Academic literature on the topic 'Eph and ephrin interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Eph and ephrin interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Eph and ephrin interactions"

1

PRESTOZ, LAETITIA, ELLI CHATZOPOULOU, GREGORY LEMKINE, NATHALIE SPASSKY, BARBARA LEBRAS, TETSUSHI KAGAWA, KATZUHIRO IKENAKA, BERNARD ZALC, and JEAN-LÉON THOMAS. "Control of axonophilic migration of oligodendrocyte precursor cells by Eph–ephrin interaction." Neuron Glia Biology 1, no. 1 (February 2004): 73–83. http://dx.doi.org/10.1017/s1740925x04000109.

Full text
Abstract:
The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell–cell and matrix–cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB 2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs. Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph–ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Yan, Dorothea Robev, Nayanendu Saha, Bingcheng Wang, Matthew B. Dalva, Kai Xu, Juha P. Himanen, and Dimitar B. Nikolov. "The Ephb2 Receptor Uses Homotypic, Head-to-Tail Interactions within Its Ectodomain as an Autoinhibitory Control Mechanism." International Journal of Molecular Sciences 22, no. 19 (September 28, 2021): 10473. http://dx.doi.org/10.3390/ijms221910473.

Full text
Abstract:
The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell–cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell–cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph–ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph–Eph interfaces. One Eph–Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor–receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.
APA, Harvard, Vancouver, ISO, and other styles
3

Xu, Qiling, Georg Mellitzer, and David G. Wilkinson. "Roles of Eph receptors and ephrins in segmental patterning." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, no. 1399 (July 29, 2000): 993–1002. http://dx.doi.org/10.1098/rstb.2000.0635.

Full text
Abstract:
Eph receptor tyrosine kinases and their membrane–bound ligands, ephrins, have key roles in patterning and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two groups: EphA receptors bind to glycosylphosphatidyl inositol–anchored ephrin–A ligands, and EphB receptors bind to transmembrane ephrin–B proteins. Ephrin–B proteins transduce signals, such that bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph receptors and ephrins is to mediate cell contact–dependent repulsion, and this has been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling between hindbrain segments. Studies in an in vitro system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishment and maintenance of patterns of cellular organization.
APA, Harvard, Vancouver, ISO, and other styles
4

Holder, N., and R. Klein. "Eph receptors and ephrins: effectors of morphogenesis." Development 126, no. 10 (May 15, 1999): 2033–44. http://dx.doi.org/10.1242/dev.126.10.2033.

Full text
Abstract:
Eph receptor tyrosine kinases and their ligands, the ephrins, appear to lie functionally at the interface between pattern formation and morphogenesis. We review the role of Eph and ephrin signalling in the formation of segmented structures, in the control of axon guidance and cell migration and in the development of the vasculature. We address the question of how the specificity of response is achieved and discuss the specificity of ephrin-Eph interactions and the significance of structural domains in Eph receptors.
APA, Harvard, Vancouver, ISO, and other styles
5

Arcas, Aida, David G. Wilkinson, and M. Ángela Nieto. "The Evolutionary History of Ephs and Ephrins: Toward Multicellular Organisms." Molecular Biology and Evolution 37, no. 2 (October 7, 2019): 379–94. http://dx.doi.org/10.1093/molbev/msz222.

Full text
Abstract:
Abstract Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell–cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell–cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.
APA, Harvard, Vancouver, ISO, and other styles
6

Prévost, Nicolas, Donna S. Woulfe, Massimiliano Tognolini, Takako Tanaka, Wenying Jian, Ryan R. Fortna, Hong Jiang, and Lawrence F. Brass. "Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1." Blood 103, no. 4 (February 15, 2004): 1348–55. http://dx.doi.org/10.1182/blood-2003-06-1781.

