Academic literature on the topic 'Epidemics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Epidemics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Epidemics"
Moilanen, Ulla, and Sofia Paasikivi. "Esihistoriallisten tartuntatautien ja epidemioiden tutkimusmahdollisuudet Suomessa." Ennen ja nyt: Historian tietosanomat 23, no. 2 (June 1, 2023): 5–18. http://dx.doi.org/10.37449/ennenjanyt.125929.
Full textKarpova, L. S., M. Yu Pelikh, K. M. Volik, N. M. Popovtseva, T. P. Stolyarova, and D. A. Lioznov. "Evaluating the Effectiveness of New Criteria for Early Detection of the Start and Intensity of Influenza Epidemics in Russian Federation." Epidemiology and Vaccinal Prevention 22, no. 6 (January 4, 2024): 4–18. http://dx.doi.org/10.31631/2073-3046-2023-22-6-4-18.
Full textLi, Wenjie, Yanyi Nie, Wenyao Li, Xiaolong Chen, Sheng Su, and Wei Wang. "Two competing simplicial irreversible epidemics on simplicial complex." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 9 (September 2022): 093135. http://dx.doi.org/10.1063/5.0100315.
Full textKarpova, L. S., T. P. Stolyarova, and N. M. Popovtseva. "Parameters of the Influenza Epidemic in Russia in the 2019-2020 Season." Epidemiology and Vaccinal Prevention 19, no. 6 (January 14, 2021): 8–17. http://dx.doi.org/10.31631/2073-3046-2020-19-6-8-17.
Full textShi, Zizhong, Junru Li, and Xiangdong Hu. "Risk Assessment and Response Strategy for Pig Epidemics in China." Veterinary Sciences 10, no. 8 (July 26, 2023): 485. http://dx.doi.org/10.3390/vetsci10080485.
Full textGarcia-Soto, M., R. E. Fullilove, M. T. Fullilove, and K. Haynes-Sanstad. "The Peculiar Epidemic, Part I: Social Response to AIDS in Alameda County." Environment and Planning A: Economy and Space 30, no. 4 (April 1998): 731–46. http://dx.doi.org/10.1068/a300731.
Full textLi, Xin, Xingyuan He, Lu Zhou, and Shushu Xie. "Impact of Epidemics on Enterprise Innovation: An Analysis of COVID-19 and SARS." Sustainability 14, no. 9 (April 26, 2022): 5223. http://dx.doi.org/10.3390/su14095223.
Full textKarpova, L. S., T. P. Stolyarova, N. M. Popovtseva, K. A. Stolyarov, and D. M. Danilenko. "Differences Depending on the Etiology of Influenza Epidemics in 2014-2017." Epidemiology and Vaccine Prevention 17, no. 1 (February 20, 2018): 13–19. http://dx.doi.org/10.31631/2073-3046-2018-17-1-13-19.
Full textFitzpatrick, Mike. "Epidemics of epidemics." British Journal of General Practice 59, no. 566 (September 1, 2009): 705. http://dx.doi.org/10.3399/bjgp09x471747.
Full textKleczkowski, A., and C. A. Gilligan. "Parameter estimation and prediction for the course of a single epidemic outbreak of a plant disease." Journal of The Royal Society Interface 4, no. 16 (July 17, 2007): 865–77. http://dx.doi.org/10.1098/rsif.2007.1036.
Full textDissertations / Theses on the topic "Epidemics"
Chen, Jiunn-charn. "Prevention of epidemics /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487266691095848.
Full textPaterson, Ryan. "Modeling man-made epidemics." Thesis, Monterey, California. Naval Postgraduate School, 2002. http://hdl.handle.net/10945/6037.
Full textThis thesis develops a mathematical model to explore epidemic spread through the Ground Combat Element (GCE) of the Marine Expeditionary Unit (MEU). The model will simulate an epidemic caused by a biological attack using an agent that has the ability to spread through person-to-person contact (small pox, hemorrhagic fever, etc.) A stochastic modeling process will be used along with widely accepted mathematical formulas for an SEIR (Susceptible-Exposed-Infectious-Removed) epidemic model. A heterogeneous population composed of numerous homogenous subgroups with varying interaction rates simulates the unique structure of military combat units. The model will be evaluated to determine which units facilitate the most rapid spread of the epidemic. The model will then test a number of different scenarios to determine the effects of varying quarantine techniques, vaccination strategies and protective postures on the spread of the disease.
