To see the other types of publications on this topic, follow the link: Epidermal growth factor; Peptide substrates.

Journal articles on the topic 'Epidermal growth factor; Peptide substrates'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Epidermal growth factor; Peptide substrates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Guyer, C. A., R. L. Woltjer, K. J. Coker, and J. V. Staros. "Peptide Substrate Recognition by the Epidermal Growth Factor Receptor." Archives of Biochemistry and Biophysics 312, no. 2 (August 1994): 573–78. http://dx.doi.org/10.1006/abbi.1994.1347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Engel, Kate, Tomoaki Sasaki, Qi Wang, and John Kuriyan. "A highly efficient peptide substrate for EGFR activates the kinase by inducing aggregation." Biochemical Journal 453, no. 3 (July 12, 2013): 337–44. http://dx.doi.org/10.1042/bj20130537.

Full text
Abstract:
Formation of an asymmetric dimer by the EGFR (epidermal growth factor receptor) kinase domains results in allosteric activation. Since this dimer does not readily form in solution, the EGFR kinase domain phosphorylates most peptide substrates with a relatively low catalytic efficiency. Peptide C is a synthetic peptide substrate of EGFR developed by others that is phosphorylated with a significantly higher catalytic efficiency, and we sought to understand the basis for this. Peptide C was found to increase EGFR kinase activity by promoting formation of the EGFR kinase domain asymmetric dimer. Activation of the kinase domain by Peptide C also enhances phosphorylation of other substrates. Aggregation of the EGFR kinase domain by Peptide C probably underlies activation, and Peptide C precipitates several other proteins. Peptide C was found to form fibrils independent of the presence of EGFR, and these fibrils may facilitate aggregation and activation of the kinase domain. These results establish that a peptide substrate of EGFR may increase catalytic activity by promoting kinase domain dimerization by an aggregation-mediated mechanism.
APA, Harvard, Vancouver, ISO, and other styles
3

TONG, KIRK, CHERYL A. GUYER, and JAMES V. STAROS. "Steric constraints in the recognition of peptide substrates for the epidermal growth factor receptor kinase." International Journal of Peptide and Protein Research 47, no. 3 (January 12, 2009): 219–26. http://dx.doi.org/10.1111/j.1399-3011.1996.tb01348.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campos-González, R., and J. R. Glenney. "Temperature-dependent tyrosine phosphorylation of microtubule-associated protein kinase in epidermal growth factor-stimulated human fibroblasts." Cell Regulation 2, no. 8 (August 1991): 663–73. http://dx.doi.org/10.1091/mbc.2.8.663.

Full text
Abstract:
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.
APA, Harvard, Vancouver, ISO, and other styles
5

Soler, C., and M. Soley. "Rapid and delayed effects of epidermal growth factor on gluconeogenesis." Biochemical Journal 294, no. 3 (September 15, 1993): 865–72. http://dx.doi.org/10.1042/bj2940865.

Full text
Abstract:
Most reports on the effects of epidermal growth factor (EGF) on gluconeogenesis have indicated that such effects depend on the substrate used and are only observable after a lag time of 30-40 min. Recently, an immediate and transient effect of EGF on glucose synthesis was described in a perfused liver system. Here we extend the study of the effect of EGF on gluconeogenesis to isolated hepatocytes from fasted rats. The delayed effect of EGF on gluconeogenesis was studied by adding the substrate 40 min after the peptide. Under these conditions EGF increased glucose synthesis from pyruvate, decreased it when the substrate was lactate or glycerol and did not modify gluconeogensis from fructose or dihydroxyacetone. EGF did not affect the metabolic flux through glycolysis, determined as the production of lactate+pyruvate from 30 mM glucose. Furthermore, EGF did not modify the metabolic flux through pyruvate kinase, determined as the production of lactate+pyruvate from 1 mM dihydroxyacetone. The differing effects of EGF on gluconeogenesis depending on the substrate used can be explained by the effects of EGF on the cytosolic redox state (measured as the lactate/pyruvate ratio). About 20 min after the addition of EGF, the mitochondrial redox state (measured as the 3-hydroxybutyrate/acetoacetate ratio) decreased. This effect of EGF was blocked by ammonium, which also abolished the effect of the peptide on gluconeogenesis. Thus the effect of EGF at the mitochondrial level appears to be necessary for its effects on gluconeogenesis. Taken together, our results indicate that the delayed effects of EGF on gluconeogenesis are secondary to the effects of the peptide at both the mitochondrial and cytosolic levels. In addition to these delayed effects, we observed that EGF rapidly and transiently stimulated glucose synthesis from lactate, decreased the cytosolic redox state and increased oxygen consumption. All of these rapid effects required the presence of extracellular calcium and disappeared in the presence of rotenone, suggesting that this rapid effect of EGF on gluconeogenesis is secondary to the stimulation of mitochondrial respiration.
APA, Harvard, Vancouver, ISO, and other styles
6

Kracht, M., M. Shiroo, C. J. Marshall, J. J. Hsuan, and J. Saklatvala. "Interleukin-1 activates a novel protein kinase that phosphorylates the epidermal-growth-factor receptor peptide T669." Biochemical Journal 302, no. 3 (September 15, 1994): 897–905. http://dx.doi.org/10.1042/bj3020897.

Full text
Abstract:
We have isolated from KB cells stimulated with interleukin-1 (IL-1) a protein kinase that phosphorylates a peptide (T669) based on the sequence around T669 of the epidermal growth factor (EGF) receptor. The enzyme, which had an apparent molecular mass of 45 kDa on gel-filtration chromatography, was purified 170,000-fold from cytosolic extracts by sequential chromatography on Mono Q, Mono S, phenyl-Sepharose, Superose 12, ATP-Sepharose and Mono Q. The enzyme activity co-chromatographed at the last step with a 45 kDa protein band that stained for phosphotyrosine. This peak fraction also contained some actin and a 60 kDa protein that stained weakly for phosphotyrosine. The T669 peptide is a substrate for mitogen-activated protein (MAP) kinase. Amounts of IL-1-induced T669 kinase and activated recombinant p42 MAP kinase having equal activity on T669 peptide were compared on commonly used MAP kinase substrates. T669 kinase was two or three orders of magnitude less active on myelin basic protein or microtubule-associated protein-2 than was MAP kinase. The IL-1-induced T669 kinase did not react with antiserum to p42/p44 MAP kinase. It was inactivated by treatment with protein phosphatase 2A or protein phosphotyrosine phosphatase 1B, so it may be regulated by dual phosphorylation in similar fashion to MAP kinase. The dephosphorylated enzyme was not re-activated by MAP kinase kinase. This novel enzyme could lie on a kinase cascade induced by IL-1. It may be responsible for phosphorylating T669 of the EGF receptor.
APA, Harvard, Vancouver, ISO, and other styles
7

Baron, V., N. Gautier, N. Rochet, R. Ballotti, B. Rossi, S. Saint-Pierre, E. Van Obberghen, and J. Dolais-Kitabgi. "Antibodies to insulin receptor tyrosine kinase stimulate its activity towards exogenous substrates without inducing receptor autophosphorylation." Biochemical Journal 260, no. 3 (June 15, 1989): 749–56. http://dx.doi.org/10.1042/bj2600749.

Full text
Abstract:
Anti-peptide antibodies directed against a highly-conserved sequence of the insulin receptor tyrosine kinase domain have been used to study the relationship between this specific region and kinase activation. Antibodies have been prepared by the injection into a rabbit of a synthetic peptide (P2) corresponding to residues 1110-1125 of the proreceptor. The peptide exhibits 88-95% sequence similarity with the corresponding sequence in the v-ros protein and in receptors for epidermal growth factor and for insulin-like growth factor 1. Two antibodies with different specificities could be separated from total antiserum obtained after immunization with P2. One antibody [anti-(P-Tyr)] cross-reacted with phosphotyrosine and immunoprecipitated solely autophosphorylated receptors. This antibody was shown to increase or decrease the receptor tyrosine kinase activity depending on its concentration. In all circumstances receptor autophosphorylation and substrate phosphorylation were modulated in a parallel fashion. The second antibody (anti-P2) failed to immunoprecipitate the insulin receptor, but was found to interact with both the peptide and the receptor by e.l.i.s.a. assay. Using a tyrosine co-polymer we found that anti-P2 activated the insulin receptor kinase leading to substrate phosphorylation at a level similar to that observed with insulin. This effect was additive to the hormonal effect. In contrast, receptor autophosphorylation was not modified by the anti-peptide. The differential effect of this anti-peptide further supports the idea that receptor autophosphorylation and kinase activity towards exogenous substrates might be independently regulated. Finally, our data suggest that conformational changes in the receptor tyrosine kinase domain may be sufficient for activation of its enzymic activity.
APA, Harvard, Vancouver, ISO, and other styles
8

Pallen, C. J., D. S. Y. Lai, H. P. Chia, I. Boulet, and P. H. Tong. "Purification and characterization of a higher-molecular-mass form of protein phosphotyrosine phosphatase (PTP 1B) from placental membranes." Biochemical Journal 276, no. 2 (June 1, 1991): 315–23. http://dx.doi.org/10.1042/bj2760315.

Full text
Abstract:
Purification of a major placental membrane protein phosphotyrosine phosphatase (PTP-I) through the use of a nonhydrolysable phosphotyrosine analogue affinity ligand has enabled identification of the enzyme as a single polypeptide of at least 46 kDa. This phosphatase specifically dephosphorylates phosphotyrosine-containing substrates, including the src peptide, the epidermal-growth-factor receptor tyrosine kinase and the non-receptor tyrosine kinase p56lck. The p56lck can be dephosphorylated by PTP-I at two tyrosine residues (Tyr-394 and Tyr-505), which are differentially phosphorylated in vitro and in vivo and have been suggested to modulate kinase activity. The activity of PTP-I towards these substrates indicates a possible function of regulation of cellular tyrosine phosphorylation pathways at the level of growth-factor receptor and/or oncogene/proto-oncogene tyrosine kinases. Kinetic analyses show that PTP-I exhibits a Km value of about 2 microM with either src peptide or reduced, carboxyamidomethylated and maleylated (RCM)-lysozyme as substrate, and is inhibited in a mixed competitive manner by the polyanions heparin and poly(Glu4,Tyr1). Sequencing of PTP-I peptides reveals almost complete identity with sequences within the N-terminal half of the 37 kDa non-receptor tyrosine phosphatase 1B. However, the size and amino acid composition of PTP-I are similar to that of a higher-molecular-mass form of PTP 1B predicted from cDNA cloning. These results suggest that the 37 kDa PTP 1B is a proteolysed form of PTP-I, and provide evidence that a larger form of PTP 1B exists in vivo, at least in association with placental membranes.
APA, Harvard, Vancouver, ISO, and other styles
9

Thompson, H. L., M. Shiroo, and J. Saklatvala. "The chemotactic factor N-formylmethionyl-leucyl-phenylalanine activates microtubule-associated protein 2 (MAP) kinase and a MAP kinase kinase in polymorphonuclear leucocytes." Biochemical Journal 290, no. 2 (March 1, 1993): 483–88. http://dx.doi.org/10.1042/bj2900483.

Full text
Abstract:
Incubation of human polymorphonuclear leucocytes (PMN) with either the chemotactic factor N-formylmethionyl-leucylphenylalanine (FMLP) or phorbol 12-myristate 13-acetate (PMA) activates a kinase with phosphorylating activity towards a known microtubule-associated protein-2 (MAP) kinase substrate, the epidermal growth factor receptor peptide (T669). Activation of this enzyme by FMLP was maximal at 1 min, decreasing by 10 min. Activation by PMA was slightly slower than that by FMLP, but more prolonged (maximal at 5 min, with no significant decrease by 20 min). The enzyme induced by either stimulant bound strongly to phenyl-Sepharose, had a molecular mass of 40 kDa on gel filtration and phosphorylated three MAP kinase substrates, i.e. MAP, myelin basic protein and the T669 peptide. By use of antibodies to MAP kinases and phosphotyrosine, the enzyme was identified as the 42 kDa MAP kinase (also known as extracellular-signal-regulated kinase 2, ERK2). Stimulation of PMN with FMLP or PMA was also found to induce a kinase kinase which phosphorylated human recombinant MAP kinase on threonine and tyrosine, with concomitant activation. These results suggest that MAP kinase and the kinase kinase are involved in the activation of PMN by chemotactic factors such as FMLP.
APA, Harvard, Vancouver, ISO, and other styles
10

Hubler, L., P. S. Leventhal, and P. J. Bertics. "Alteration of the kinetic properties of the epidermal growth factor receptor tyrosine kinase by basic proteins." Biochemical Journal 281, no. 1 (January 1, 1992): 107–14. http://dx.doi.org/10.1042/bj2810107.

Full text
Abstract:
Previous studies have shown that lysine- and arginine-rich proteins can enhance the activity of tyrosine and serine/threonine protein kinases. However, the kinetics and mechanism of this activation are not fully understood. Therefore we investigated the ability of poly(amino acids) and the arginine-rich protein, protamine, to alter the kinetic properties of epidermal growth factor (EGF) receptor protein-tyrosine kinase activity using immunoaffinity-purified receptor isolated from human epidermoid carcinoma (A431) cells. Poly(L-lysine), poly(L-arginine) and protamine stimulated EGF receptor kinase activity by 3-5-fold at non-saturating doses of ATP and peptide substrate, while poly(L-glutamate) had no effect. Initial kinetic studies demonstrated an increase in the maximum velocity and a decrease in the apparent Km for the peptide substrate angiotensin II in the presence of the basic effectors. Further analysis of the kinetic mechanism by product inhibition revealed that protamine altered the pattern of ADP inhibition towards the peptide substrate but not towards ATP. The change was indicative of the receptor's ability to form an enzyme-angiotensin II-ADP ternary complex in the presence of protamine but not in its absence. In addition, the basic effectors had a substantially decreased influence on the kinase activity of a C-terminally truncated form of the EGF receptor. Thus the changes in kinase activity may be partially mediated by the C-terminal region of the receptor, which contains the sites of receptor self-phosphorylation. These results suggest that the basic domains of proteins can interact with the EGF receptor to induce changes in its kinetic properties, especially with regard to reactant recognition and binding.
APA, Harvard, Vancouver, ISO, and other styles
11

McLaughlin, Stuart, Steven O. Smith, Michael J. Hayman, and Diana Murray. "An Electrostatic Engine Model for Autoinhibition and Activation of the Epidermal Growth Factor Receptor (EGFR/ErbB) Family." Journal of General Physiology 126, no. 1 (June 13, 2005): 41–53. http://dx.doi.org/10.1085/jgp.200509274.

Full text
Abstract:
We propose a new mechanism to explain autoinhibition of the epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases based on a structural model that postulates both their juxtamembrane and protein tyrosine kinase domains bind electrostatically to acidic lipids in the plasma membrane, restricting access of the kinase domain to substrate tyrosines. Ligand-induced dimerization promotes partial trans autophosphorylation of ErbB1, leading to a rapid rise in intracellular [Ca2+] that can activate calmodulin. We postulate the Ca2+/calmodulin complex binds rapidly to residues 645–660 of the juxtamembrane domain, reversing its net charge from +8 to −8 and repelling it from the negatively charged inner leaflet of the membrane. The repulsion has two consequences: it releases electrostatically sequestered phosphatidylinositol 4,5-bisphosphate (PIP2), and it disengages the kinase domain from the membrane, allowing it to become fully active and phosphorylate an adjacent ErbB molecule or other substrate. We tested various aspects of the model by measuring ErbB juxtamembrane peptide binding to phospholipid vesicles using both a centrifugation assay and fluorescence correlation spectroscopy; analyzing the kinetics of interactions between ErbB peptides, membranes, and Ca2+/calmodulin using fluorescence stop flow; assessing ErbB1 activation in Cos1 cells; measuring fluorescence resonance energy transfer between ErbB peptides and PIP2; and making theoretical electrostatic calculations on atomic models of membranes and ErbB juxtamembrane and kinase domains.
APA, Harvard, Vancouver, ISO, and other styles
12

HOSPITAL, Véronique, Eiichiro NISHI, Michael KLAGSBRUN, Paul COHEN, Nabil G. SEIDAH, and Annik PRAT. "The metalloendopeptidase nardilysin (NRDc) is potently inhibited by heparin-binding epidermal growth factor-like growth factor (HB-EGF)." Biochemical Journal 367, no. 1 (October 1, 2002): 229–38. http://dx.doi.org/10.1042/bj20020822.

Full text
Abstract:
Nardilysin (N-arginine dibasic convertase, or NRDc) is a cytosolic and cell-surface metalloendopeptidase that, in vitro, cleaves substrates upstream of Arg or Lys in basic pairs. NRDc differs from most of the other members of the M16 family of metalloendopeptidases by a 90 amino acid acidic domain (DAC) inserted close to its active site. At the cell surface, NRDc binds heparin-binding epidermal growth factor-like growth factor (HB-EGF) and enhances HB-EGF-induced cell migration. An active-site mutant of NRDc fulfills this function as well as wild-type NRDc, indicating that the enzyme activity is not required for this process. We now demonstrate that NRDc starts at Met49. Furthermore, we show that HB-EGF not only binds to NRDc but also potently inhibits its enzymic activity. NRDc—HB-EGF interaction involves the 21 amino acid heparin-binding domain (P21) of the growth factor, the DAC of NRDc and most probably its active site. Only disulphide-bonded P21 dimers are inhibitory. We also show that Ca2+, via the DAC, regulates both NRDc activity and HB-EGF binding. We conclude that the DAC is thus a key regulatory element for the two distinct functions that NRDc fulfills, i.e. as an HB-EGF modulator and a peptidase.
APA, Harvard, Vancouver, ISO, and other styles
13

Timms, J. F., M. E. M. Noble, and M. Gregoriou. "An investigation of the role of Glu-842, Glu-844 and His-846 in the function of the cytoplasmic domain of the epidermal growth factor receptor." Biochemical Journal 308, no. 1 (May 15, 1995): 219–29. http://dx.doi.org/10.1042/bj3080219.

Full text
Abstract:
Activation of several protein kinases is mediated, at least in part, by phosphorylation of conserved Thr or Tyr residues located in a variable loop region, near the active site. In certain kinases, this activation loop also controls access of peptide substrates to the active site. In the corresponding region of the epidermal growth factor (EGF) receptor, a potential phosphorylation site, Tyr-845, does not appear to have a major regulatory role. In order to find out whether this variable loop can modulate the peptide phosphorylation and self-phosphorylation activities of the EGF receptor kinase, we investigated the role of residues around Tyr-845, using site-directed mutagenesis. Multiple sequence alignment showed that residues Glu-842, Glu-844 and His-846 are conserved or nearly conserved in eight members of the EGF receptor family. Mutants Glu-842-->Ser, Glu-844-->Gln and His-846-->Ala were expressed in the baculovirus/insect cell system, purified to near-homogeneity and characterized with respect to their peptide phosphorylation and self-phosphorylation activities. All three mutants were active, and these changes did not affect ATP binding directly. However, all mutations increased the Km(app.) for peptide substrates and MnATP in peptide phosphorylation reactions. The Vmax. for the phosphorylation of peptide RREELQDDYEDD was unaltered, but the Vmax. for self-phosphorylation (with variable [MnATP]) decreased 4-, 2- and 7-fold for mutants Glu-842-->Ser, Glu-844-->Gln and His-846-->Ala respectively, compared with the wild-type. These results suggest that binding of this peptide restored an optimal conformation at the active site that might be impaired by the mutations. A study of the dependence of initial rates of self-phosphorylation on cytoplasmic domain concentration showed that the order of reaction increased with the progress of self-phosphorylation. Both pre-phosphorylation and high concentrations of ammonium sulphate restored maximal or near-maximal levels of self-phosphorylation in the mutants, possibly through compensating conformational changes. A plausible homology model, based on the cyclic AMP-dependent protein kinase catalytic subunit, accommodated the sequence Glu-841-Glu-Lys-Glu as an insertion in the peptide binding loop at the edge of the active site cleft. The model suggests that Glu-844 and His-846 may participate in H-bonding interactions, thus stabilizing the active site region, while Glu-842 does not appear to interact with regions of the catalytic core.
APA, Harvard, Vancouver, ISO, and other styles
14

Kracht, M., O. Truong, N. F. Totty, M. Shiroo, and J. Saklatvala. "Interleukin 1 alpha activates two forms of p54 alpha mitogen-activated protein kinase in rabbit liver." Journal of Experimental Medicine 180, no. 6 (December 1, 1994): 2017–25. http://dx.doi.org/10.1084/jem.180.6.2017.

Full text
Abstract:
We have identified in rabbits two hepatic forms of T669 peptide kinases that are very strongly activated after systemic injection with the inflammatory cytokine interleukin 1 (IL-1). The T669 peptide contains a major phosphorylation site of the epidermal growth factor receptor, threonine 699 and is a substrate for mitogen-activated protein (MAP) kinases. The kinases were purified to homogeneity and corresponded to 50- and 55-kD proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid sequencing of 12 tryptic peptides of both kinases identified them as p54 MAP kinase alpha. This kinase belongs to the novel family of stress-activated protein kinases. This is the first evidence of IL-1 activating a specific protein kinase in vivo.
APA, Harvard, Vancouver, ISO, and other styles
15

Sponsel, H. T., P. S. Guzelian, S. E. Brown, R. Breckon, C. Ray, F. R. Simon, and R. J. Anderson. "Mechanisms of recovery from mechanical injury of cultured rat hepatocytes." American Journal of Physiology-Cell Physiology 271, no. 3 (September 1, 1996): C721—C727. http://dx.doi.org/10.1152/ajpcell.1996.271.3.c721.

Full text
Abstract:
The mechanism(s) whereby hepatocytes restore denuded areas remains unknown. We therefore studied the recovery of denuded areas made in monolayers of primary cultures of rat hepatocytes. Minimal recovery occurred in cells plated on plastic. Plating on Matrigel produced modest recovery (25% at 24 h), whereas plating on a type I collagen substrate resulted in > 70% recovery at 24 h. The rate of recovery on collagen could be attenuated by a monoclonal antibody directed against the extracellular domain of the beta 1-integrin subunit. Monoclonal antibodies directed against CD44 (the hyaluron receptor) and E-cadherin did not influence the rate of recovery. Recovery could be stimulated, in a dose-dependent fashion, by epidermal and hepatocyte growth factors. The effects of epidermal and hepatocyte growth factors to promote recovery occurred in the absence of 5-bromo-2'-deoxyuridine uptake, suggesting a proliferation-independent mechanism. Transforming growth factor-beta 1 inhibited recovery. Exposure to selected cytokines (interleukins 1 and 2), an adenine nucleotide [adenosine 5'-O-(3-thiotriphosphate)], adenosine, pertussis toxin, and selected agents that bind to fibronectin and other matrix component adhesive sites (heparin and the RGD peptide) did not influence the rate of recovery of hepatocytes. However, the peptide DGEA, which can bind to collagen adhesive sites, attenuated recovery. These studies demonstrate that primary cultures of rat hepatocytes require a particular type of extracellular matrix to renew denuded areas and that the beta 1-integrin subunit may be involved in this recovery process. Hepatocyte recovery of denuded areas can be modulated by growth factors in both a stimulatory (epidermal and hepatocyte growth factors) and an inhibitory (transforming growth factor-beta 1) fashion.
APA, Harvard, Vancouver, ISO, and other styles
16

Lazarovici, P., G. Dickens, H. Kuzuya, and G. Guroff. "Long-term, heterologous down-regulation of the epidermal growth factor receptor in PC12 cells by nerve growth factor." Journal of Cell Biology 104, no. 6 (June 1, 1987): 1611–21. http://dx.doi.org/10.1083/jcb.104.6.1611.

Full text
Abstract:
Cells of the rat pheochromocytoma clone PC12 possess receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF), thus enabling the study of the interaction of these receptors in the regulation of proliferation and differentiation. Treatment of the cells with NGF induces a progressive and nearly total decrease in the specific binding of EGF beginning after 12 h and completed within 4 d. Three different measures of receptor show that the decreased binding capacity represents, in fact, a decreased amount of receptor: (a) affinity labeling of PC12 cell membranes by cross-linking of receptor-bound 125I-EGF showed a 60-90% decrease in the labeling of 170- and 150-kD receptor bands in cells treated with NGF for 1-4 d; (b) EGF-dependent phosphorylation of a src-related synthetic peptide or EGF receptor autophosphorylation with membranes from NGF-differentiated cells showed a decrease of 80 and 90% in the tyrosine kinase activity for the exogenous substrate and for receptor autophosphorylation, respectively; (c) analysis of 35S-labeled glycoproteins isolated by wheat germ agglutinin-Sepharose chromatography from detergent extracts of PC12 membranes showed a 70-90% decrease in the 170-kD band in NGF-differentiated cells. These findings permit the hypothesis that long-term heterologous down-regulation of EGF receptors by NGF in PC12 cells is mediated by an alteration in EGF receptor synthesis. It is suggested that this heterologous down-regulation is part of the mechanism by which differentiating cells become insensitive to mitogens.
APA, Harvard, Vancouver, ISO, and other styles
17

Nesterov, A., G. Reshetnikova, N. Vinogradova, and N. Nikolsky. "Functional state of the epidermal growth factor-receptor complexes during their internalization in A-431 cells." Molecular and Cellular Biology 10, no. 9 (September 1990): 5011–14. http://dx.doi.org/10.1128/mcb.10.9.5011.

Full text
Abstract:
Functional state of internalized epidermal growth factor (EGF) receptor in A-431 cells has been studied. The use of photoaffinity [125I]EGF derivative allowed us to establish that inside the cell the EGF retains its connection with the receptor. With the help of polyclonal antibodies to phosphotyrosine, it has been shown that EGF-receptor complexes maintain their phosphorylated state during internalization. The internalized EGF receptor kinase as well as that localized in the plasma membrane appeared to be able to phosphorylate synthetic peptide substrate introduced into the cell.
APA, Harvard, Vancouver, ISO, and other styles
18

Nesterov, A., G. Reshetnikova, N. Vinogradova, and N. Nikolsky. "Functional state of the epidermal growth factor-receptor complexes during their internalization in A-431 cells." Molecular and Cellular Biology 10, no. 9 (September 1990): 5011–14. http://dx.doi.org/10.1128/mcb.10.9.5011-5014.1990.

Full text
Abstract:
Functional state of internalized epidermal growth factor (EGF) receptor in A-431 cells has been studied. The use of photoaffinity [125I]EGF derivative allowed us to establish that inside the cell the EGF retains its connection with the receptor. With the help of polyclonal antibodies to phosphotyrosine, it has been shown that EGF-receptor complexes maintain their phosphorylated state during internalization. The internalized EGF receptor kinase as well as that localized in the plasma membrane appeared to be able to phosphorylate synthetic peptide substrate introduced into the cell.
APA, Harvard, Vancouver, ISO, and other styles
19

Tappia, P. S., R. P. Sharma, and G. J. Sale. "Dephosphorylation of autophosphorylated insulin and epidermal-growth-factor receptors by two major subtypes of protein-tyrosine-phosphatase from human placenta." Biochemical Journal 278, no. 1 (August 15, 1991): 69–74. http://dx.doi.org/10.1042/bj2780069.

Full text
Abstract:
The identity of protein-tyrosine-phosphatases (PTPases) active against autophosphorylated insulin receptor was probed by using an insulin-receptor-related peptide phosphorylated on tyrosine (peptide 1142-1153). Two major peaks of PTPase activity were resolved from the particulate (Triton X-100-soluble) fraction of human placenta by chromatography on DEAE-cellulose. The two peaks were purified 1300-2300-fold; other peaks of PTPase activity (greater than 15%) were not detected. Properties of the PTPases indicated that they corresponded to subtypes 1A and 1B. Both subtypes appeared capable of catalysing dephosphorylation of all autophosphorylation sites in three domains of the insulin receptor, with no appreciable difference in the pattern of dephosphorylation detected by two-dimensional tryptic-peptide mapping. The tyrosine-1150 domain of the insulin receptor in triply phosphorylated form was found to be highly sensitive to the action of both PTPases, and was dephosphorylated at least 4 times faster than the doubly and singly phosphorylated forms of the tyrosine-1150 domain or phosphorylation sites in other domains by either PTPase. This is significant, as the level of the triphosphotyrosine-1150 species has been shown to correlate well with the capacity of the insulin-receptor tyrosine kinase to phosphorylate other proteins. Both subtypes also dephosphorylated autophosphorylated epidermal-growth-factor (EGF) receptor by greater than 95%. Placental particulate (and cytosolic) PTPase activity against either receptor distributed approximately 2:1 between subtypes 1A and 1B as assayed in the presence of EDTA. In summary, PTPases within two major subtypes have been identified as phosphotyrosyl-insulin and -EGF-receptor phosphatases in vitro. The PTPases identified exhibit high affinities for substrates and high activities in cells, which is commensurate with the PTPases being important in vivo in controlling or reversing autophosphorylation-induced regulatory or signalling events.
APA, Harvard, Vancouver, ISO, and other styles
20

Collazos, Alejandra, Nicholas Michael, Richard D. H. Whelan, Gavin Kelly, Harry Mellor, Leon C. H. Pang, Nick Totty, and Peter J. Parker. "Site recognition and substrate screens for PKN family proteins." Biochemical Journal 438, no. 3 (August 26, 2011): 535–43. http://dx.doi.org/10.1042/bj20110521.

Full text
Abstract:
The PRKs [protein kinase C-related kinases; also referred to as PKNs (protein kinase Ns)] are a kinase family important in diverse functions including migration and cytokinesis. In the present study, we have re-evaluated and compared the specificity of PKN1 and PKN3 and assessed the predictive value in substrates. We analysed the phosphorylation consensus motif of PKNs using a peptide library approach and demonstrate that both PKN1 and PKN3 phosphorylate serine residues in sequence contexts that have an arginine residue in position −3. In contrast, PKN1 and PKN3 do not tolerate arginine residues in position +1 and −1 respectively. To test the predictive value of this motif, site analysis was performed on the PKN substrate CLIP-170 (cytoplasmic linker protein of 170 kDa); a PKN target site was identified that conformed to the predicted pattern. Using a protein array, we identified 22 further substrates for PKN1, of which 20 were previously undescribed substrates. To evaluate further the recognition signature, the site on one of these hits, EGFR (epidermal growth factor receptor), was identified. This identified Thr654 in EGFR as the PKN1 phosphorylation site and this retains an arginine residue at the −3 position. Finally, the constitutive phosphorylation of EGFR on Thr654 is shown to be modulated by PKN in vivo.
APA, Harvard, Vancouver, ISO, and other styles
21

Goris, J., C. J. Pallen, P. J. Parker, J. Hermann, M. D. Waterfield, and W. Merlevede. "Conversion of a phosphoseryl/threonyl phosphatase into a phosphotyrosyl phosphatase." Biochemical Journal 256, no. 3 (December 15, 1988): 1029–34. http://dx.doi.org/10.1042/bj2561029.

Full text
Abstract:
By use of the autophosphorylated epidermal-growth-factor receptor and the synthetic peptide RRLIE-DAEY(P)AARG, representing an autophosphorylation site of the transforming protein of Rous-sarcoma virus, it is demonstrated that the phosphotyrosyl phosphatase activity of the polycation-stimulated phosphatases is substantially increased by an enzyme-directed effect of ATP or PPi. Concomitant with this increase in phosphotyrosyl phosphatase activity, the phosphorylase phosphatase activity is decreased, thus dramatically changing the substrate specificity of these enzymes. The dephosphorylation of four different phosphotyrosyl sites of the epidermal-growth-factor receptor is neither consecutive nor at random, but a preferred dephosphorylation of the P1 site over the P3 greater than P2 greater than P4 sites is observed. This phosphatase activity represents a substantial fraction of the total phosphotyrosyl phosphatase activity in the post-mitochondrial supernatant of Xenopus laevis oocytes.
APA, Harvard, Vancouver, ISO, and other styles
22

App, H., R. Hazan, A. Zilberstein, A. Ullrich, J. Schlessinger, and U. Rapp. "Epidermal growth factor (EGF) stimulates association and kinase activity of Raf-1 with the EGF receptor." Molecular and Cellular Biology 11, no. 2 (February 1991): 913–19. http://dx.doi.org/10.1128/mcb.11.2.913.

Full text
Abstract:
Raf-1 serine- and threonine-specific protein kinase is transiently activated in cells expressing the epidermal growth factor (EGF) receptor upon treatment with EGF. The stimulated EGF receptor coimmunoprecipitates with Raf-1 kinase and mediates protein kinase C-independent phosphorylation of Raf-1 on serine residues. Hyperphosphorylated Raf-1 has lower mobility on sodium dodecyl sulfate gels and has sixfold-increased activity in immunocomplex kinase assay with histone H1 or Raf-1 sequence-derived peptide as a substrate. Raf-1 activation requires kinase-active EGF receptor; a point mutant lacking tyrosine kinase activity in inactive in Raf-1 coupling and association. It is noteworthy that tyrosine phosphorylation of c-Raf-1 induced by EGF was not detected in these cells. These observations suggest that Raf-1 kinase may act as an important downstream effector of EGF signal transduction.
APA, Harvard, Vancouver, ISO, and other styles
23

App, H., R. Hazan, A. Zilberstein, A. Ullrich, J. Schlessinger, and U. Rapp. "Epidermal growth factor (EGF) stimulates association and kinase activity of Raf-1 with the EGF receptor." Molecular and Cellular Biology 11, no. 2 (February 1991): 913–19. http://dx.doi.org/10.1128/mcb.11.2.913-919.1991.

Full text
Abstract:
Raf-1 serine- and threonine-specific protein kinase is transiently activated in cells expressing the epidermal growth factor (EGF) receptor upon treatment with EGF. The stimulated EGF receptor coimmunoprecipitates with Raf-1 kinase and mediates protein kinase C-independent phosphorylation of Raf-1 on serine residues. Hyperphosphorylated Raf-1 has lower mobility on sodium dodecyl sulfate gels and has sixfold-increased activity in immunocomplex kinase assay with histone H1 or Raf-1 sequence-derived peptide as a substrate. Raf-1 activation requires kinase-active EGF receptor; a point mutant lacking tyrosine kinase activity in inactive in Raf-1 coupling and association. It is noteworthy that tyrosine phosphorylation of c-Raf-1 induced by EGF was not detected in these cells. These observations suggest that Raf-1 kinase may act as an important downstream effector of EGF signal transduction.
APA, Harvard, Vancouver, ISO, and other styles
24

Gil, J., T. Higgins, and E. Rozengurt. "Mastoparan, a novel mitogen for Swiss 3T3 cells, stimulates pertussis toxin-sensitive arachidonic acid release without inositol phosphate accumulation." Journal of Cell Biology 113, no. 4 (May 15, 1991): 943–50. http://dx.doi.org/10.1083/jcb.113.4.943.

Full text
Abstract:
Mastoparan, a basic tetradecapeptide isolated from wasp venom, is a novel mitogen for Swiss 3T3 cells. This peptide induced DNA synthesis in synergy with insulin in a concentration-dependent manner; half-maximum and maximum responses were achieved at 14 and 17 microM, respectively. Mastoparan also stimulated DNA synthesis in the presence of other growth promoting factors including bombesin, insulin-like growth factor-1, and platelet-derived growth factor. The synergistic mitogenic stimulation by mastoparan can be dissociated from activation of phospholipase C. Mastoparan did not stimulate phosphoinositide breakdown, Ca2+ mobilization or protein kinase C-mediated phosphorylation of a major cellular substrate or transmodulation of the epidermal growth factor receptor. In contrast, mastoparan stimulated arachidonic acid release, prostaglandin E2 production, and enhanced cAMP accumulation in the presence of forskolin. These responses were inhibited by prior treatment with pertussis toxin. Hence, mastoparan stimulates arachidonic acid release via a pertussis toxin-sensitive G protein in Swiss 3T3 cells. Arachidonic acid, like mastoparan, stimulated DNA synthesis in the presence of insulin. The ability of mastoparan to stimulate mitogenesis was reduced by pertussis toxin treatment. These results demonstrate, for the first time, that mastoparan stimulates reinitiation of DNA synthesis in Swiss 3T3 cells and indicate that this peptide may be a useful probe to elucidate signal transduction mechanisms in mitogenesis.
APA, Harvard, Vancouver, ISO, and other styles
25

Brewitz, Lennart, Anthony Tumber, and Christopher J. Schofield. "Kinetic parameters of human aspartate/asparagine–β-hydroxylase suggest that it has a possible function in oxygen sensing." Journal of Biological Chemistry 295, no. 23 (February 26, 2020): 7826–38. http://dx.doi.org/10.1074/jbc.ra119.012202.

Full text
Abstract:
Human aspartate/asparagine–β-hydroxylase (AspH) is a 2-oxoglutarate (2OG)–dependent oxygenase that catalyzes the post-translational hydroxylation of Asp and Asn residues in epidermal growth factor–like domains (EGFDs). Despite its biomedical significance, studies on AspH have long been limited by a lack of assays for its isolated form. Recent structural work has revealed that AspH accepts substrates with a noncanonical EGFD disulfide connectivity (i.e. the Cys 1–2, 3–4, 5–6 disulfide pattern). We developed stable cyclic thioether analogues of the noncanonical EGFD AspH substrates to avoid disulfide shuffling. We monitored their hydroxylation by solid-phase extraction coupled to MS. The extent of recombinant AspH-catalyzed cyclic peptide hydroxylation appears to reflect levels of EGFD hydroxylation observed in vivo, which vary considerably. We applied the assay to determine the kinetic parameters of human AspH with respect to 2OG, Fe(II), l-ascorbic acid, and substrate and found that these parameters are in the typical ranges for 2OG oxygenases. Of note, a relatively high Km for O2 suggested that O2 availability may regulate AspH activity in a biologically relevant manner. We anticipate that the assay will enable the development of selective small-molecule inhibitors for AspH and other human 2OG oxygenases.
APA, Harvard, Vancouver, ISO, and other styles
26

Miyaji, Katsuya, Eiichi Tani, Atsuhisa Nakano, Hideyasu Ikemoto, and Keizo Kaba. "Inhibition by 5′-methylthioadenosine of cell growth and tyrosine kinase activity stimulated by fibroblast growth factor receptor in human gliomas." Journal of Neurosurgery 83, no. 4 (October 1995): 690–97. http://dx.doi.org/10.3171/jns.1995.83.4.0690.

Full text
Abstract:
✓ Stimulation of three human glioma cell lines with basic fibroblast growth factor (bFGF) led to the enhancement of cell growth and the rapid tyrosine phosphorylation of cellular proteins, including major substrates of 90 kD. A methyltransferase inhibitor, 5′-methylthioadenosine (MTA), inhibited dose dependently the bFGF-stimulated cell growth and protein tyrosine phosphorylation in glioma cells by blocking both receptor autophosphorylation and substrate phosphorylation, as shown by immunoblotting with antiphosphotyrosine antibodies and cross-linking bFGF to receptors. The antiproliferative activity of MTA correlated quantitatively with its potency as an inhibitor of bFGF-stimulated protein tyrosine kinase activity. The methyltransferase inhibitor MTA had no effect on either epidermal growth factor— or platelet-derived growth factor—stimulated protein tyrosine phosphorylation in glioma cells, but inhibited specifically bFGF-stimulated protein tyrosine kinase activity. The concentration of MTA required for inhibition of protein methylation correlated well with the concentration required for inhibition of bFGF-stimulated cell growth and protein tyrosine phosphorylation. Because MTA had no effect on numbers and dissociation constants of high- and low-affinity bFGF receptors, the inhibition of bFGF-stimulated bFGF receptor tyrosine kinase activity is not likely to be the result of a reduction in bFGF receptor and bFGF binding capacity. In fact, MTA delayed and reduced the internalization and nuclear translocation of bFGF, and the internalized bFGF was submitted to a limited proteolysis that converted it to lower molecular peptides whose presence remained for at least 22 hours. The effect of MTA on bFGF-stimulated tyrosine phosphorylation was immediate and readily reversible.
APA, Harvard, Vancouver, ISO, and other styles
27

Gregoriou, M., P. F. Jones, J. F. Timms, J. J. Yang, S. E. Radford, and A. R. Rees. "Physicochemical characterization of the cytoplasmic domain of the epidermal growth factor receptor and evidence for conformational changes associated with its activation by ammonium sulphate." Biochemical Journal 306, no. 3 (March 15, 1995): 667–78. http://dx.doi.org/10.1042/bj3060667.

Full text
Abstract:
The physiochemical properties of the purified cytoplasmic domain of the epidermal growth factor (EGF) receptor, its self-phosphorylation and peptide phosphorylation activities, and its activation by ammonium sulphate have been studied. Highly efficient purification procedures for the isolation of the recombinant cytoplasmic domain (Met644-Ala1186) of the EGF receptor, expressed in the baculovirus/insect cell system, are described. Physicochemical characterization of the protein included investigation of its isoelectric and hydrodynamic properties, stability, oligomeric status, and secondary structure using far-u.v. circular dichroism. The recombinant protein was not recognized by anti-phosphotyrosine antibodies, unless first self-phosphorylated in vitro. Tryptic phosphopeptide maps of self-phosphorylated recombinant cytoplasmic domain and the EGF-stimulated A431-membrane receptor were very similar, suggesting that the recombinant had similar self-phosphorylation capacity and specificity. The preparations were characterized by high specific activity towards peptide tyrosine phosphorylation. Although the cytoplasmic domain was isolated as a homogeneously monomeric protein, storage at 4 degrees C led to slow, spontaneous aggregation with reduction in specific activity. Both high activity and monomeric state were maintained by storage below 0 degree C. The dependence of the initial rate of self-phosphorylation on protein concentration was consistent with cross-phosphorylation but not with the known oligomerization-induced activation of holoreceptor. The peptide phosphorylation activity was stimulated by Mn2+, Mg2+ and (NH4)2SO4 at high concentrations. The substrate specificity of (NH4)2SO4 activation was studied using synthetic peptides. Self-phosphorylation was inhibited by (NH4)2SO4 in the range 0-0.25 M but activated at 1.0-1.5 M, possibly as a result of ionic and hydrophobic protein interactions respectively. Phosphopeptide maps of cytoplasmic domain phosphorylated in the presence of high (NH4)2SO4 showed that the protein was more extensively phosphorylated than in the absence of salt, or than the native receptor. Far-u.v. circular-dichroism spectra of the cytoplasmic domain changed dramatically at 1 M (NH4)2SO4, raising the possibility that (NH4)2SO4 activates the kinase catalytic domain by inducing conformational changes.
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Weizhi, Baozhong Shen, and Xilin Sun. "Analysis of Progress and Challenges of EGFR-Targeted Molecular Imaging in Cancer With a Focus on Affibody Molecules." Molecular Imaging 18 (January 1, 2019): 153601211882347. http://dx.doi.org/10.1177/1536012118823473.

Full text
Abstract:
Epidermal growth factor receptor (EGFR)-targeted cancer therapy requires an accurate estimation of EGFR expression in tumors to identify responsive patients, monitor therapeutic effect, and estimate prognosis. The EGFR molecular imaging is an optimal method for evaluating EGFR expression in vivo accurately and noninvasively. In this review, we discuss the recent advances in EGFR-targeted molecular imaging in cancer, with a special focus on the development of imaging agents, including epidermal growth factor (EGF) ligand, monoclonal antibodies, antibody fragments, Affibody, and small molecules. Each substrate or probe, whether it is an endogenous ligand, antibody, peptide, or small molecule labeled with fluorochrome or radionuclide, has unique advantages and limitations. Antibody-based probes have high affinity but a long metabolic cycle and therefore offer poor imaging quality. Affibody molecules promise to surpass antibody-based probes due to their small size, stable chemical properties, and high affinity to the target. Small-molecule probes are safe, have favorable pharmacokinetics, and show high affinity and specificity, in addition to having an ideal size, but are inadequate for delayed imaging after injection due to their fast clearance.
APA, Harvard, Vancouver, ISO, and other styles
29

Koblan, K. S., M. D. Schaber, G. Edwards, J. B. Gibbs, and D. L. Pompliano. "src-homology 2 (SH2) domain ligation as an allosteric regulator: modulation of phosphoinositide-specific phospholipase Cγ1 structure and activity." Biochemical Journal 305, no. 3 (February 1, 1995): 745–51. http://dx.doi.org/10.1042/bj3050745.

Full text
Abstract:
Phosphoinositide-specific phospholipase C gamma 1 (PI-PLC gamma 1) catalyses the hydrolysis of PtdIns(4,5)P2 to generate the second messengers diacylglycerol and Ins(1,4,5)P3. PI-PLC gamma 1, an src-homology 2/3 (SH2/SH3)-domain-containing enzyme, is activated in response to growth-factor-induced tyrosine phosphorylation, and, in vivo, is translocated from the cytosol to the particulate cell fraction. Here we report the bacterial expression of rat brain PI-PLC gamma 1 under the control of the T7 promoter. Production of the active enzyme in amounts suitable for structure-function analysis depended on coupling the translation of PLC gamma 1 to the expression of the phage-phi 10 coat protein. Purification of the enzyme was facilitated by the presence of a three-amino-acid C-terminal antibody epitope tag (Glu-Glu-Phe) engineered into the cloned PLC gamma 1. Examination of the specific activity, pH-rate profile, [Ca2+]-dependence and substrate specificity of bacterially expressed PLC gamma indicated that it had kinetic properties similar to those of PLC gamma isolated from bovine brain. The substrate specificity was dependent on [Ca2+]: at low [Ca2+] (1-10 microM) PtdIns(4,5)P2 was a better substrate than PtdIns. Addition of phosphotyrosine-containing peptides (12-mers) with the cognate sequence of the high-affinity binding site for PLC gamma 1 on the activated epidermal-growth-factor (EGF) receptor (Tyr-992) increased enzyme activity (up to 85%) in vitro. Cognate non-phosphorylated peptides had no effect on activity. When c.d. spectroscopy was used to monitor the effect of added phosphotyrosine-containing peptide on the structure of recombinant PLC gamma 1, significant spectral shifts, indicative of a conformational change, were observed upon complexation with the EGF-receptor phosphotyrosine-containing 12-residue peptide (Tyr*-992). How SH2 domains from PLC gamma 1 can mediate structural rearrangements and modulate enzymic activity on their ligation by growth-factor receptors is discussed.
APA, Harvard, Vancouver, ISO, and other styles
30

Hashimoto, N., W. R. Zhang, and B. J. Goldstein. "Insulin receptor and epidermal growth factor receptor dephosphorylation by three major rat liver protein-tyrosine phosphatases expressed in a recombinant bacterial system." Biochemical Journal 284, no. 2 (June 1, 1992): 569–76. http://dx.doi.org/10.1042/bj2840569.

Full text
Abstract:
Protein-tyrosine phosphatases (PTPases) play an essential role in the regulation of signal transduction mediated by reversible protein-tyrosine phosphorylation. In order to characterize individual rat hepatic PTPases that might have specificity for autophosphorylated receptor tyrosine kinases, we isolated cDNA segments encoding three PTPases (PTPase 1B, LAR and LRP) that are expressed in insulin-sensitive liver and skeletal muscle tissue, and evaluated their catalytic activity in vitro. The intrinsic PTPase activities of the full-length PTPase 1B protein and the cytoplasmic domains of LAR and LRP were studied by expression of recombinant cDNA constructs in the inducible bacterial vector pKK233-2 using extracts of a host strain of Escherichia coli that lacks endogenous PTPase activity. Each of the cloned cDNAs dephosphorylated a cognate phosphopeptide derived from the regulatory region of the insulin receptor. Despite having only 30-39% sequence identity in their catalytic domains, LAR and PTPase 1B had similar relative activities between the peptide substrate and intact insulin receptors, and also displayed similar initial rates of simultaneous dephosphorylation of insulin and epidermal growth factor (EGF) receptors. In contrast, LRP exhibited a higher rate of dephosphorylation of both intact receptors relative to the peptide substrate, and also dephosphorylated EGF receptors more rapidly than insulin receptors. These studies indicate that three PTPases with markedly divergent structures have the catalytic potential to dephosphorylate both insulin and EGF receptors in intact cells and that redundant PTPase activity may occur in vivo. For these PTPases to have specific physiological actions in intact cells, they must be influenced by steric effects of the additional protein segments of the native transmembrane enzymes, cellular compartmentalization and/or interactions with regulatory proteins.
APA, Harvard, Vancouver, ISO, and other styles
31

Salazar, Gloria, and Alfonso González. "Novel Mechanism for Regulation of Epidermal Growth Factor Receptor Endocytosis Revealed by Protein Kinase A Inhibition." Molecular Biology of the Cell 13, no. 5 (May 2002): 1677–93. http://dx.doi.org/10.1091/mbc.01-08-0403.

Full text
Abstract:
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40–60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and μ-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of “endocytic evasion,” modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.
APA, Harvard, Vancouver, ISO, and other styles
32

Klingbeil, C. K., G. N. Gill, and D. L. Cadena. "Analysis of Substrate Recognition Determinants in a Synthetic Peptide Containing the Tyr 1173 Autophosphorylation Site of the Epidermal Growth Factor Receptor." Archives of Biochemistry and Biophysics 316, no. 2 (February 1995): 745–50. http://dx.doi.org/10.1006/abbi.1995.1099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Verme, T. B., and S. R. Hootman. "Regulation of pancreatic duct epithelial growth in vitro." American Journal of Physiology-Gastrointestinal and Liver Physiology 258, no. 6 (June 1, 1990): G833—G840. http://dx.doi.org/10.1152/ajpgi.1990.258.6.g833.

Full text
Abstract:
Effects of a number of possible trophic factors on growth of guinea pig pancreatic duct epithelial monolayers were investigated. Isolated fragments of main and interlobular ducts were prepared and explanted onto both tissue culture plastic and thick gels of type I collagen. Monolayers growing out from explants were first cultured in a basal medium for 3 or 4 days. Next, the medium was supplemented individually with bombesin, carbachol, caerulein, epidermal growth factor (EGF), secretin, 12-O-tetradecanoylphorbol 13-acetate (TPA), or vasoactive intestinal peptide (VIP). Cells were cultured in the absence or presence of these possible trophic factors, and monolayer areas were determined morphometrically at 0, 2, and 4 days. Rate of growth was determined from increase in area over each 2-day period. Monolayers grown in basal medium alone on plastic increased to 479% of initial area over the 4-day test period; those grown on collagen increased to 523%. Explants cultured in presence of bombesin, carbachol, caerulein, secretin, TPA, and VIP on either substrate grew at rates not significantly different from those cultured in basal medium. By contrast, duct monolayers grown on plastic or collagen in presence of 10 nM EGF expanded in area to 722 and 1,070%, respectively, of their initial areas. The EC50 for this trophic effect was approximately 1 nM. These results show that EGF exerts a potent trophic effect on guinea pig pancreatic duct cells in vitro but also indicate that cell division in the pancreatic main and interlobular ducts is not regulated by caerulein and related peptide hormones that have been reported to have growth-promoting effects on exocrine pancreas in vivo.
APA, Harvard, Vancouver, ISO, and other styles
34

Fan, Ying-Xin, Lily Wong, and Gibbes R. Johnson. "EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity." Biochemical Journal 392, no. 3 (December 6, 2005): 417–23. http://dx.doi.org/10.1042/bj20051122.

Full text
Abstract:
We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs.
APA, Harvard, Vancouver, ISO, and other styles
35

Garcia-Guerrero, Maria C., Javier Garcia-Pardo, Esther Berenguer, Roberto Fernandez-Alvarez, Gifty B. Barfi, Peter J. Lyons, Francesc X. Aviles, Robert Huber, Julia Lorenzo, and David Reverter. "Crystal structure and mechanism of human carboxypeptidase O: Insights into its specific activity for acidic residues." Proceedings of the National Academy of Sciences 115, no. 17 (April 10, 2018): E3932—E3939. http://dx.doi.org/10.1073/pnas.1803685115.

Full text
Abstract:
Human metallocarboxypeptidase O (hCPO) is a recently discovered digestive enzyme localized to the apical membrane of intestinal epithelial cells. Unlike pancreatic metallocarboxypeptidases, hCPO is glycosylated and produced as an active enzyme with distinctive substrate specificity toward C-terminal (C-t) acidic residues. Here we present the crystal structure of hCPO at 1.85-Å resolution, both alone and in complex with a carboxypeptidase inhibitor (NvCI) from the marine snail Nerita versicolor. The structure provides detailed information regarding determinants of enzyme specificity, in particular Arg275, placed at the bottom of the substrate-binding pocket. This residue, located at “canonical” position 255, where it is Ile in human pancreatic carboxypeptidases A1 (hCPA1) and A2 (hCPA2) and Asp in B (hCPB), plays a dominant role in determining the preference of hCPO for acidic C-t residues. Site-directed mutagenesis to Asp and Ala changes the specificity to C-t basic and hydrophobic residues, respectively. The single-site mutants thus faithfully mimic the enzymatic properties of CPB and CPA, respectively. hCPO also shows a preference for Glu over Asp, probably as a consequence of a tighter fitting of the Glu side chain in its S1′ substrate-binding pocket. This unique preference of hCPO, together with hCPA1, hCPA2, and hCPB, completes the array of C-t cleavages enabling the digestion of the dietary proteins within the intestine. Finally, in addition to activity toward small synthetic substrates and peptides, hCPO can also trim C-t extensions of proteins, such as epidermal growth factor, suggesting a role in the maturation and degradation of growth factors and bioactive peptides.
APA, Harvard, Vancouver, ISO, and other styles
36

Mohammadi, M., A. M. Honegger, D. Rotin, R. Fischer, F. Bellot, W. Li, C. A. Dionne, M. Jaye, M. Rubinstein, and J. Schlessinger. "A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1." Molecular and Cellular Biology 11, no. 10 (October 1991): 5068–78. http://dx.doi.org/10.1128/mcb.11.10.5068.

Full text
Abstract:
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.
APA, Harvard, Vancouver, ISO, and other styles
37

Mohammadi, M., A. M. Honegger, D. Rotin, R. Fischer, F. Bellot, W. Li, C. A. Dionne, M. Jaye, M. Rubinstein, and J. Schlessinger. "A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1." Molecular and Cellular Biology 11, no. 10 (October 1991): 5068–78. http://dx.doi.org/10.1128/mcb.11.10.5068-5078.1991.

Full text
Abstract:
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.
APA, Harvard, Vancouver, ISO, and other styles
38

Tremble, P., R. Chiquet-Ehrismann, and Z. Werb. "The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts." Molecular Biology of the Cell 5, no. 4 (April 1994): 439–53. http://dx.doi.org/10.1091/mbc.5.4.439.

Full text
Abstract:
Tenascin (TN) is a large oligomeric glycoprotein that is present transiently in the extracellular matrix (ECM) of cells and is involved in morphogenetic movements, tissue patterning, and tissue repair. It has multiple domains, both adhesive and anti-adhesive, that interact with cells and with fibronectin (FN) and other ECM macromolecules. We have studied the consequences of the interaction of TN with a FN matrix on gene expression in rabbit synovial fibroblasts. Fibroblasts plated on a mixed substrate of FN and TN, but not on FN alone, upregulated synthesis of four genes: collagenase, stromelysin, the 92-kDa gelatinase, and c-fos. Although the fibroblasts spread well on both FN and FN/TN substrates, nuclear c-Fos increased within 1 h only in cells that were plated on FN/TN. TN did not induce the expression of collagenase in cells plated on substrates of type I collagen or vitronectin (VN). Moreover, soluble TN added to cells adhering to a FN substrate or to serum proteins had no effect, suggesting that TN has an effect only in the context of mixed substrates of FN and TN. Collagenase increased within 4 h of plating on a FN/TN substrate and exhibited kinetics similar to those for induction of collagenase gene expression by signaling through the integrin FN receptor. Arg-Gly-Asp peptide ligands that recognize either the FN receptor or the VN receptor and function-perturbing anti-integrin monoclonal antibodies diminished the interaction of fibroblasts with a mixed substrate of FN, TN, and VN, but had no effect on the adhesion of fibroblasts to a substrate of FN and VN, suggesting that both receptors recognize the complex. Anti-TN68, an antibody that recognizes an epitope in the carboxyl-terminal type III repeats involved in the interaction of TN with both FN and cells, blocked the inductive effect of the FN/TN substrate, whereas anti-TNM1, an antibody that recognizes an epitope in the amino-terminal anti-adhesive region of epidermal growth factor-like repeats, had no effect. These data suggest that transient alteration of the composition of ECM by addition of proteins like TN may regulate the expression of genes involved in cell migration, tissue remodeling, and tissue invasion, in regions of tissue undergoing phenotypic changes.
APA, Harvard, Vancouver, ISO, and other styles
39

Pepinsky, R. B., L. K. Sinclair, E. P. Chow, and B. O'Brine-Greco. "A dimeric form of lipocortin-1 in human placenta." Biochemical Journal 263, no. 1 (October 1, 1989): 97–103. http://dx.doi.org/10.1042/bj2630097.

Full text
Abstract:
We have characterized a 68 kDa lipocortin from human placenta that was identified as a covalently linked homodimer of lipocortin-1 by peptide mapping and sequence analysis. The site of cross-linking was localized within the 3 kDa N-terminal tail region, an exposed domain that contains the phosphorylation sites for protein tyrosine kinase and protein kinase C and is sensitive to proteolysis. Sequence analysis of the corresponding peptide revealed that glutamine-18 was modified, suggesting that the cross-link may be generated by a transglutaminase. By incubating lipocortin-1 with placental membranes and with labelled glycine ethyl ester we observed a Ca2+-dependent labelling of lipocortin-1 within the tail region, supporting this notion. Like lipocortin-1, the dimer inhibits phospholipase Ad2 activity, is a substrate for the epidermal-growth-factor (EGF) receptor/kinase, and display Ca2+-dependent binding to phosphatidylserine-containing vesicles. In preparations from human placenta the dimer is particularly abundant, accounting for approx. 20% of the lipocortin-1.
APA, Harvard, Vancouver, ISO, and other styles
40

Elloumi-Mseddi, Jihene, Karim Jellali, and Sami Aifa. "In VitroActivation and Inhibition of Recombinant EGFR Tyrosine Kinase Expressed inEscherichia coli." Scientific World Journal 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/807284.

Full text
Abstract:
The present work concerns the heterologous expression of the intracellular domain harbouring the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). Protein expression was improved thanks to the deletion of a 13-amino acid peptide of the juxtamembrane region (JM). The recombinant proteins were produced as a glutathione S-transferase (GST) fusion inEscherichia coli, and the solubilisation was performed by sarkosyl addition during extraction. The produced proteins spontaneously dimerize allowing the activation of the tyrosine kinase domain in the presence of[γ-32P]ATP. The activity assay has revealed the autophosphorylation of EGFR proteins which was decreased in the presence of genistein. Our system could facilitate the screening of EGFR inhibitors without the need of adding an exogenous substrate.
APA, Harvard, Vancouver, ISO, and other styles
41

Pérez, Liliana, John E. Kerrigan, Xiaojin Li, and Huizhou Fan. "Substitution of methionine 435 with leucine, isoleucine, and serine in tumor necrosis factor alpha converting enzyme inactivates ectodomain shedding activity." Biochemistry and Cell Biology 85, no. 1 (February 2007): 141–49. http://dx.doi.org/10.1139/o06-179.

Full text
Abstract:
Tumor necrosis factor alpha (TNF-α) converting enzyme (TACE) is a zinc metalloprotease that has emerged as a general sheddase, which is responsible for ectodomain release of numerous membrane proteins, including the proinflammatory cytokine TNF-α, the leukocyte adhesin l-selectin and epidermal growth factor receptor ligand-transforming growth factor α (TGF-α), and related family members. Structurally, TACE belongs to a large clan of proteases, designated the metzincins, because TACE possesses a conserved methionine (Met435), frequently referred to as the met-turn residue, in its active site. A vital role of this residue in the function of TACE is supported by the fact that cells expressing the M435I TACE variant are defective in ectodomain shedding. However, the importance of Met435 in TACE appears to be uncertain, since another metzincin, matrix metalloprotease-2, has been found to be enzymatically fully active with either leucine or serine in place of its met-turn residue. We constructed TACE mutants with leucine or serine in place of Met435 to further examine the role of the met-turn residue in TACE-mediated ectodomain cleavage. Similar to the M435I TACE mutant, both the M435L and M435S constructs are defective in cleaving transmembrane TNF-α, TGF-α, and l-selectin. Comparative modeling and dynamic computation detected structural perturbations, which resulted in higher energy, in the catalytic zinc complexes of the Met435 TACE mutants compared with that in the wild-type enzyme. Thus, Met435 serves to maintain the stability of the catalytic center of TACE for the hydrolysis of peptide bonds in substrates.
APA, Harvard, Vancouver, ISO, and other styles
42

WU, MEIRONG, LITIAN ZHANG, HANZHEN ZHANG, JINGXUAN NING, SANFANG TU, YANJIE HE, and YUHUA LI. "CD19 chimeric antigen receptor–redirected T cells combined with epidermal growth factor receptor pathway substrate 8 peptide–derived dendritic cell vaccine in leukemia." Cytotherapy 21, no. 6 (June 2019): 659–70. http://dx.doi.org/10.1016/j.jcyt.2019.03.313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

DIJK, Marc C. M. van, Francisco J. G. MURIANA, Paul C. J. van der HOEVEN, John de WIDT, Dick SCHAAP, Wouter H. MOOLENAAR, and Wim J. van BLITTERSWIJK. "Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-ζ." Biochemical Journal 323, no. 3 (May 1, 1997): 693–99. http://dx.doi.org/10.1042/bj3230693.

Full text
Abstract:
The role of diacylglycerol (DG) formation from phosphatidylcholine in mitogenic signal transduction is poorly understood. We have generated this lipid at the plasma membrane by treating Rat-1 fibroblasts with bacterial phosphatidylcholine-specific phospholipase C (PC-PLC). This treatment leads to activation of mitogen-activated protein kinase (MAPK). However, unlike platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), PC-PLC fails to activate Ras and to induce DNA synthesis, and activates MAPK only transiently (< 45 min). Down-regulation of protein kinase C (PKC) -α, -Δ and -ε isotypes has little or no effect on MAPK activation by either PC-PLC or growth factors. However, Ro 31-8220, a highly selective inhibitor of all PKC isotypes, including atypical PKC-ζ but not Raf-1, blocks MAPK activation by PDGF and PC-PLC, but not that by EGF, suggesting that atypical PKC mediates the PDGF and PC-PLC signal. In line with this, PKC-ζ is activated by PC-PLC and PDGF, but not by EGF, as shown by a kinase assay in vitro, using biotinylated ε-peptide as a substrate. Furthermore, dominant-negative PKC-ζ inhibits, while (wild-type) PKC-ζ overexpression enhances MAPK activation by PDGF and PC-PLC. The results suggest that DG generated by PC-PLC can activate the MAPK pathway independent of Ras and phorbol-ester-sensitive PKC but, instead, via PKC-ζ.
APA, Harvard, Vancouver, ISO, and other styles
44

Geng, Jie-Ping, Chong-Hui Cheng, and Francis J. Castellino. "Functional Consequences of Mutations in Amino Acid Residues that Stabilize Calcium Binding to the First Epidermal Growth Factor Homology Domain of Human Protein C." Thrombosis and Haemostasis 76, no. 05 (1996): 720–28. http://dx.doi.org/10.1055/s-0038-1650650.

Full text
Abstract:
SummaryCharge-to-alanine mutations of three amino acid residues, viz., D46, D48, and D/Hya71, which are known to be important in stabilizing Ca2+ binding to epidermal growth factor (EGF) domains of vitamin K-de-pendent blood coagulation proteins, have been engineered into recombinant human protein C (r-PC), The resulting variants were then employed to assess the importance of this Ca2+ binding site in the activation properties of r-PC and in the activity of activated protein C (APC). Another mutation, of D48 to E, was constructed in order that a more conservative mutation at the Ca2+ binding site could be similarly examined.The mutant proteins were fully processed with regard to proper signal peptide cleavage, γ-carboxylation, and β-hydroxylation, except, of course, for the D71A mutant in this latter case. The D48E variant possessed an additional residue of γ-carboxyglutamic acid (Gla), showing that E48 was γ-carboxylated. All of the mutants were reactive against a monoclonal antibody (MAb) specific for a Ca2+-dependent epitope within the amino-terminus of the Gla domain of r-PC, demonstrating that a proper Ca2+-dependent conformation was adopted in this region of the protein. None of the mutants, except for [D48γ]r-PC, were reactive against another Ca2+-dependent MAb which possessed specificity for Ca2+ binding to the EGF1 region of PC-this being the area of the protein that contained the mutated residues. These data strongly suggest that the alanine mutations present at D46, D48, and D71 diminished Ca2+ binding to the EGF1 domain of r-PC.Steady state kinetic analysis demonstrated that determinants for the Ca2+-dependent inhibition of the thrombin (flla)-catalyzed activation of r-PC, and for the kinetic recognition of the flla/thrombomodulin complex, were not dependent on the integrity of the Ca2+ sites present in EGF1. The lone exception was [D48γ]r-PC, which did not undergo inhibition by Ca2+, an effect likely due to the potential for altered coordination of Ca2+ due to the Gla insertion, rather than to a dependency on D48. Plasma-based anticoagulant assays, as well as individual factor Va and factor Villa inactivation assays, showed that only [D71A]r-APC possessed a significantly reduced activity compared to wild-type r-APC. These observations suggest that D/Hya71 is likely an important determinant for activity of APC toward its physiological substrates, factor Va and factor Villa.
APA, Harvard, Vancouver, ISO, and other styles
45

Hsu, C. Y., D. R. Hurwitz, M. Mervic, and A. Zilberstein. "Autophosphorylation of the intracellular domain of the epidermal growth factor receptor results in different effects on its tyrosine kinase activity with various peptide substrates. Phosphorylation of peptides representing Tyr(P) sites of phospholipase C-gamma." Journal of Biological Chemistry 266, no. 1 (January 1991): 603–8. http://dx.doi.org/10.1016/s0021-9258(18)52477-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hartman, Zachary, Werner J. Geldenhuys, and Yehenew M. Agazie. "A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2)." Journal of Biological Chemistry 295, no. 11 (February 4, 2020): 3563–75. http://dx.doi.org/10.1074/jbc.ra119.011422.

Full text
Abstract:
The Src homology phosphatase 2 (SHP2) is a cytoplasmic enzyme that mediates signaling induced by multiple receptor tyrosine kinases, including signaling by the epidermal growth factor receptor (EGFR) family (EGFR1–4 or the human homologs HER1–4). In EGFR (HER1) and EGFR2 (HER2) signaling, SHP2 increases the half-life of activated Ras by blocking recruitment of Ras GTPase-activating protein (RasGAP) to the plasma membrane through dephosphorylation of docking sites on the receptors. However, it is unclear how SHP2 selectively recognizes RasGAP-binding sites on EGFR and HER2. In this report, we show that SHP2-targeted pTyr residues exist in a specific amino acid context that allows selective binding. More specifically, we show that acidic residues N-terminal to the substrate pTyr in EGFR and HER2 mediate specific binding by the SHP2 active site, leading to blockade of RasGAP binding and optimal signaling by the two receptors. Molecular modeling studies revealed that a peptide derived from the region of pTyr992-EGFR packs well and makes stronger interactions with the SHP2 active site than with the SHP1 active site, suggesting a built-in mechanism that enables selective substrate recognition by SHP2. A phosphorylated form of this peptide inhibits SHP2 activity in vitro and EGFR and HER2 signaling in cells, suggesting inhibition of SHP2 protein tyrosine phosphatase activity by this peptide. Although we do not expect this peptide to be a strong inhibitor by itself, we foresee that the insights into SHP2 selectivity described here will be useful in future development of active-site small molecule-based inhibitors.
APA, Harvard, Vancouver, ISO, and other styles
47

Giorgetti-Peraldi, S., E. Ottinger, G. Wolf, B. Ye, T. R. Burke, and S. E. Shoelson. "Cellular effects of phosphotyrosine-binding domain inhibitors on insulin receptor signaling and trafficking." Molecular and Cellular Biology 17, no. 3 (March 1997): 1180–88. http://dx.doi.org/10.1128/mcb.17.3.1180.

Full text
Abstract:
Shc and insulin receptor substrate 1 (IRS-1) are cytoplasmic substrates of tyrosine kinase receptors that engage, localize, and activate downstream SH2 enzymes. Each contains a phosphotyrosine-binding (PTB) domain that is structurally unrelated to SH2 domains. We have designed high-affinity, cellular inhibitors of the Shc PTB domain by incorporating nonnatural, phosphatase-resistant amino acids into short peptides. None of the inhibitors bind the IRS-1 PTB domain, consistent with distinct specificities for domains. The best inhibitor of the Shc domain was introduced by electroporation into Rat1 fibroblasts that express human insulin receptors. Insulin-stimulated phosphorylation of Shc was inhibited, with no effect on IRS-1, and downstream effects on mitogen-activated protein kinase and DNA synthesis were both inhibited. The PTB domain inhibitor had less influence on epidermal growth factor-induced effects and essentially no impact on serum- or phorbol ester-induced effects. The inhibitor did not affect insulin internalization and its degradation. We conclude that the PTB domain of Shc is critical for its phosphorylation by the insulin receptor, that Shc is an important mediator of insulin's mitogenic effects, and that Shc is not central to insulin receptor cycling in these cells. PTB domains can be inhibited selectively in cells and represent potential targets for drug discovery.
APA, Harvard, Vancouver, ISO, and other styles
48

Zhou, Weixian, Feifei Xu, Danni Li, and Yun Chen. "Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry." Clinical Chemistry 64, no. 3 (March 1, 2018): 526–35. http://dx.doi.org/10.1373/clinchem.2017.274266.

Full text
Abstract:
Abstract BACKGROUND Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is a particularly aggressive type of the disease. To date, much evidence has indicated that accurate HER2 status detection is crucial for prognosis and treatment strategy selection. Thus, bioanalytical techniques for early and accurate detection of HER2 have the potential to improve patient care. Currently, the widely used immunohistochemical staining normally has problems with reproducibility and lack of standardization, resulting in poor concordance between laboratories. Aptamers are a good alternative, but the extent of their use in quantitative analysis of HER2 is limited because of the lack of effective detection methods. METHODS We developed a quasi-targeted proteomics assay and converted the HER2 signal into the mass response of reporter peptide by a combination of aptamer–peptide probe and LC-MS/MS. RESULTS The selected aptamer–peptide probe consisted of aptamer HB5 and the substrate peptide GDKAVLGVDPFR that contained the reporter peptide AVLGVDPFR. After characterization of this newly synthesized probe (e.g., conjugation efficiency, stability, binding affinity, specificity, and digestion efficiency), probe binding and trypsin shaving conditions were optimized. The resulting limit of quantification for HER2 was 25 pmol/L. Then, the quasi-targeted proteomics assay was applied to determine the HER2 concentrations in the HER2-positive breast cancer cells BT474 and SK-BR-3, the HER2-negative breast cancer cells MDA-MB-231 and MCF-7, and 36 pairs of human breast primary tumors and adjacent normal tissue samples. The results were highly concordant with those obtained by immunohistochemistry with reflex testing by fluorescent in situ hybridization. CONCLUSIONS Quasi-targeted proteomics can be a quantitative alternative for HER2 detection.
APA, Harvard, Vancouver, ISO, and other styles
49

Joseph, Jeremiah S., Maxey C. M. Chung, Kandiah Jeyaseelan, and R. Manjunatha Kini. "Amino Acid Sequence of Trocarin, a Prothrombin Activator FromTropidechis carinatus Venom: Its Structural Similarity to Coagulation Factor Xa." Blood 94, no. 2 (July 15, 1999): 621–31. http://dx.doi.org/10.1182/blood.v94.2.621.

Full text
Abstract:
Abstract Among snake venom procoagulant proteins, group II prothrombin activators are functionally similar to blood coagulation factor Xa. We have purified and partially characterized the enzymatic properties of trocarin, the group II prothrombin activator from the venom of the Australian elapid, Tropidechis carinatus (rough-scaled snake). Prothrombin activation by trocarin is enhanced by Ca2+, phospholipids, and factor Va, similar to that by factor Xa. However, its amidolytic activity on peptide substrate S-2222 is significantly lower. We have determined the complete amino acid sequence of trocarin. It is a 46,515-Dalton glycoprotein highly homologous to factor Xa and shares the same domain architecture. The light chain possesses an N-terminal Gla domain containing 11 γ-carboxyglutamic acid residues, followed by two epidermal growth factor (EGF)-like domains; the heavy chain is a serine proteinase. Both chains are likely glycosylated: the light chain at Ser 52 and the heavy chain at Asn 45. Unlike other types of venom procoagulants, trocarin is the first true structural homologue of a coagulation factor. It clots snake plasma and thus may be similar, if not identical, to snake blood coagulation factor Xa. Unlike blood factor Xa, it is expressed in high quantities and in a nonhepatic tissue, making snake venom the richest source of factor Xa-like proteins. It induces cyanosis and death in mice at 1 mg/kg body weight. Thus, trocarin acts as a toxin in venom and a similar, if not identical, protein plays a critical role in hemostasis.
APA, Harvard, Vancouver, ISO, and other styles
50

Joseph, Jeremiah S., Maxey C. M. Chung, Kandiah Jeyaseelan, and R. Manjunatha Kini. "Amino Acid Sequence of Trocarin, a Prothrombin Activator FromTropidechis carinatus Venom: Its Structural Similarity to Coagulation Factor Xa." Blood 94, no. 2 (July 15, 1999): 621–31. http://dx.doi.org/10.1182/blood.v94.2.621.414k25_621_631.

Full text
Abstract:
Among snake venom procoagulant proteins, group II prothrombin activators are functionally similar to blood coagulation factor Xa. We have purified and partially characterized the enzymatic properties of trocarin, the group II prothrombin activator from the venom of the Australian elapid, Tropidechis carinatus (rough-scaled snake). Prothrombin activation by trocarin is enhanced by Ca2+, phospholipids, and factor Va, similar to that by factor Xa. However, its amidolytic activity on peptide substrate S-2222 is significantly lower. We have determined the complete amino acid sequence of trocarin. It is a 46,515-Dalton glycoprotein highly homologous to factor Xa and shares the same domain architecture. The light chain possesses an N-terminal Gla domain containing 11 γ-carboxyglutamic acid residues, followed by two epidermal growth factor (EGF)-like domains; the heavy chain is a serine proteinase. Both chains are likely glycosylated: the light chain at Ser 52 and the heavy chain at Asn 45. Unlike other types of venom procoagulants, trocarin is the first true structural homologue of a coagulation factor. It clots snake plasma and thus may be similar, if not identical, to snake blood coagulation factor Xa. Unlike blood factor Xa, it is expressed in high quantities and in a nonhepatic tissue, making snake venom the richest source of factor Xa-like proteins. It induces cyanosis and death in mice at 1 mg/kg body weight. Thus, trocarin acts as a toxin in venom and a similar, if not identical, protein plays a critical role in hemostasis.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography