Academic literature on the topic 'Enzymes – Industrial applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enzymes – Industrial applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Enzymes – Industrial applications"
Ghaffari-Moghaddam, M., H. Eslahi, D. Omay, and E. Zakipour-Rahimabadi. "Industrial applications of enzymes." Review Journal of Chemistry 4, no. 4 (October 2014): 341–61. http://dx.doi.org/10.1134/s2079978014040037.
Full textRobic, Audrey, Christophe Ullmann, Pascal Auffray, Cécile Persillon, and Juliette Martin. "Enzymes for industrial applications." OCL 24, no. 4 (June 30, 2017): D404. http://dx.doi.org/10.1051/ocl/2017027.
Full textDemain, Arnold L., and Sergio Sánchez. "Enzymes of industrial interest." Mexican journal of biotechnology 2, no. 2 (July 1, 2017): 74–97. http://dx.doi.org/10.29267/mxjb.2017.2.2.74.
Full textZamost, Bruce L., Henrik K. Nielsen, and Robert L. Starnes. "Thermostable enzymes for industrial applications." Journal of Industrial Microbiology 8, no. 2 (September 1991): 71–81. http://dx.doi.org/10.1007/bf01578757.
Full textSingh, Rajesh Kumar, Pratiksha Singh, Mohini Prabha Singh, Pooja Nikhanj, Param Pal Sahota, Wenxia Fang, and Yang Rui Li. "Yeast α-L-Rhamnosidase: Sources, Properties, and Industrial Applications." SDRP Journal of Food Science & Technology 6, no. 1 (2021): 313–24. http://dx.doi.org/10.25177/jfst.6.1.ra.10742.
Full textJoshi, Ritika, and Arindam Kuila. "Lipase and their different industrial applications: A review." Brazilian Journal of Biological Sciences 5, no. 10 (2018): 237–47. http://dx.doi.org/10.21472/bjbs.051004.
Full textLittlechild, Jennifer A. "Archaeal Enzymes and Applications in Industrial Biocatalysts." Archaea 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/147671.
Full textKleiner, Leslie. "Industrial applications of enzymes in Latin America." INFORM International News on Fats, Oils, and Related Materials 28, no. 8 (September 1, 2017): 38–39. http://dx.doi.org/10.21748/inform.09.2017.38.
Full textde Miguel Bouzas, Trinidad, Jorge Barros-Velazquez, and Tomas Gonzalez Villa. "Industrial Applications of Hyperthermophilic Enzymes: A Review." Protein & Peptide Letters 13, no. 7 (July 1, 2006): 645–51. http://dx.doi.org/10.2174/092986606777790548.
Full textWackett, Lawrence P. "Industrial applications of microbial salt-tolerant enzymes." Microbial Biotechnology 5, no. 5 (August 24, 2012): 668–69. http://dx.doi.org/10.1111/j.1751-7915.2012.00355.x.
Full textDissertations / Theses on the topic "Enzymes – Industrial applications"
Thuku, Robert Ndoria. "The structure of the nitrilase from Rhodococcus Rhodochrous J1: homology modeling and three-dimensional reconstruction." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_3225_1188474860.
Full textThe nitrilases are an important class of industrial enzymes that are found in all phyla. These enzymes are expressed widely in prokaryotes and eukaryotes. Nitrilases convert nitriles to corresponding acids and ammonia. They are used in industry as biocatalysts because of their specificity and enantioselectivity. These enzymes belong to the nitrilase superfamily in which members share a common &alpha
&beta
&beta
&alpha
structural fold and a unique cys, glu,lys catalytic triad with divergent N- and C-terminals.
There are four atomic structures of distant homologues in the superfamily, namely 1ems, 1erz, 1f89 and 1j31. All structures have two-fold symmetry which conserves the &alpha
&beta
&beta
&alpha
-&alpha
&beta
&beta
&alpha
fold across the dimer interface known as the A surface. The construction of a 3D model based on the solved structures revealed the enzyme has two significant insertions in its sequence relative to the solved structures, which possibly correspond to the C surface. In addition there are intermolecular interactions in a region of a conserved helix, called the D surface. These surfaces contribute additional interactions responsible for spiral formation and are absent in the atomic resolution homologues.
The recombinant enzyme from R.rhodochrous J1 was expressed in E. coli BL21 cells and eluted by gel filtration chromatography as an active 480 kDa oligomer and an inactive 80 kDa dimer in the absence of benzonitrile. This contradicts previous observations, which reported the native enzyme exists as an inactive dimer and elutes as a decamer in the presence benzonitrile. Reducing SDS-PAGE showed a subunit atomic mass of ~40 kDa. EM and image analysis revealed single particles of various shapes and sizes, including c-shaped particles, which could not form spirals due to steric hindrances in its C terminal.
Chromatographic re-elution of an active fraction of 1-month old J1 nitrilase enabled us to identify an active form with a mass greater than 1.5 MDa. Reducing SDS-PAGE, N-terminal sequencing and mass spectroscopy showed the molecular weight was ~36.5 kDa as result of specific proteolysis in its C terminal. EM revealed the enzyme forms regular long fibres. Micrographs (109) were recorded on film using a JEOL 1200EXII operating at 120 kV at 50K magnification. Two independent 3D reconstructions were generated using the IHRSR algorithm executed in SPIDER. These converged to the same structure and the resolution using the FSC 0.5 criterion was 1.7 nm.
The helix structure has a diameter of 13nm with ~5 dimers per turn in a pitch of 77.23 Å
. Homology modeling and subsequent fitting into the EM map has revealed the helix is built primarily from dimers, which interact via the C and D surfaces. The residues, which potentially interact across the D surface, have been identified and these confer stability to the helix. The conservation of the insertions and the possibility of salt bridge formation on the D surface suggest that spiral formation is common among microbial nitrilases. Furthermore, the presence of the C terminal domain in J1 nitrilase creates a steric hindrance that prevents spiral formation. When this is lost &ndash
either by specific proteolysis or autolysis - an active helix is formed.
De, Rose Simone Antonio. "Stabilisation of lipolytic enzymes for industrial applications." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/32824.
Full textTsekoa, Tsepo L. "Structure, enzymology and genetic engineering of Bacillus sp. RAPc8 nitrile hydratase." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&.
Full textDe, Villiers Tania. "Fungal enzymes and microbial systems for industrial processing." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/21457.
Full textENGLISH ABSTRACT: This study strives to improve two current industrial processes by making them more cost effective through the use of hydrolytic enzymes or microbial systems. The first process targeted is the industrial conversion of starch to ethanol. In the second process, hydrolytic enzymes are applied to the manufacturing of instant coffee. The engineering of microbial systems to convert starch to bio-ethanol in a one-step process may result in large cost reductions in current industrial processes. These reductions will be due to decreased heating energy requirements, as well as a decrease in money spent on the purchase of commercial enzymes for liquefaction and saccharification. In this study, a recombinant Saccharomyces cerevisiae strain was engineered to express the wild-type Aspergillus awamori glucoamylase (GA I) and α-amylase (AMYL III) as well as the Aspergillus oryzae glucoamylase (GLAA) as separately secreted polypeptides. The recombinant strain that secreted functional GA I and AMYL III was able to utilise raw corn starch as carbon source, and converted raw corn starch into bio-ethanol at a specific production rate of 0.037 grams per gram dry weight cells per hour. The ethanol yield of 0.40 gram ethanol per gram available sugar from starch translated to 71% of the theoretical maximum from starch as substrate. A promising raw starch converter was therefore generated. In the second part of this study, soluble solid yields were increased by hydrolysing spent coffee ground, which is the waste generated by the existing coffee process, with hydrolytic enzymes. Recombinant enzymes secreted from engineered Aspergillus strains (β-mannanase, β-endoglucanase 1, β-endo-glucanase 2, and β-xylanase 2), enzymes secreted from wild-type organisms (β-mannanases) and commercial enzyme cocktails displaying the necessary activities (β-mannanase, cellulase, and pectinase) were applied to coffee spent ground to hydrolyse the residual 42% mannan and 51% cellulose in the substrate. Hydrolysis experiments indicated that an enzyme cocktail containing mainly β-mannanase increased soluble solids extracted substantially, and a soluble solid yield of 23% was determined using the optimised enzyme extraction process. Soluble solid yield increases during the manufacturing of instant coffee will result in; (i) an increase in overall yield of instant coffee product, (ii) a decrease in amount of coffee beans important for the production of the product, and (iii) a reduction in the amount of waste product generated by the process.
AFRIKAANSE OPSOMMING: Hierdie studie poog om twee huidige industriële prosesse te verbeter deur die prosesse meer kosteeffektief met behulp van hidroltiese ensieme en mikrobiese sisteme te maak. Die eerste industrie wat geteiken word, is die omskakeling van rou stysel na etanol, en die tweede om hidrolities ensieme in die vervaardiging van kitskoffie te gebruik. Die skep van mikrobiese sisteme om rou-stysel in ’n ’een-stap’ proses om te skakel na bio-etanol sal groot koste besparing tot gevolg hê. Hierdie besparings sal te wyte wees aan die afname in verhittingsenergie wat tydens die omskakelingsproses benodig word, asook ’n afname in die koste verbonde aan die aankoop van duur kommersiële ensieme om die stysel na fermenteerbare suikers af te breek. In hierdie studie is ’n rekombinante Saccharomyces cerevisiae-gis gegenereer wat die glukoamilase (GA I) and α-amilase (AMYL III) van Aspergillus awamori, asook die glukoamilase van Aspergillus oryzae (GLAA) as aparte polipeptide uit te druk. Die rekombinante gis wat die funksionele GA I en AMYL III uitgeskei het, was in staat om op die rou-stysel as koolstofbron te groei, en het roustysel na bio-etanol teen ’n spesifieke tempo van 0.037 gram per gram droë gewig biomassa per uur omgeskakel. Die etanolopbrengs van 0.40 gram per gram beskikbare suiker vanaf stysel was gelykstaande aan 71% van die teoretiese maksimum vanaf stysel as substraat. ’n Belowende gis wat roustysel kan omskakel na bio-etnaol was dus geskep. In die tweede deel van hierdie studie is die opbrengs in oplosbare vastestowwe vermeerder deur die koffie-afval wat tydens die huidige industrieële proses genereer word, met hidrolitiese ensieme te behandel. Rekombinante ensieme afkomstig vanaf Aspergillus-rasse (β-mannanase, β-endoglukanase 1, β-endo-glukanase 2 en β-xilanase 2), ensieme deur wilde-tipe organismes uitgeskei (β-mannanase), asook kommersiële ensiempreparate wat die nodige ensiemaktiwiteite getoon het (β-mannanase, sellulase en pektinase) is gebruik om die oorblywende 42% mannaan en 51% sellulose in koffie-afval te hidroliseer. Hidrolise eksperimente het getoon dat ’n ensiempreparaat wat hoofsaaklik mannanase bevat, die oplosbare vastestofopbrengs grootliks kan verbeter, met ’n verhoogde opbrengs van 23% tydens geöptimiseerde ensiembehandelings. ’n Verhoogde opbrengs in oplosbare vastestowwe tydens die vervaardiging van kitskoffie sal die volgende tot gevolg hê: (i) ’n toename in totale opbrengs van kitskoffie produk, (ii) ’n afname in die hoeveelheid koffiebone wat vir die produksie ingevoer moet word, en (iii) ’n afname in die hoeveelheid afval wat tydens die vervaardigingsproses produseer word.
Jordaan, Justin. "Isolation and characterization of a novel thermostable and catalytically efficient laccase from Peniophora sp. strain UD4." Thesis, Rhodes University, 2005. http://eprints.ru.ac.za/211/.
Full textSantos, Bruna Leal dos [UNESP]. "Imobilização de lipase po diferentes técnicas para obtenção de catalizadores estáveis." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/108775.
Full textAs lipases, também chamadas de glicerol éster hidrolases, são enzimas que fazem parte do grupo das serina hidrolases, tendo como substrato, triglicerídeos. O modo de ação das lipases assemelha-se ao das esterases, realizando a hidrólise das ligações ésteres-carboxílicas de acilgliceróis, formando ácidos graxos e glicerol. Processos de bioconversão enzimática têm sido bastante utilizados na produção, transformação e valorização de matérias-primas. Avanços na tecnologia enzimática, como a imobilização de enzimas, possibilitaram a modificação das propriedades cinéticas e da estabilidade destas moléculas contribuindo com o aumento no potencial de aplicações das mesmas. O presente trabalho teve por objetivo estudar diferentes métodos de imobilização de lipases em suportes de sílica, bem como os efeitos deste procedimento, visando melhorar a funcionalidade das enzimas e o maior rendimento econômico nos processos industriais. Os métodos de imobilização escolhidos para os estudos foram: adsorção física, ligação covalente e encapsulação. O processo de imobilização de lipase em Celite (adsorção física) foi otimizado levando em conta o pH, porcentagem da concentração enzima:suporte e temperatura ótimos de atividade enzimática. Também se utilizou Celite como suporte para a imobilização de lipase por ligação covalente, onde se obteve os melhores resultados com atividade enzimática 20% a 40 ºC e eficiência de imobilização de 50%. A celite foi ativada com 3-aminopropiltrietoxisilano e glutaraldeído. Por último, foi avaliada a possibilidade de encapsulação da lipase utilizando o precursor tetraetilortossilicato (TEOS). Os resultados obtidos nesta última metodologia não se mostraram satisfatórios. Logo, com os dados obtidos, podemos dizer que uma boa manutenção da atividade catalítica depende do tipo de retenção (química ou física) e da força de interação ...
Lipases, also known as glycerol ester hydrolases , are enzymes that belong to the group of serine hydrolases. The mode of action of lipases is very similar to esterase group, performing the hydrolysis of carboxylic esters of glycerides - forming fatty acids and glycerol. The enzymatic bioconversion processes have been widely used in manufacturing, processing and recovery of raw materials. Advances methodology for immobilization of enzyme have allowed the modification of the kinetic properties and stability of these molecules contributing to the increase in the potential applications of the same. The present work is aimed to study different methods of immobilization of lipases in silica supports, and the effects of this procedure to improve the functionality of enzymes. The immobilization methods chosen for the studies were: physical adsorption, covalent bonding and encapsulation process. The process of immobilization of lipase on Celite (by physical adsorption) was optimized taking into account several parameters such as: pH, the enzyme concentration:support and temperature for enzyme activity. Celite was also used as a support for the immobilization of lipase by covalent bond, where best results were obtained with 20% enzymatic activity at 40 ° C and immobilization efficiency of 50%. The celite was activated with 3-aminopropyltriethoxysilane and glutaraldehyde. Finally, we have studied the possibility of encapsulation of lipase using the precusor tetraethylorthosilicate (TEOS). The results of this last methodology were not satisfactory. These results show that to maintain a good catalytic activity depends on the type of immobilization chose (chemical or physical) and the strength of the interaction between the enzyme and support, which can cause structural distortions in the protein, leading maintenance or a decrease in catalytic activity
Santos, Bruna Leal dos. "Imobilização de lipase po diferentes técnicas para obtenção de catalizadores estáveis /." Botucatu, 2014. http://hdl.handle.net/11449/108775.
Full textCoorientador: Luciana Francisco Fleuri
Banca: Maria José Queiroz de Freitas Alves
Banca: Haroldo Yukio Kawaguti
Resumo: As lipases, também chamadas de glicerol éster hidrolases, são enzimas que fazem parte do grupo das serina hidrolases, tendo como substrato, triglicerídeos. O modo de ação das lipases assemelha-se ao das esterases, realizando a hidrólise das ligações ésteres-carboxílicas de acilgliceróis, formando ácidos graxos e glicerol. Processos de bioconversão enzimática têm sido bastante utilizados na produção, transformação e valorização de matérias-primas. Avanços na tecnologia enzimática, como a imobilização de enzimas, possibilitaram a modificação das propriedades cinéticas e da estabilidade destas moléculas contribuindo com o aumento no potencial de aplicações das mesmas. O presente trabalho teve por objetivo estudar diferentes métodos de imobilização de lipases em suportes de sílica, bem como os efeitos deste procedimento, visando melhorar a funcionalidade das enzimas e o maior rendimento econômico nos processos industriais. Os métodos de imobilização escolhidos para os estudos foram: adsorção física, ligação covalente e encapsulação. O processo de imobilização de lipase em Celite (adsorção física) foi otimizado levando em conta o pH, porcentagem da concentração enzima:suporte e temperatura ótimos de atividade enzimática. Também se utilizou Celite como suporte para a imobilização de lipase por ligação covalente, onde se obteve os melhores resultados com atividade enzimática 20% a 40 ºC e eficiência de imobilização de 50%. A celite foi ativada com 3-aminopropiltrietoxisilano e glutaraldeído. Por último, foi avaliada a possibilidade de encapsulação da lipase utilizando o precursor tetraetilortossilicato (TEOS). Os resultados obtidos nesta última metodologia não se mostraram satisfatórios. Logo, com os dados obtidos, podemos dizer que uma boa manutenção da atividade catalítica depende do tipo de retenção (química ou física) e da força de interação ...
Abstract: Lipases, also known as glycerol ester hydrolases , are enzymes that belong to the group of serine hydrolases. The mode of action of lipases is very similar to esterase group, performing the hydrolysis of carboxylic esters of glycerides - forming fatty acids and glycerol. The enzymatic bioconversion processes have been widely used in manufacturing, processing and recovery of raw materials. Advances methodology for immobilization of enzyme have allowed the modification of the kinetic properties and stability of these molecules contributing to the increase in the potential applications of the same. The present work is aimed to study different methods of immobilization of lipases in silica supports, and the effects of this procedure to improve the functionality of enzymes. The immobilization methods chosen for the studies were: physical adsorption, covalent bonding and encapsulation process. The process of immobilization of lipase on Celite (by physical adsorption) was optimized taking into account several parameters such as: pH, the enzyme concentration:support and temperature for enzyme activity. Celite was also used as a support for the immobilization of lipase by covalent bond, where best results were obtained with 20% enzymatic activity at 40 ° C and immobilization efficiency of 50%. The celite was activated with 3-aminopropyltriethoxysilane and glutaraldehyde. Finally, we have studied the possibility of encapsulation of lipase using the precusor tetraethylorthosilicate (TEOS). The results of this last methodology were not satisfactory. These results show that to maintain a good catalytic activity depends on the type of immobilization chose (chemical or physical) and the strength of the interaction between the enzyme and support, which can cause structural distortions in the protein, leading maintenance or a decrease in catalytic activity
Mestre
Musengi, Amos. "Exploitation of the potential of a novel bacterial peroxidase for the development of a new biocatalytic process." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1525.
Full textPeroxidases are ubiquitous catalysts that oxidise a wide variety of organic and inorganic compounds employing peroxide as the electron acceptor. They are an important class of oxidative enzymes which are found in nature, where they perform diverse physiological functions. Apart from the white rot fungi, actinomycetes are the only other known source of extracellular peroxidases. In this study, the production of extracellular peroxidase in wild type actinomycete strains was investigated, for the purpose of large-scale production and finding suitable applications. The adjustment of environmental parameters (medium components, pH, temperature and inducers) to optimise extracellular peroxidase production in five different strains was carried out. Five Streptomyces strains isolated from various natural habitats were initially selected for optimisation of their peroxidase production. Streptomyces sp. strain BSII#1 and Streptomyces sp. strain GSIII#1 exhibited the highest peroxidase activities (1.30±0.04 U ml-1 and 0.757±0.01 U ml-1, respectively) in a complex production medium at 37°C and pH 8.0 in both cases. Maximum enzyme production for Streptomyces strain BSII#1 was obtained in the presence of 0.1 mM veratryl alcohol or pyrogallol, while 0.1 mM guaiacol induced the highest peroxidase production in Streptomyces sp. strain GSIII#1. As the highest peroxidase producer, Streptomyces sp. strain BSII#1 was selected for further studies. The strain was first characterised by a polyphasic approach, and was shown to belong to the genus Streptomyces using various chemotaxonomic, genotypic and phenotypic tests. Production of peroxidase was scaled up to larger volumes in different bioreactor formats. The airlift configuration was optimal for peroxidase production, with Streptomyces sp. strain BSII#1 achieving maximum production (4.76±0.46 U ml-1) in the 3 l culture volume within 60 hrs of incubation. A protocol for the purification of the peroxidase was developed, which involved sequential steps of acid and acetone precipitation, as well as ultrafiltration. A purification factor of at least 46-fold was achieved using this method and the protein was further analysed by LC-MS. The protein was shown to be a 46 kDa protein, and further biochemical characterisation showed that the peroxidase had a narrower spectrum of substrates as compared to reports on other peroxidases derived from actinomycetes. With 2,4-dichlorophenol as the substrate, the Km and Vmax for this enzyme were 0.893 mM and 1.081 μmol min-1, respectively. The purified peroxidase was also capable of catalysing coupling reactions between several phenolic monomer pairs. Overall, the peroxidase from Streptomyces sp. strain BSII#1 could feasibly be produced in larger scales and there remains further room to investigate other potential applications for this enzyme.
Santiago, Morcillo Gerard. "Computer-aided rational enzyme design for industrial and technological applications." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667261.
Full textLa producció industrial massiva generada per la nostra societat des del segle XIX, ha crescut a expenses del planeta. Els danys ambientals ja són visibles i ens animen a trobar formes de producció noves i sostenibles. Entre tots els col·laboradors, aquesta tesi es centra en els enzims i la seva possible aplicació a la indústria. Els enzims són biomolècules capaces de realitzar i accelerar les reaccions químiques. La seva versatilitat els converteix en una opció perfecta per química verda, permetent la substitució de processos nocius que comporten utilitzar compostos químics durs o un ús intensiu d’energia. Els resultats presentats es centren en una millor comprensió de les propietats enzimàtiques i del seu comportament per millorar-les per a aplicacions industrials, mitjançant l'aplicació de tècniques de modelització d'última generació. Aquest coneixement ha permès el desenvolupament d’un nou mètode de classificació de la promiscuïtat del substrat, Effective Volume, i el disseny de variants enzimàtiques millorades. En la línia d’enginyeria d’enzims, aquesta tesi presenta una lacasa mutant obtinguda a través d’un disseny racional assistit per ordinador, amb una activitat millorada sobre les arilaminas, adaptada explícitament a la producció de polianilina. A més, introduïm, per primera vegada en el nostre coneixement, el concepte de PluriZymes, un enzim amb dos llocs actius totalment funcionals, l'original i el afegit “de novo” artificial.
He, Jingwu. "The role of yarn structure on the hand related low-stress mechanical behavior of enzyme treated yarns by Jingwu He." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/9491.
Full textBooks on the topic "Enzymes – Industrial applications"
M, Linsmaier-Bednar Elfriede, ed. Industrial enzymes and their applications. New York: Wiley, 1998.
Find full textBhatt, Pankaj. Industrial Applications of Microbial Enzymes. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202998.
Full textWolfgang, Aehle, ed. Enzymes in industry: Production and applications. 2nd ed. Weinheim: Wiley-VCH, 2004.
Find full textGerhartz, Wolfgang. Enzymes in industry: Production and applications. 2nd ed. Weinheim, F.R.D: VCH, 2004.
Find full textWolfgang, Gerhartz, ed. Enzymes in industry: Production and applications. Weinheim, F.R.D: VCH, 1990.
Find full textRotheim, Philip. The enzyme industry: Industrial and chemical applications. Norwalk, CT: Business Communications Co., 1994.
Find full textI, Laskin Allen, ed. Enzymes and immobilized cells in biotechnology. Menlo Park, Calif: Benjamin/Cummings Pub. Co., Advanced Book Program, 1985.
Find full textArtur, Cavaco-Paulo, Gübitz G. M, and Textile Institute, eds. Textile processing with enzymes. Cambridge: Woodhead Publishing, 2003.
Find full textJ, Whitehurst Robert, and Oort Maarten van, eds. Enzymes in food technology. 2nd ed. West Sussex, U.K: Wiley-Blackwell, 2010.
Find full textJ, Whitehurst Robert, and Law Barry A, eds. Enzymes in food technology. Sheffield: Sheffield Academic Press, 2002.
Find full textBook chapters on the topic "Enzymes – Industrial applications"
Dekker, Peter. "Dairy Enzymes." In Industrial Enzyme Applications, 143–66. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9783527813780.ch2_3.
Full textØstergaard, Lars H., and Hans Sejr Olsen. "Industrial Applications of Fungal Enzymes." In Industrial Applications, 269–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11458-8_13.
Full textSoccol, Carlos R., Luciana PS Vandenberghe, Adenise L. Woiciechowski, and Sumathy Babitha. "Applications of Industrial Enzymes." In Enzyme Technology, 533–48. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35141-4_27.
Full textDutta, Rajiv. "Industrial Applications of Enzymes." In Fundamentals of Biochemical Engineering, 70–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77901-8_4.
Full textAehle, Wolfgang, and Onno Misset. "Enzymes for Industrial Applications." In Biotechnology, 189–216. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620869.ch6.
Full textPutseys, Joke A., and Margot E. F. Schooneveld-Bergmans. "Enzymes Used in Baking." In Industrial Enzyme Applications, 95–123. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9783527813780.ch2_1.
Full textde Vries, R. P., J. A. E. Benen, L. H. de Graaff, and J. Visser. "Plant Cell Wall Degrading Enzymes Produced by Aspergillus." In Industrial Applications, 263–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-10378-4_13.
Full textLi, Xinliang, Sandra H. Chang, and Rui Liu. "Industrial Applications of Cellulases and Hemicellulases." In Fungal Cellulolytic Enzymes, 267–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0749-2_15.
Full textRieder, Lukas, Nico Teuschler, Katharina Ebner, and Anton Glieder. "Eukaryotic Expression Systems for Industrial Enzymes." In Industrial Enzyme Applications, 47–69. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9783527813780.ch1_3.
Full textHirose, Yoshihiko. "Enzymes for Human Nutrition and Health." In Industrial Enzyme Applications, 203–17. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9783527813780.ch3_1.
Full textConference papers on the topic "Enzymes – Industrial applications"
Lee, Hyeseung, Dean Ho, Benjamin Chu, Karen Kuo, and Carlo Montemagno. "Reconstituting Membrane Proteins Into Artificial Membranes and Detection of Their Activities." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46016.
Full textAbd Rahim, Siti Noraida, Alawi Sulaiman, Nurul Aini Edama, Ku Halim Ku Hamid, Miradatul Najwa Muhd Rodhi, Mohibah Musa, and Fazlena Hamzah. "Kinetic study of free and immobilized enzymes for bioconversion of tapioca slurry into BioSugar." In 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC). IEEE, 2013. http://dx.doi.org/10.1109/beiac.2013.6560195.
Full textGrushcow, J., and M. A. Smith. "Next Generation Feedstocks From New Frontiers in Oilseed Engineering." In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63523.
Full textBhushan, Indu. "Efficient media for high production of microbial lipase from Bacillus subtilis (BSK-L) using response surface methodology for enantiopure synthesis of drug molecules." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.044.
Full textAlves-Pereira, I., and R. Ferreira. "Yeast stress enzymes – application of microbiology and bioinformatics for initiate high school students in environmental studies." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0131.
Full textFazlena, H., S. Norsuraya, and S. N. Nadiah. "Ultrasonic assisted enzymatic reaction: An overview on ultrasonic mechanism and stability-activity of the enzyme." In 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC). IEEE, 2013. http://dx.doi.org/10.1109/beiac.2013.6560256.
Full textTopakas, Evangelos, Anastasia Zerva, and Nikolaos Tsafantakis. "Greek Basidiomycete Wild Strains for the Production of Bioactive Compounds and Enzymes with Applications in Cosmetic and Biocatalysis Industries." In 1st International Electronic Conference on Catalysis Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/eccs2020-07561.
Full textChandrinou, Chrysoula, Dimitra Mandala, George Tsekenis, Dionysios Soulis, and Ioanna Zergioti. "Direct enzyme immobilization on SPEs for electrochemical pesticide detection in olive oil, utilizing laser induced forward transfer." In Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XXI, edited by Peter R. Herman, Michel Meunier, and Roberto Osellame. SPIE, 2021. http://dx.doi.org/10.1117/12.2578245.
Full textZhu, S. S., and Z. Q. Miao. "Dynamic Model of Paclitaxel Biosynthesis Suggests That the Key Enzyme Is Taxadiene 5alpha-Hydroxylase in Taxuschinensis Cell Suspension Culture." In International Conference on Computer Information Systems and Industrial Applications. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cisia-15.2015.195.
Full textKhanzode, Anand U., and Sachin R. Karale. "Overview of Solar Air Drying Systems in India and His Vision of Future Developments." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99116.
Full text