Sanatkar, Mohammad Reza. "Epidemics on complex networks." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/14097.
Full textDepartment of Electrical and Computer Engineering
Karen Garrett
Bala Natarajan
Caterina Scoglio
In this thesis, we propose a statistical model to predict disease dispersal in dynamic networks. We model the process of disease spreading using discrete time Markov chain. In this case, the vector of probability of infection is the state vector and every element of the state vector is a continuous variable between zero and one. In discrete time Markov chains, state probability vectors in each time step depends on state probability vector in the previous time step and one step transition probability matrix. The transition probability matrix can be time variant or time invariant. If this matrix’s elements are functions of elements of vector state probability in previous step, the corresponding Markov chain is non linear dynamical system. However, if those elements are independent of vector state probability, the corresponding Markov chain is a linear dynamical system. We especially focus on the dispersal of soybean rust. In our problem, we have a network of US counties and we aim at predicting that which counties are more likely to get infected by soybean rust during a year based on observations of soybean rust up to that time as well as corresponding observations to previous years. Other data such as soybean and kudzu densities in each county, daily wind data, and distance between counties helps us to build the model. The rapid growth in the number of Internet users in recent years has led malware generators to exploit this potential to attack computer users around the word. Internet users are frequent targets of malicious software every day. The ability of malware to exploit the infrastructures of networks for propagation determines how detrimental they can be to the network’s security. Malicious software can make large outbreaks if they are able to exploit the structure of the Internet and interactions between users to propagate. Epidemics typically start with some initial infected nodes. Infected nodes can cause their healthy neighbors to become infected with some probability. With time and in some cases with external intervention, infected nodes can be cured and go back to a healthy state. The study of epidemic dispersals on networks aims at explaining how epidemics evolve and spread in networks. One of the most interesting questions regarding an epidemic spread in a network is whether the epidemic dies out or results in a massive outbreak. Epidemic threshold is a parameter that addresses this question by considering both the network topology and epidemic strength.
Strazzulla, Anthony Mark. "Diagnosis in Hippocrates' Epidemics." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014441.
Full textMunday, Paul. "Importance Sampling in Spatial Epidemics." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504438.
Full textSarzynska, Marta. "Spatial community structure and epidemics." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:fd841775-0fdb-4c95-a1a8-01065ada1838.
Full textBlount, Steven Michael 1958. "Computational methods for stochastic epidemics." Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/288714.
Full textNeal, Peter. "Epidemics with two levels of mixing." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394751.
Full textLivingston, Samantha 1980. "Stochastic models for epidemics on networks." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28437.
Full textIncludes bibliographical references (p. 37).
In this thesis, I looked at an extension of the Reed-Frost epidemic model which had two-sub-populations. By setting up a Markov chain to model the epidemic and finding the transition probabilities of that chain, MATLAB could be used to solve for the expected number of susceptibles and the expected duration. I simulated the model with more tan two sub-populations to find the average number of susceptibles and reviewed previously solved stochastic spatial models to understand how to solve the multiple-population Reed-Frost model on a network.
by Samantha Livingston.
M.Eng.
BARREIROS, Emanoel Francisco Spósito. "The epidemics of programming language adoption." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18000.
Full textMade available in DSpace on 2016-10-17T18:29:55Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) phd_efsb_FINAL_BIBLIOTECA.pdf: 7882904 bytes, checksum: df094c44eb4ce5be12596263047790ed (MD5) Previous issue date: 2016-08-29
FACEPE
Context: In Software Engineering, technology transfer has been treated as a problem that concernsonly two agents (innovation and adoption agents) working together to fill the knowledge gap between them. In this scenario, the transfer is carried out in a “peer-to-peer” fashion, not changing the reality of individuals and organizations around them. This approach works well when one is just seeking the adoption of a technology by a“specific client”. However, it can not solve a common problem that is the adoption of new technologies by a large mass of potential new users. In a wider context like this, it no longer makes sense to focus on “peer-to-peer” transfer. A new way of looking at the problem is necessary. It makes more sense to approach it as diffusion of innovations, where there is an information spreading in a community, similar to that observed in epidemics. Objective: This thesis proposes a paradigm shift to show the adoption of programming languages can be formally addressed as an epidemic. This focus shift allows the dynamics of programming language adoption to be mathematically modelled as such, and besides finding models that explain the community’s behaviour when adopting programming languages, it allows some predictions to be made, helping both individuals who wish to adopt a new language that might seem to be a new industry standard, and language designers to understand in real time the adoption of a particular language by a community. Method: After a proof of concept with data from Sourceforge (2000 to 2009), data from GitHub (2009 to January 2016), a well-known open source software repository, and Stack Overflow (2008 to March 2016), a popular Q&A system for software developers, were obtained and preprocessed. Using cumulative biological growth functions, often used in epidemiological contexts, we obtained adjusted models to the data. Once with the adjusted models, we evaluated their predictive capabilities through repeated applications of hypothesis testing and statistical calculations in different versions of the models obtained after adjusting the functions to samples of different time frames from the repositories. Results: We show that programming language adoption can be formally considered an epidemiological phenomenon by adjusting a well-known mathematical function used to describe such phenomena. We also show that, using the models found, it is possible to forecast programming languages adoption. We also show that it is possible to have similar insights by observing user data, as well as data from the community itself, not using software developers as susceptible individuals. Limitations: The forecast of the adoption outcome (asymptote) needs to be taken with care because it varies depending on the sample size, which also influences the quality of forecasts in general. Unfortunately, we not always have control over the sample size, because it depends on the population under analysis. The forecast of programming language adoption is only valid for the analysed population; generalizations should be made with caution. Conclusion: Addressing programming languages adoption as an epidemiological phenomenon allows us to perform analyses not possible otherwise. We can have an overview of a population in real time regarding the use of a programming language, which allows us, as innovation agents, to adjust our technology if it is not achieving the desired “penetration”; as adoption agents, we may decide, ahead of our competitors, to adopt a seemingly promising technology that may ultimately become a standard.
Contexto: Em Engenharia de Software, transferência de tecnologia tem sido tratada como um problema pontual, um processo que diz respeito a dois agentes (os agentes de inovação e adoção) trabalhando juntos para preencher uma lacuna no conhecimento entre estes dois. Neste cenário, a transferência é realizada “ponto a ponto”, envolvendo e tendo efeito apenas nos indivíduos que participam do processo. Esta abordagem funciona bem quando se está buscando apenas a adoção da tecnologia por um “cliente” específico. No entanto, ela não consegue resolver um problema bastante comum que é a adoção de novas tecnologias por uma grande massa de potenciais novos usuários. Neste contexto mais amplo, não faz mais sentido focar em transferência ponto a ponto, faz-se necessária uma nova maneira de olhar para o problema. É mais interessante abordá-lo como difusão de inovações, onde existe um espalhamento da informação em uma comunidade, de maneira semelhante ao que se observa em epidemias. Objetivo: Esta tese de doutorado mostra que a adoção de linguagens de programação pode ser tratada formalmente como uma epidemia. Esta mudança conceitual na maneira de olhar para o fenômeno permite que a dinâmica da adoção de linguagens de programação seja modelada matematicamente como tal, e além de encontrar modelos que expliquem o comportamento da comunidade quando da adoção de uma linguagem de programação, permite que algumas previsões sejam realizadas, ajudando tanto indivíduos que desejem adotar uma nova linguagem que parece se apresentar como um novo padrão industrial, quanto ajudando projetistas de linguagens a entender em tempo real a adoção de uma determinada linguagem pela comunidade. Método: Após uma prova de conceito com dados do Sourceforge (2000 a 2009), dados do GitHub (2009 a janeiro de 2016) um repositório de projetos software de código aberto, e Stack Overflow (2008 a março de 2016) um popular sistema de perguntas e respostas para desenvolvedores de software, from obtidos e pré processados. Utilizando uma função de crescimento biológico cumulativo, frequentemente usada em contextos epidemiológicos, obtivemos modelos ajustados aos dados. Uma vez com os modelos ajustados, realizamos avaliações de sua precisão. Avaliamos suas capacidades de previsão através de repetidas aplicações de testes de hipóteses e cálculos de estatísticas em diferentes versões dos modelos, obtidas após ajustes das funções a amostras de diferentes tamanhos dos dados obtidos. Resultados: Mostramos que a adoção de linguagens de programação pode ser considerada formalmente um fenômeno epidemiológico através do ajuste de uma função matemática reconhecidamente útil para descrever tais fenômenos. Mostramos também que é possível, utilizando os modelos encontrados, realizar previsões da adoção de linguagens de programação em uma determinada comunidade. Ainda, mostramos que é possível obter conclusões semelhantes observando dados de usuários e dados da comunidade apenas, não usando desenvolvedores de software como indivíduos suscetíveis. Limitações: A previsão do limite superior da adoção (assíntota) não é confiável, variando muito dependendo do tamanho da amostra, que também influencia na qualidade das previsões em geral. Infelizmente, nem sempre teremos controle sob o tamanho da amostra, pois ela depende da população em análise. A adoção da linguagem de programação só é válida para a população em análise; generalizações devem ser realizadas com cautela. Conclusão: Abordar o fenômeno de adoção de linguagens de programação como um fenômeno epidemiológico nos permite realizar análises que não são possíveis de outro modo. Podemos ter uma visão geral de uma população em tempo real no que diz respeito ao uso de uma linguagem de programação, o que nos permite, com agentes de inovação, ajustar a tecnologia caso ela não esteja alcançando o alcance desejado; como agentes de adoção, podemos decidir por adotar uma tecnologia aparentemente promissora que pode vir a se tornar um padrão.
Books on the topic "Epidemics"
Eberhard-Metzger, Claudia. Las epidemias. Madrid: Acento Editorial, 1998.
Find full textBjørnstad, Ottar N. Epidemics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97487-3.
Full textBjørnstad, Ottar N. Epidemics. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-12056-5.
Full textHaugen, David M. Epidemics. Detroit [Mich.]: Gale cengage Learning/Greenhaven Press, 2011.
Find full textBisen, Prakash S., and Ruchika Raghuvanshi. Emerging Epidemics. Hoboken, NJ: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118393277.
Full textChristopher, Mari, ed. Global epidemics. Bronx, NY: H.W. Wilson Company, 2007.
Find full text1964-, Dudley William, ed. Epidemics: Opposing viewpoints. San Diego, Calif: Greenhaven Press, 1999.
Find full textJohn, Balint, ed. Ethics and epidemics. Amsterdam: Elsevier, 2006.
Find full text1960-, Williams Mary E., ed. Epidemics: Opposing viewpoints. Farmington Hills, MI: Greenhaven Press, 2005.
Find full textChong, Alberto. Technology and epidemics. [Washington, D.C.]: International Monetary Fund, African Department, 1999.
Find full textBook chapters on the topic "Epidemics"
Chakraborty, Rhyddhi. "Epidemics." In Encyclopedia of Global Bioethics, 1–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05544-2_174-1.
Full textChakraborty, Rhyddhi. "Epidemics." In Encyclopedia of Global Bioethics, 1–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05544-2_174-2.
Full textChakraborty, Rhyddhi. "Epidemics." In Encyclopedia of Global Bioethics, 1–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-05544-2_174-3.
Full textShekhar, Shashi, and Hui Xiong. "Epidemics." In Encyclopedia of GIS, 287. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_360.
Full textKamieński, Łukasz. "Epidemics." In The Palgrave Encyclopedia of Global Security Studies, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-74336-3_532-1.
Full textRaczynski, Stanislaw. "Epidemics." In Catastrophes and Unexpected Behavior Patterns in Complex Artificial Populations, 103–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2574-9_6.
Full textChakraborty, Rhyddhi. "Epidemics." In Encyclopedia of Global Bioethics, 1130–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-09483-0_174.
Full textKamieński, Łukasz. "Epidemics." In The Palgrave Encyclopedia of Global Security Studies, 470–81. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-319-74319-6_532.
Full textEpstein, Jonathan H., and Hume E. Field. "Anthropogenic Epidemics." In Bats and Viruses, 249–79. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118818824.ch10.
Full textFerhani, Adam, and Gregory Stiles. "Mapping epidemics." In Mapping and Politics in the Digital Age, 87–101. Abingdon, Oxon : New York, NY ; Routledge, 2019. |: Routledge, 2018. http://dx.doi.org/10.4324/9781351124485-6.
Full textConference papers on the topic "Epidemics"
Pinto, Conrado C., and Daniel R. Figueiredo. "Identifying Asymptomatic Nodes in Network Epidemics using Betweenness Centrality." In Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/wperformance.2024.2414.
Full textSchwartz, Ira B., and Lora Billings. "Stochastic epidemic outbreaks: why epidemics are like lasers." In Second International Symposium on Fluctuations and Noise, edited by Zoltan Gingl. SPIE, 2004. http://dx.doi.org/10.1117/12.547642.
Full textThaler, Jonathan, Thorsten Altenkirch, and Peer-Olaf Siebers. "Pure Functional Epidemics." In IFL 2018: 30th Symposium on Implementation and Application of Functional Languages. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3310232.3310372.
Full textLi, Yunna. "Impact of inter-city population mobility and public transportation policies on infectious epidemics." In Post-Oil City Planning for Urban Green Deals Virtual Congress. ISOCARP, 2020. http://dx.doi.org/10.47472/aoto6191.
Full textSouza, Ronald, and Daniel Figueiredo. "Characterizing Protection Effects on Network Epidemics driven by Random Walks." In Workshop em Desempenho de Sistemas Computacionais e de Comunicação. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/wperformance.2020.11109.
Full textBulygin, Yuriy. "Epidemics of Mobile Worms." In 2007 IEEE International Performance, Computing, and Communications Conference. IEEE, 2007. http://dx.doi.org/10.1109/pccc.2007.358929.
Full textRoychoudhury, Sohini, Sanjoy Das, Caterina Scoglio, Swagatam Das, Bijaya K. Panigrahi, and Shyyam S. Pattnaik. "Mitigation strategies in epidemics." In the 12th annual conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1830483.1830725.
Full textLotidis, Kyriakos, Aris L. Moustakas, and Nicholas Bambos. "Controlling Epidemics via Testing." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683289.
Full textBaranov, E. "Demographic Aspects of Epidemics in the USSR in Modern Historiography." In XIII Ural Demographic Forum. Global challenges to demographic development. Institute of Economics of the Ural Branch of RAS, 2022. http://dx.doi.org/10.17059/udf-2022-1-2.
Full textShalak, Alexander. "The Extrapolation of Experience Neutralization Epidemic Diseases in the 1940s. On the Coronavirus in Modern Russia (on the Example of the Irkutsk Region)." In Irkutsk Historical and Economic Yearbook 2021. Baikal State University, 2021. http://dx.doi.org/10.17150/978-5-7253-3040-3.11.
Full textReports on the topic "Epidemics"
Vaishnav, Y. Coronaviruses: Epidemics and Pandemics. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1618194.
Full textEichenbaum, Martin, Sergio Rebelo, and Mathias Trabandt. The Macroeconomics of Epidemics. Cambridge, MA: National Bureau of Economic Research, March 2020. http://dx.doi.org/10.3386/w26882.
Full textAksoy, Cevat Giray, Barry Eichengreen, and Orkun Saka. The Political Scar of Epidemics. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27401.
Full textAtkeson, Andrew. Behavior and the Dynamics of Epidemics. Cambridge, MA: National Bureau of Economic Research, May 2021. http://dx.doi.org/10.3386/w28760.
Full textPu, lei, Peng Sun, and hongchao zheng. Effects of Exercise on Cardiovascular Epidemics. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2022. http://dx.doi.org/10.37766/inplasy2022.12.0024.
Full textSow, Khoudia, and Mariam Boyon. Roundtable report: Epidemic preparedness and response in Senegal. Institute of Development Studies, August 2024. http://dx.doi.org/10.19088/sshap.2024.034.
Full textMoore, Timothy, and Rosalie Liccardo Pacula. Causes and Consequences of Illicit Drug Epidemics. Cambridge, MA: National Bureau of Economic Research, December 2021. http://dx.doi.org/10.3386/w29528.
Full textCaparini, Marina. Multilateral Peace Operations and the Challenges of Epidemics and Pandemics. Stockholm International Peace Research Institute, October 2022. http://dx.doi.org/10.55163/awyk9746.
Full textEichenbaum, Martin, Sergio Rebelo, and Mathias Trabandt. Epidemics in the Neoclassical and New Keynesian Models. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27430.
Full textCarlberg, Matthew A. Epidemics Don't Cause Wars, But They Can End 'Em. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada403988.
Full text