rstb.2017.0073.
Full textDissertations / Theses on the topic "Epigenetic biology"
Kizaki, Seiichiro. "Chemical Biology Study on DNA Epigenetic Modifications." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225420.
Full textRosselló, Tortella Margalida. "Epigenetic Regulation of tRNA Biology in Cancer." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/673026.
Full textEls ARN de transferència (tRNAs) són d’una importància clau en la regulació de la síntesi proteica i l’expressió gènica. La seva rellevància en la fisiologia cel·lular es veu reforçada pel descobriment que aquestes molècules i els seus derivats estan alterats en patologies com el càncer, on contribueixen activament. Les alteracions dels tRNAs en càncer suposen una nova disciplina d’estudi on encara moltes preguntes romanen obertes per tal d’arribar a comprendre quines són les causes d’aquestes defectes i quin impacte tenen sobre la malaltia. Aquesta tesi té com objectiu identificar i caracteritzar alteracions en la metilació de l’ADN subjacents als desequilibris en la biologia dels tRNAs de les cèl·lules tumorals. En el primer estudi, hem descobert el silenciament epigenètic de l’enzim TYW2 en càncer colorectal com a causa de la hipomodificació del tRNAPhe, un fenomen que va ser descrit per primer cop fa més de quaranta anys però les causes i conseqüències del qual no van ser mai estudiades. Els nostres resultats estableixen una clara connexió entre aquest defecte epigenètic i un fenotip que és propens a potencial el frameshift dels ribosomes, cosa que augmenta la capacitat migratòria de les cèl·lules de càncer de colon. El segon estudi ha servit per caracteritzar la relació entre els canvis en la metilació de l’ADN i les alteracions en l’expressió dels tRNAs en càncer. Els nostres resultats han revelat que l’expressió de tRNA-Arg-TCT-4-1 augmenta en càncer d’endometri arrel de la hipometilació del seu gen. Més enllà d’aquests dos mecanismes epigenètics per modular la biologia dels tRNAs, els nostres estudis estableixen una connexió entre aquestes lesions epigenètiques i la prognosi dels pacients amb certs tipus de tumor, per la qual cosa podrien proposar-se com biomarcadors per identificar pacients de risc.
Weaver, Ian Cassford Gordon. "Epigenetic programming by maternal behaviour." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102231.
Full textThe research presented in this thesis demonstrates how one facet of mothering style leads to a cascade of molecular and cellular changes, resulting in life-long alterations in the nature of stress responses and neuron survival. Frequent licking/grooming by rat mothers alters DNA methylation of the hippocampal glucocorticoid receptor (GR) gene and acetylation of histones early in life, providing a mechanism for these permanent changes in stress responses. Through postnatal cross-fostering studies, I was able to directly study how an identical gene within the same rat strain is expressed and regulated under the different developmental environments and how such effects on gene expression persist through life. I have also examined the potential for reversibility of the long-term consequences of postnatal environment and have demonstrated that both GR levels and the nature of stress responses exhibit a high degree of plasticity in adulthood in response to both pharmacological intervention and dietary amino-acid supplementation. These results demonstrate that the epigenomic marks established early in life through a behavioural mode of programming, are dynamically maintained and potentially reversible in the adult brain. These results contrast with the very dogmatic view that the genome is rendered fixed and immutable. I next questioned the global effects of early-in-life experience on the hippocampal transcriptome and anxiety-mediated behaviours in adulthood. Microarray analysis revealed > 900 different maternal care-responsive mRNA transcripts. These results suggest that effects of early life experience have a stable and broad effect on the hippocampal transcriptome, which may play a role in the development of anxiety-mediated behaviours through life. Finally, both in vivo and in vitro studies show that maternal behaviour increases GR expression in the offspring via increased hippocampal serotonergic tone accompanied by increased histone acetylase transferase activity, histone acetylation and DNA demethylation mediated by the transcription factor NGFI-A.
In summary, this research demonstrates that an epigenetic state of a gene can be established through early-in-life experience, and is potentially reversible in adulthood. We predict that epigenetic modifications of targeted regulatory sequences in response to variations in environmental conditions might serve as a major source of variation in biological and behavioural phenotypes. In the case of GR, the resulting individual differences in behavioural and physiological responses to stress are thought to be a major risk factor for the development of psychiatric and physical illness. Thus, in addition to contributing to our understanding of how gene-environment interactions shape development, our work provides a mechanism that can be targeted for therapeutic intervention to potentially reduce the prevalence of these disorders.
Magnell, Albert T. (Albert Thomas). "Epigenetic Memory of Mouse Intestinal Inflammation." Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130670.
Full textCataloged from the official PDF version of thesis.
Includes bibliographical references (pages 29-31).
The gut, encompassing one of the largest epithelial surfaces in the body, interacts with both biological and non-biological agents that can cause regular injury. Fortunately, the small intestinal epithelium has a remarkable capacity to repair itself after severe injury, due to the abundance of highly replicative stem cells housed in the intestinal crypt regions. Much remains to be understood about the activation processes of the repair mechanisms and to what extent the stem cells themselves can adapt to certain forms of damage, including molecular mechanisms related to gene regulation. Here, I show that in response to acute inflammation, chromatin in intestinal stem cells has increased accessibility around specific loci and that this state is maintained in some regions even after the epithelium has recovered from damage, suggesting the possibility of memory. Such epigenetic memory may confer some adaptive resiliency to subsequent damage.
by Albert T. Magnell.
S.M.
S.M. Massachusetts Institute of Technology, Department of Biology
Lezcano, Magda. "The Control of the Epigenome." Doctoral thesis, Uppsala universitet, Zoologisk utvecklingsbiologi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7190.
Full textVadnal, Jonathan. "Epigenetic Mechanisms in Neurodegenerative Disease." Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1353955013.
Full textTavoosidana, Gholamreza. "Epigenetic Regulation of Genomic Imprinting and Higher Order Chromatin Conformation." Doctoral thesis, Uppsala universitet, Zoologisk utvecklingsbiologi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7435.
Full textHuang, Chieh-Ting. "Epigenetic involvement of GluR2 regulation in Epileptogenesis." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106297.
Full textL'épilepsie est l'une des maladies neurologiques les plus fréquentes, caractérisée par des crises épileptiques répétées et chroniques. Les mécanismes sous-tendant les troubles neurologiques associés à la maladie sont encore mal compris et seuls des traitements symptomatiques sont actuellement disponibles. Une seule crise épileptique peut induire un processus d'épileptogenèse durant lequel une réorganisation des circuits neuronaux s'effectue, incluant une neurodégénérescence et un bourgeonnement anormal des axones. Les mécanismes conduisant au développement de la maladie épileptique en tant que telle à partir d'un premier épisode épileptique sont encore inconnus. De façon intéressante, les réarrangements des circuits neuronaux observés dans l'épilepsie sont accompagnés de changements stables de schémas d'expression de gènes. Les mécanismes épigénétiques, incluant la méthylation de l'ADN ou les modifications covalentes des histones, permettent une régulation stable des schémas d'expression des gènes se mettant en place durant la gestation. Cependant, de récentes études suggèrent que ces mécanismes épigénétiques permettent également une réorganisation des schémas d'expression de gènes en réponse à des stimuli environnementaux. Nous avons alors émis l'hypothèse qu'un seul épisode épileptique peut perturber les profils épigénétiques cérébraux normaux, aboutissant à des schémas d'expression de gènes altérés et aux réorganisations cérébrales caractéristiques de l'épilepsie. Lors de cette étude, nous avons utilisés des modèles in vitro et in vivo de l'épilepsie du lobe temporal (TLE), par traitements au kaïnate, afin de tester si des changements de méthylation de l'ADN sont associés au processus d'épileptogenèse. La méthylation de l'ADN est un processus épigénétique dans lequel les bases cytosines peuvent être modifiées par l'addition d'un groupement méthyle lors d'une réaction catalysée par des ADN méthyltransférases. Nous avons focalisé notre étude sur l'étude des changements de méthylation de l'ADN en raison de son rôle important dans la régulation de l'expression des gènes. En effet, le niveau de méthylation de régions régulatrices de l'ADN telles que les promoteurs est corrélé négativement au niveau d'expression génique. Nous avons en particulier mesuré les modifications des niveaux de méthylation des promoteurs du gène GriA2 (codant pour la sous-unité 2 du récepteur gutamatergique ionotropique AMPA), qui est sous-exprimé dans l'épilepsie et dont la protéine est fortement impliquée dans l'hyperexcitabilité neuronale observée dans les crises épileptiques. Nous avons mesuré une hyperméthylation du gène GriA2 à la suite d'une période de 2 heures d'activité épileptiforme dans le modèle in vitro. Des modifications similaires ont également été observées dans le modèle in vivo, 10 semaines après une injection intracérébrale de kaïnate. Nous avons également observé une corrélation positive significative entre le nombre de crises épileptiques, détectées par Electro-Encéphalogramme Vidéo, la sévérité des crises, évaluée grâce à l'échelle Racine, et le niveau moyen de méthylation du gène GriA2.Les crises épileptiques, induites par un traitement au kaïnate, conduisent à des changements rapides des niveaux de méthylation du gène GriA2. Ce résultat suggère que des modifications des schémas de méthylation de l'ADN pourraient être un mécanisme moléculaire de mémorisation des crises épileptiques, conduisant à des changements progressifs d'expression de gènes et contribuant au développement de l'épilepsie et au maintien de circuits neuronaux anormaux.
Khan, Maria Mohammad. "Computational Biology in the Analysis of Epigenetic Nuclear Self-Organization." Thesis, The University of Arizona, 2010. http://hdl.handle.net/10150/146042.
Full textNuthikattu, Saivageethi. "Diverse mechanisms of Athila retrotransposon epigenetic silencing in Arabidopsis thaliana." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417685369.
Full textBooks on the topic "Epigenetic biology"
Cabej, Nelson R. Epigenetic Principles of Evolution. Burlington: Elsevier Science, 2011.
Find full textTorday, John, and William Miller. Cellular-Molecular Mechanisms in Epigenetic Evolutionary Biology. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38133-2.
Full textC, Goodwin Brian, and Saunders P. T. 1939-, eds. Theoretical biology: Epigenetic and evolutionary order from complex systems. Baltimore: Johns Hopkins University Press, 1992.
Find full textHurd, Paul J., Adele Murrell, and Ian C. Wood. Epigenetic mechanisms in development and disease. London: Portland Press Limited, 2013.
Find full textJ, Lamb Marion, ed. Epigenetic inheritance and evolution: The Lamarckian dimension. Oxford: Oxford University Press, 1995.
Find full textEvolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press, 2004.
Find full text1925-, Johnen A. G., and Albers B. 1953-, eds. The epigenetic nature of early chordate development: Inductive interaction and competence. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.
Find full textEpigenomics, from chromatin biology to therapeutics. Cambridge: Cambridge University Press, 2012.
Find full textManel, Esteller, ed. Epigenetics in biology and medicine. Boca Raton: Taylor & Francis, 2008.
Find full textBook chapters on the topic "Epigenetic biology"
Soltani, Jalal. "Fungal Epigenetic Engineering." In Fungal Biology, 1–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41870-0_1.
Full textWalters, Kevin. "Epigenetic Variation." In Methods in Molecular Biology, 185–97. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60327-416-6_14.
Full textHuang, Yufei. "Epigenetic Regulation." In Encyclopedia of Systems Biology, 665. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_817.
Full textVerma, Mukesh, and Hirendra Nath Banerjee. "Epigenetic Inhibitors." In Methods in Molecular Biology, 469–85. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1804-1_24.
Full textPuduvalli, Vinay K. "Epigenetic Changes in Gliomas." In Glioma Cell Biology, 23–45. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1431-5_2.
Full textBrennan, Kevin, and James M. Flanagan. "Epigenetic Epidemiology for Cancer Risk: Harnessing Germline Epigenetic Variation." In Methods in Molecular Biology, 439–65. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-612-8_27.
Full textRosen, Evan D. "Epigenetic Approaches to Adipose Biology." In Research and Perspectives in Endocrine Interactions, 101–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13517-0_10.
Full textHu, Li-Fang. "Epigenetic Regulation of Autophagy." In Autophagy: Biology and Diseases, 221–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0602-4_11.
Full textTollefsbol, Trygve O. "Advances in Epigenetic Technology." In Methods in Molecular Biology, 1–10. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-316-5_1.
Full textHeil, Sandra G. "Epigenetic Techniques in Pharmacogenetics." In Methods in Molecular Biology, 179–88. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-435-7_11.
Full textConference papers on the topic "Epigenetic biology"
Tekutskaya, E., I. Raybova, and Lyubov Ramazanovna Gusaruk. "THE DEGREE OF OXIDATIVE DAMAGE TO DNA IN VITRO AS A MOLECULAR PREDICTOR OF DISORDERS CAUSED BY EPIGENETIC AND EXOGENOUS FACTORS." In NEW TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY. Institute of information technology, 2021. http://dx.doi.org/10.47501/978-5-6044060-1-4.49.
Full textZhang, Wei. "Epigenetic regulation of effector gene expression in fungal plant pathogen." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1372292.
Full text"Epigenetic landscape in human aneuploid embryos." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-255.
Full textWeiss, Trevor. "Dissecting epigenetic and chromatin influences on CRISPR/Cas9 geme editing and DNA repair." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1374639.
Full textAier, Imlimaong, and Utkarsh Raj. "Exploring the role of EZH2 (PRC2) as epigenetic target." In 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552131.
Full text"Functional annotation of lncRNAs involved in epigenetic regulation." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-042.
Full textCampos Bermudez, Valeria Alina. "G-quadruplex: Potential epigenetic memory involved in priming induced by Trichoderma in maize plants." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.561509.
Full textPolyak, Kornelia. "Abstract IA28: Epigenetic heterogeneity in breast cancer." In Abstracts: AACR Special Conference on Developmental Biology and Cancer; November 30 - December 3, 2015; Boston, Massachusetts. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.devbiolca15-ia28.
Full textLiang, S., Yue Lu, J. Jelinek, M. Estecio, Hao Li, and J. P. Issa. "Analysis of epigenetic modifications by next generation sequencing." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5332853.
Full textLawrence, Aamna, Rahul Shukla, Utkarsh Raj, and Pritish Kumar Varadwaj. "Estimating percentage epigenetic modifications in human genome using NGS data." In 2016 International Conference on Bioinformatics and Systems Biology (BSB). IEEE, 2016. http://dx.doi.org/10.1109/bsb.2016.7552141.
Full text