Full text
Abstract:
Abstract We have previously shown that platelets express 2 receptor tyrosine kinases, EphA4 and EphB1, and the Eph kinase ligand, ephrinB1, and proposed that transcellular Eph/ephrin interactions made possible by the onset of platelet aggregation promote the further growth and stability of the hemostatic plug. The present study examines how this might occur. The results show that clustering of either ephrinB1 or EphA4 causes platelets to adhere to immobilized fibrinogen via αIIbβ3. Adhesion occurs more slowly than with adenosine diphosphate (ADP) and requires phosphatidylinositol 3 (PI3)–kinase and protein kinase C activity but not ephrinB1 phosphorylation. By itself, Eph and ephrin signaling is insufficient to cause aggregation or the binding of soluble fibrinogen, but it can potentiate aggregation initiated by a Ca++ ionophore or by agonists for thrombin and thromboxane receptors. It also enhances Rap1 activation without requiring ADP secretion, ephrinB1 phosphorylation, or the activation of PI3-kinase and Src. From this we conclude that (1) Eph/ephrin signaling enhances the ability of platelet agonists to cause aggregation provided that those agonists can increase cytosolic Ca++; (2) this is accomplished in part by activating Rap1; and (3) these effects require oligomerization of ephrinB1 but not phosphotyrosine-based interactions with the ephrinB1 cytoplasmic domain.
APA, Harvard, Vancouver, ISO, and other styles
7

Fujiwara, Hiroshi, Yoshihiro Nishioka, Hisanori Matsumoto, Koh Suginami, Akihito Horie, Hirohiko Tani, Noriomi Matsumura, et al. "Eph-Ephrin A System Regulates Human Choriocarcinoma–Derived JEG-3 Cell Invasion." International Journal of Gynecologic Cancer 23, no. 3 (March 2013): 576–82. http://dx.doi.org/10.1097/igc.0b013e3182849e36.

Full text
Abstract:
ObjectivesThe Eph-ephrin system is a unique system that can induce multiple cellular responses such as cell migration, regulation of angiogenesis, and axonal guidance. Previously, the Eph-ephrin system was reported to regulate human extravillous trophoblast invasion. In this study, we examined the possible involvement of the Eph-ephrin system in the invasion of malignant gestational trophoblastic diseases using a human choriocarcinoma–derived cell line, JEG-3.MethodsThe mRNA expression of class A Ephs and ephrins on JEG-3 cells was examined by reverse transcription–polymerase chain reaction. The effects of recombinant human Eph A1 (r-Eph A1) and r-ephrin A4 on the proliferation and invasion of JEG-3 cells were investigated by cell proliferation and Matrigel invasion assays. The alterations of integrin expression on JEG-3 cells in the presence of r-Eph A1 and r-ephrin A4 were investigated by flow cytometry. The induction of phosphorylation of focal adhesion kinase in JEG-3 cells by r-ephrin A4 was examined by Western blot analysis.ResultsBy reverse transcription–polymerase chain reaction, mRNAs of Eph A1, A2, and A4 and ephrin A1, A4, and A5 were detected on JEG-3 cells. In Matrigel invasion assay, both r-Eph A1 and r-ephrin A4 promoted the invasion of JEG-3 cells without affecting cell proliferation. During 24-hour culture with r-Eph A1 and r-ephrin A4, the increase in integrin α 5 expression on JEG-3 cells was observed by flow cytometry. Western blotting analysis showed that r-ephrin A4 induced dephosphorylation of focal adhesion kinase in JEG-3 cells.ConclusionsThese findings suggest that Eph-ephrin interaction plays some role in the regulation of choriocarcinoma invasion in cooperation with integrins.
APA, Harvard, Vancouver, ISO, and other styles
8

Wimmer-Kleikamp, Sabine H., Peter W. Janes, Anthony Squire, Philippe I. H. Bastiaens, and Martin Lackmann. "Recruitment of Eph receptors into signaling clusters does not require ephrin contact." Journal of Cell Biology 164, no. 5 (March 1, 2004): 661–66. http://dx.doi.org/10.1083/jcb.200312001.

Full text
Abstract:
Eph receptors and their cell membrane–bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5–coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph–Eph interactions.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Wenqing, Lai Wen, Bhavisha Rathod, Anne-Claude Gingras, Klaus Ley, and Ho-Sup Lee. "Kindlin2 enables EphB/ephrinB bi-directional signaling to support vascular development." Life Science Alliance 6, no. 3 (December 27, 2022): e202201800. http://dx.doi.org/10.26508/lsa.202201800.

Full text
Abstract:
Direct contact between cells expressing either ephrin ligands or Eph receptor tyrosine kinase produces diverse developmental responses. Transmembrane ephrinB ligands play active roles in transducing bi-directional signals downstream of EphB/ephrinB interaction. However, it has not been well understood how ephrinB relays transcellular signals to neighboring cells and what intracellular effectors are involved. Here, we report that kindlin2 can mediate bi-directional ephrinB signaling through binding to a highly conserved NIYY motif in the ephrinB2 cytoplasmic tail. We show this interaction is important for EphB/ephrinB-mediated integrin activation in mammalian cells and for blood vessel morphogenesis during zebrafish development. A mixed two-cell population study revealed that kindlin2 (in ephrinB2-expressing cells) modulates transcellular EphB4 activation by promoting ephrinB2 clustering. This mechanism is also operative for EphB2/ephrinB1, suggesting that kindlin2-mediated regulation is conserved for EphB/ephrinB signaling pathways. Together, these findings show that kindlin2 enables EphB4/ephrinB2 bi-directional signal transmission.
APA, Harvard, Vancouver, ISO, and other styles
10

Janes, Peter W., Bettina Griesshaber, Lakmali Atapattu, Eva Nievergall, Linda L. Hii, Anneloes Mensinga, Chanly Chheang, et al. "Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors." Journal of Cell Biology 195, no. 6 (December 5, 2011): 1033–45. http://dx.doi.org/10.1083/jcb.201104037.

Full text
Abstract:
Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph–Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Eph and ephrin interactions"

1

Rodríguez, Franco Pilar. "Mechanics of boundary formation in epithelial monolayers by Eph-ephrin interactions." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/461913.

Full text
Abstract:
For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries is commonly attributed to local mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical patterns. We analyzed the formation of repulsive epithelial boundaries between two epithelial monolayers, one expressing the receptor tyrosine kinase EphB2 and one expressing its ligand ephrinB1. Upon contact, both monolayers exhibited oscillatory patterns of traction forces and intercellular stresses that spanned several cell rows and tended to pull cell-matrix adhesions away from the boundary. With time, monolayers jammed and supracellular mechanical patterns became long-lived, thereby permanently contributing to sustain tissue segregation. Jamming was paralleled by the emergence of soliton-like deformation waves that propagated away from the boundary. This phenomenon was not specific to EphB2-ephrinB1 repulsion but was also present during the formation of boundaries with an inert interface. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.
Para que un organismo desarrolle y mantenga la homeostasis, a menudo los tipos celulares con distintas funciones deben estar separados por barreras físicas. La formación y mantenimiento de dichas barreras se suele atribuir a mecanismos locales restringidos a las células que las bordean. En este trabajo mostramos que, además de estos mecanismos subcelulares locales, la formación y el mantenimiento de las barreras físicas entre tejidos implica patrones mecánicos de largo alcance y larga duración. En particular, hemos analizado la formación de barreras epiteliales repulsivas entre dos monocapas epiteliales, una que expresa el receptor tirosina quinasa EphB2 y otra que expresa su ligando ephrinB1. Tras el contacto, ambas monocapas exhibieron patrones oscilatorios de fuerzas de tracción y tensiones intercelulares que involucraban varias hileras de células y que tendían a retirar las adhesiones célula-matriz hacia fuera de la barrera. Con el paso del tiempo, las monocapas se densificaron y los patrones mecánicos supracelulares se volvieron estables, contribuyendo así a mantener la segregación tisular permanentemente. La aglomeración de células fue acompañada por la aparición de ondas de deformación, similares a solitones, que se propagaron hasta más allá del campo de visión. Este fenómeno no es específico de las barreras repulsivas controladas por el par EphB2-ephrinB1, sino que también aparecen cuando una única monocapa interfiere con una interfaz inerte. Nuestros hallazgos revelan un mecanismo físico global que mantiene la separación entre tejidos independientemente de las características bioquímicas y mecánicas del límite tisular local.
APA, Harvard, Vancouver, ISO, and other styles
2

Prévost, Nicolas. "Les interactions entre plaquettes assurent l'irreversibilité de l'agrégation plaquettaire : un rôle pour les récepteurs Eph et ephrines." Paris 7, 2004. http://www.theses.fr/2004PA077222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jungas, Thomas. "Caractérisation du rôle de la signalisation Eph-éphrine dans la division cellulaire." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30102/document.

Full text
Abstract:
Au sein d'un organisme les cellules se divisent et assurent la croissance, la différentiation et l'homéostasie des tissus. Des travaux récents proposent qu'elles communiquent activement entre voisines au sein des organes solides pour coordonner leur propre division et la préservation de l'intégrité tissulaire. Nous proposons que la signalisation Eph-éphrine, acteur de la communication cellulaire locale, participe à cette coordination entre division cellulaire et cohésion du tissu. Au cours de ma thèse, j'ai démontré dans plusieurs modèles cellulaires que la signalisation Eph-éphrine contrôle la division cellulaire et peut induire des retards dans l'abscission et de la polyploïdie. J'ai prouvé par vidéomicrosocpie que ces défauts d'abscission dépendent du domaine catalytique du récepteur EphB2 et de l'activation de la protéine tyrosine kinase relais c-Src. En cascade, c-Src phosphoryle un régulateur clé de la stabilité du pont intercellulaire, la protéine citron kinase (CitK). J'ai également observé que CitK était anormalement localisé durant la cytocinése en aval de la voie Eph. Par des essais kinase in vitro, j'ai exclu une phosphorylation directe de CitK par le récepteur Eph et identifié c-Src comme capable de phosphoryler directement CitK. J'ai identifié les résidus tyrosines de CitK phosphorylés par c-Src, mutés deux d'entre eux et à l'aide d'analyses de sauvetage phénotypique, démontré que ces résidus étaient nécessaires et suffisants pour induire des défauts d'abscission. J'ai ensuite validé in vivo ce rôle original de la voie Eph-éphrine, dans le contexte du développement neuronal chez la souris. Plusieurs membres de la famille des Eph-éphrines sont exprimés dans les progéniteurs neuraux à l'origine des neurones corticaux et des auteurs ont montrés que CitK contrôle la cytocinèse de ces cellules. En utilisant un système Cre-lox, j'ai spécifiquement éteint la signalisation Eph dans ces progéniteurs et observé une modification de la ploïdie neuronale dans ces animaux. J'ai également observé dans les progéniteurs neuraux une co-localisation physiologique de résidus tyrosines phosphorylés et de la protéine CitK, qui adopte un enrichissement apical caractéristique. Ces résultats suggèrent notamment que la signalisation Eph-éphrine pourrait contrôler l'abscission des progéniteurs neuraux via la phosphorylation de CitK. La cytocinèse est aujourd'hui décrite comme un processus cellulaire autonome orchestré par la machinerie intracellulaire. Les résultats obtenus durant mon doctorat suggèrent que la cytocinèse est également régulée par l'environnement local de la cellule comme j'en ai fait la démonstration avec la signalisation Eph-éphrine. D'autre part, mes travaux suggèrent que la phosphorylation de CitK sert d'interrupteur moléculaire durant la progression à travers la division cellulaire et le contrôle de la ploïdie des neurones
Cells within an organism successfully divide to ensure growth, differentiation and homeostasie. Recent work suggests that dividing cells actively communicate with neighbours thus spatially and temporally coordinating cell division while maintaining tissue cohesiveness. We hypothesized that Eph-ephrin signalling, a local cell-cell signalling pathway, could participate in coordinating cell division within a tissue. Using vertebrate and invertebrate cell culture models I showed that Eph-signalling controls cell division and induces delay in the abscission of nascent daughter cells as well as polyploidy. Using time-lapse imaging I proved that the Eph-mediated abscission failure depends on the catalytic activity of the receptor via the non receptor tyrosine kinase relay molecule c-Src. Downstream of Eph signalling c-Src phosphorylates the protein citron kinase (CitK) a well known regulator of intercellular bridge stability. I also observed that CitK was abnormally localized during cytokinesis when Eph signalling was active. Further, using in vitro kinase assays, I demonstrated that Eph does not directly phosphorylate CitK but that c-Src could do so. In addition, using Mass Spectrometry I mapped all tyrosine residues directly phosphorylated by c-Src. I mutated two of them located in the Rho binding domain of CitK and demonstrated that phosphorylation of those residues are necessary and sufficient to induce cytokinesis failure. I validated in vivo this novel role of Eph-ephrin signalling in a physiological context in the developing mouse neocortex. Members of the Eph/ephrin family are expressed in neural progenitors that give rise to neurons of the cortex upon neurogenic division. Importantly, CitK has been shown by others to control cytokinesis of these progenitor cells. Using the Cre-lox system, I specifically turned off Eph forward signalling in neural progenitor cells and observed an alteration of neuronal ploidy in these mutant animals. Further, I also observed that CitK which adopts a particular apical localisation in neural progenitors physiologically co-localized with phosphorylated tyrosine residues. Altogether, these results suggest that Eph-ephrin signalling controls abscission of neural progenitors by promoting phosphorylation of CitK. The textbook view of cytokinesis is that it is a cell autonomous event orchestrated by the intracellular machinery. Data obtained during my PhD suggest that cytokinesis is also regulated by local environment, here Eph/ephrin signalling, and that phosphorylation of CitK may represent a molecular switch in the normal progression of cell division and in the control of neuronal ploidy
APA, Harvard, Vancouver, ISO, and other styles
4

Çelik, Arzu. "Restricted and complementary expression patterns of EPH receptors and Ephrin ligands define potential interaction sites in the embryonic and adult olfactory system of zebrafish, Danio rerio." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964922754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zimmer, Manuel. "Mechanisms of Eph, ephrin mediated cell-cell communication." Diss., [S.l.] : [s.n.], 2003. http://edoc.ub.uni-muenchen.de/archive/00001547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gregory, L. G. L. "Eph-ephrin signalling in cell sorting and directional migration." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1318081/.

Full text
Abstract:
An important problem in developmental biology is to understand how precise patterns of cell types are maintained during development. Eph receptor tyrosine kinases and ephrins have key roles in stabilising these patterns of cell organisation and segregation during development and can restrict the movement of cells by promoting cell repulsion. Previous work by Alexei Poliakov in the Wilkinson lab has shown that Eph-ephrin signalling leads to directional persistence of migration, and modelling suggests that this can contribute to cell segregation. In order to test experimentally the contribution of directional persistence in cell segregation, I have used and developed in vitro assays to dissect the roles of EphB2-ephrinB1 signalling in cell segregation, boundary sharpening and directional persistence. In these assays, stable HEK293 cell lines expressing EphB2 or ephrinB1 are mixed in cell culture and this leads to segregation of the two cell populations. Plating these cells either side of a removable barrier and allowing migration of cells towards each other leads to the formation of a sharp boundary on interaction. Analysis of cell behaviour shows EphB2 cells to move more persistently after interaction with ephrinB1 cells. To analyse how EphB2-ephrinB1 interactions lead to directional persistence of migration, my studies have focussed on the role of components potentially involved in directional persistence that act downstream of EphB2-ephrinB1 signalling, including the planar cell polarity (PCP) pathway (Dishevelled and Daam1) and core polarity components such as the PAR proteins (PAR-3 and PAR-6B). The PCP and PAR components were all found to have roles in cell segregation, as siRNA-mediated knockdown of each of these components disrupted EphB2-ephrinB1 mediated cell segregation and boundary sharpening. However, cell behaviour studies showed that only Dishevelled and PAR-6B have roles in EphB2-ephrinB1 mediated directional persistence, whilst Daam1 knockdown has no effect on the migratory response of cells. PAR-3 knockdown affects the basal ability of cells to migrate, potentially due to its role in establishing front-rear polarity. Taken together, these findings can be explained by a model in which Dishevelled and PAR-6B have a role in EphB2-ephrinB1 mediated directional persistence required for cell segregation and boundary sharpening. I propose that Daam1 may function in the contact inhibition of locomotion between cells also required for segregation.
APA, Harvard, Vancouver, ISO, and other styles
7

Batson, Jennifer. "Regulation of contact inhibition of locomotion by Eph-ephrin signalling." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627947.

Full text
Abstract:
Metastatic prostate cancer cells display EphB receptor-mediated attraction when they contact stromal fibroblasts but EphA-driven repulsion and contact inhibition of locomotion (CIL) when they contact one another. The impact of these social interactions between cells during cancer cell invasion and the signalling mechanisms downstream of Eph receptors are unclear. Here, I show that EphA receptors drive prostate cancer cell dissemination in a 20 dispersal assay and a 3D cancer cell" spheroid assay by activating repulsive interactions and CIL between contacting prostate cancer cells. I show that EphA receptors interact with the exchange factor Vav2 to activate RhoA, and that both Vav2 and RhoA are required for prostate cancer cell-cell repulsion. Using pharmacological inhibitors I show actomyosin contractility is not a key driver of CIL. I find instead that microtubule dynamics are important for generating the front-rear polarity switch required during CIL, and that EphA2/EphA4, Vav2 and RhoA affect microtubule stability in prostate cancer cells. Furthermore, I find that in EphA2/EphA4, Vav2 or RhoA knockdown cells, contact repulsion can be restored by partial microtubule destabilisation. I propose that EphAVav2- RhoA-mediated repulsion between contacting cancer cells at the tumour edge could enhance their local metastatic invasion and dissemination from the primary tumour. Subsequently, EphB-mediated attractive migration and failure of CIL, between prostate cancer cells contacting ephrin-B2· expressing fibroblasts, could facilitate cancer cell invasion through the surrounding stroma. Stimulation of prostate cancer cells with ephrin-B2lFc leads to filopodia formation and activation of Cdc42. I show that Cdc42-silenced PC-3 cells have significantly impaired migration towards surface coated ephrin-B2 compared with control siRNA-treated cells. Furthermore, Cdc42 is required for attractive migration and defective CIL during collisions b~tween advanced prostate cancer cells and ephrin-B2-expressing fibroblasts. Using organotypic 3D gel invasion assays, I show that ephrin-B2 expressing fibroblasts enhance prostate cancer cell invasion. These data suggest that EphB-Cdc42-mediated attractive interactions with fibroblasts and defective CIL might facilitate prostate cancer cell invasion through the surrounding stroma.
APA, Harvard, Vancouver, ISO, and other styles
8

Finkelmeier, Fabian [Verfasser]. "Die Rolle des Eph/Ephrin Systems bei Hirntumoren / Fabian Finkelmeier." Gießen : Universitätsbibliothek, 2011. http://d-nb.info/1063111358/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fujii, Haruko. "Eph-ephrin A system regulates murine blastocyst attachment and spreading." Kyoto University, 2010. http://hdl.handle.net/2433/97940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Campbell, Jessica. "The regulation of cell migration and invasion by Eph-ephrin signalling." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.688221.

Full text
Abstract:
Cell migration and invasion are essential aspects of normal cellular behaviour, however abnormal cell migration can lead to defects in essential cell processes, such as wound healing, or can also promote diseases such as cancer. Cell migration can be regulated by many factors and, importantly, can depend upon a cells interaction with its surrounding cellular microenvironment. Eph receptors are the largest family of receptor tyrosine kinases and are essential in transmitting signals between cells as, uniquely to this family, the ephrin ligands are cell surface bound, therefore signalling is cell-cell contact dependent. Although Eph and ephrin functions have been studied for many years, much of the mechanisms by which they signal are still unclear. In this thesis, I have investigated the role of Eph-ephrin signalling in regulating different aspects of cell migration and invasion in prostate cancer cells and during keratinocyte cell wound healing. I find that the activity of EphB4 is regulated by the expression of PTEN phosphatase both in DU145 and PC-3 prostate cancer cells. This regulation leads to altered heterotypic cell contact inhibition of locomotion, in a co-culture assay between DU145 cells and fibroblasts. I also find that PTEN expression regulates the number of DU145 cells invading from a tumour cell spheroid, towards fibroblasts, in a 3D collagen gel. I suggest these cell behaviours may be as a consequence of altered Rac activity, downstream of EphB4 and PTEN signalling. I also use SILAC based phosphoproteomics to investigate some of the proteins regulated downstream of PTEN expression ilnd EphB4 activity. Furthermore I find that Ephrin-Bs are essential in regulating keratinocyte cell reepithelialisation during tissue culture wound healing, by regulating the actin cytoskeleton structure and E-cadherin processing. Finally, I have attempted to investigate the role of EphB2 in regulating prostate cancer cell migration and invasion, and find that EphB2 depletion does not alter PC-3 cell migration velocity in two dimensions.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Eph and ephrin interactions"

1

Matsuo, Koichi. "Eph and Ephrin Interactions in Bone." In Advances in Experimental Medicine and Biology, 95–103. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1050-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jorgensen, Claus, and Alexei Poliakov. "Proteomics Analysis of Contact-Initiated Eph Receptor–Ephrin Signaling." In Cell-Cell Interactions, 1–16. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-604-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ieguchi, Katsuaki, and Yoshiro Maru. "Eph/Ephrin Signaling in the Tumor Microenvironment." In Advances in Experimental Medicine and Biology, 45–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47189-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miao, Hui, and Bingcheng Wang. "Eph/Ephrin Signaling in Postnatal Epithelial Growth." In Handbook of Growth and Growth Monitoring in Health and Disease, 2811–23. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1795-9_167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Darie, Costel C., Vivekananda Shetty, Daniel S. Spellman, Guoan Zhang, Chongfeng Xu, Helene L. Cardasis, Steven Blais, David Fenyo, and Thomas A. Neubert. "Blue Native PAGE and Mass Spectrometry Analysis of Ephrin Stimulation-Dependent Protein-Protein Interactions in NG108-EphB2 Cells." In NATO Science for Peace and Security Series A: Chemistry and Biology, 3–22. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8811-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"EPH (ephrin)." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 617–18. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_5415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weth, Franco, and Artur Kania. "Ephrin/Eph signaling in axon guidance." In Cellular Migration and Formation of Axons and Dendrites, 123–46. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814407-7.00006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bhatia, Shilpa, and Sana D. Karam. "Eph/ephrin family proteins and therapeutic resistance." In Improving the Therapeutic Ratio in Head and Neck Cancer, 193–220. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-817868-3.00009-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chisholm, A. D., and D. A. Feldheim. "Roles of Eph–Ephrin Signaling in Axon Guidance." In Cellular Migration and Formation of Neuronal Connections, 89–104. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-397266-8.00003-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

O’Neill, Audrey K., and Jeffrey O. Bush. "Introduction to Eph/Ephrin Signaling in Vertebrate Development." In Epstein's Inborn Errors of Development, 644–49. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199934522.003.0086.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Eph and ephrin interactions"

1

Perez-Tenorio, Gizeh, Anna-Maria Husa, and Olle Stål. "Abstract 3819: Clinical potential of the Eph/ephrin profile in breast cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dalton, Heather J., Cristina Ivan, Chad V. Pecot, Rajesha Rupamaiole, Behrouz Zand, Justin Bottsford-Miller, Wei Hu, Alpa M. Nick, Robert L. Coleman, and Anil K. Sood. "Abstract 4034: An integrated analysis of the eph/ephrin family: implications in endometrial cancer." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zadeh, Tanin, Mariana Lucero, and Raj Kandpal. "Abstract 5949: Artesunate influences the transcripts for Eph receptors and ephrin ligands in breast cancer cells." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-5949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pujuguet, Philippe, Filip Beirinckx, Carole Delachaume, Jacques Huck, Ellen Van der Aar, Reginald Brys, Luc Van Rompaey, Piet Wigerinck, and Laurent Saniere. "Abstract 1753: GLPG1790: The first Ephrin (EPH) receptor tyrosine kinase inhibitor for the treatment of triple negative breast cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lucero, Mariana, Jaspreet Thind, Shayan Senaati, Belinda Jimenez, Tanin Zadeh, and Raj P. Kandpal. "Abstract 4686: Stem-like cells and bulk cells in breast cell lines express distinct combinations of Eph receptors and ephrin ligands." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lucero, Mariana, Jaspreet Thind, Shayan Senaati, Belinda Jimenez, Tanin Zadeh, and Raj P. Kandpal. "Abstract 4686: Stem-like cells and bulk cells in breast cell lines express distinct combinations of Eph receptors and ephrin ligands." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Kai, and Richard A. Foulds. "The Mechanics of Perturbed Upper Limb Movement Control." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37201.

Full text
Abstract:
The dependence of muscle force on muscle length gives rise to a “spring - like” behavior which has been shown to play an important role during movement. This study extended this concept and incorporated the influential factors of the mechanical behavior of the neural, muscular and skeletal system on the control of elbow movement. A significant question in motor control is determining how information about movement is used to modify control signals to achieve desired performance. One theory proposed and supported by Feldman et. is the equilibrium point hypothesis (EPH). In it the central nervous system (CNS) reacts to movement as a shift of the limb’s equilibrium posture. The EPH drastically simplified the requisite computations for multi-joint movements and mechanical interactions with complex dynamic objects in the context. Because the neuromuscular system is spring-like, the instantaneous difference between the arm’s actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex “inverse dynamic” of computing the torques at the joints. Moreover, this instantaneous difference serves as a potential source of movement control related to limb dynamics and associated movement-dependent torques when perturbations are added. In this paper, we have used an EPH model to examine changes to control signals for arm movements in the context of adding perturbations in format of forces or torques. The mechanical properties and reflex actions of muscles crossing the elbow joint were examined during a planned 1 radian voluntary elbow flexion movement. Brief unexpected torque/force pulses of identical magnitude and time duration (4.5 N flexion switching to 50 N extension within 120ms) were introduced at various points of a movement in randomly selected trials. Single perturbation was implemented in different trials during early, mid, stages of the movement by pre-programmed 6DOF robotic arm (MOOG FCS HapticMaster). Changes in movement trajectory induced by a torque/ force perturbation determined over the first 120 ms by a position prediction formulation, and then a modified and optimization K-B-I (stiffness-damping-inertia) model was fit to the responses for predicting both non-perturbed and perturbed movement of elbow. The stiffness and damping coefficients estimate during voluntary movements were compared to values recorded of different subjects during trials. A least square nonlinear optimization model was designed to help determine the optimized impedance a subject could generate, and the identified of adapted of K-B-I in perturbed upper limb movements confirmed our assumption.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography