To see the other types of publications on this topic, follow the link: Enzyme mimics.

Journal articles on the topic 'Enzyme mimics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Enzyme mimics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sanders, Jeremy K. M. "Enzyme mimics." Proceedings / Indian Academy of Sciences 106, no. 5 (October 1994): 983–88. http://dx.doi.org/10.1007/bf02841912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Breslow, Ronald. "Enzyme mimics." Pure and Applied Chemistry 62, no. 10 (January 1, 1990): 1859–66. http://dx.doi.org/10.1351/pac199062101859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kirby, Anthony J. "Enzyme Mimics." Angewandte Chemie International Edition in English 33, no. 5 (March 17, 1994): 551–53. http://dx.doi.org/10.1002/anie.199405511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yihong, Faheem Muhammad, and Hui Wei. "Inorganic Enzyme Mimics." ChemBioChem 22, no. 9 (March 4, 2021): 1496–98. http://dx.doi.org/10.1002/cbic.202100049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Lei, and Ronald Breslow. "Dendrimeric Pyridoxamine Enzyme Mimics." Journal of the American Chemical Society 125, no. 40 (October 2003): 12110–11. http://dx.doi.org/10.1021/ja0374473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

BRESLOW, R. "ChemInform Abstract: Enzyme Mimics." ChemInform 22, no. 7 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199107314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KIRBY, A. J. "ChemInform Abstract: Enzyme Mimics." ChemInform 25, no. 25 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199425303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yan, Fei, Ying Mu, Ganglin Yan, Junqiu Liu, Jiacong Shen, and Guimin Luo. "Antioxidant Enzyme Mimics with Synergism." Mini-Reviews in Medicinal Chemistry 10, no. 4 (April 1, 2010): 342–56. http://dx.doi.org/10.2174/138955710791330972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Szilágyi, I., G. Nagy, K. Hernadi, I. Labádi, and I. Pálinkó. "Modeling copper-containing enzyme mimics." Journal of Molecular Structure: THEOCHEM 666-667 (December 2003): 451–53. http://dx.doi.org/10.1016/j.theochem.2003.08.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meeuwissen, Jurjen, and Joost N. H. Reek. "Supramolecular catalysis beyond enzyme mimics." Nature Chemistry 2, no. 8 (July 23, 2010): 615–21. http://dx.doi.org/10.1038/nchem.744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kirby, Anthony J. "Enzyme Mechanisms, Models, and Mimics." Angewandte Chemie International Edition in English 35, no. 7 (April 19, 1996): 706–24. http://dx.doi.org/10.1002/anie.199607061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kuah, Evelyn, Seraphina Toh, Jessica Yee, Qian Ma, and Zhiqiang Gao. "Enzyme Mimics: Advances and Applications." Chemistry - A European Journal 22, no. 25 (April 8, 2016): 8404–30. http://dx.doi.org/10.1002/chem.201504394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhou, Wenjun, Lei Liu, and Ronald Breslow. "Transamination by Polymeric Enzyme Mimics." Helvetica Chimica Acta 86, no. 11 (November 2003): 3560–67. http://dx.doi.org/10.1002/hlca.200390300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kataky, Ritu, and Edward Morgan. "Potential of enzyme mimics in biomimetic sensors: a modified-cyclodextrin as a dehydrogenase enzyme mimic." Biosensors and Bioelectronics 18, no. 11 (October 2003): 1407–17. http://dx.doi.org/10.1016/s0956-5663(03)00077-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Breslow, Ronald, Sujun Wei, and Craig Kenesky. "Enantioselective transaminations by dendrimeric enzyme mimics." Tetrahedron 63, no. 27 (July 2007): 6317–21. http://dx.doi.org/10.1016/j.tet.2007.02.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

STINSON, STEPHEN C. "Progress Made in Synthesizing Enzyme Mimics." Chemical & Engineering News 65, no. 42 (October 19, 1987): 30–33. http://dx.doi.org/10.1021/cen-v065n042.p030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, Lei, and Ronald Breslow. "Polymeric and dendrimeric pyridoxal enzyme mimics." Bioorganic & Medicinal Chemistry 12, no. 12 (June 2004): 3277–87. http://dx.doi.org/10.1016/j.bmc.2004.03.062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dong, Zeyuan, Yongguo Wang, Yanzhen Yin, and Junqiu Liu. "Supramolecular enzyme mimics by self-assembly." Current Opinion in Colloid & Interface Science 16, no. 6 (December 2011): 451–58. http://dx.doi.org/10.1016/j.cocis.2011.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Haggin, Joseph. "Enzyme mimics made with iron-zeolites." Journal of Inclusion Phenomena 6, no. 3 (June 1988): 321. http://dx.doi.org/10.1007/bf00682145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aghayan, Morvarid, Ali Mahmoudi, Samaneh Sohrabi, Saeed Dehghanpour, Khodadad Nazari, and Navid Mohammadian-Tabrizi. "Micellar catalysis of an iron(iii)-MOF: enhanced biosensing characteristics." Analytical Methods 11, no. 25 (2019): 3175–87. http://dx.doi.org/10.1039/c9ay00399a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Li, Zhixian, Huan Xia, Shaomin Li, Jiafeng Pang, Wei Zhu, and Yanbin Jiang. "In situ hybridization of enzymes and their metal–organic framework analogues with enhanced activity and stability by biomimetic mineralisation." Nanoscale 9, no. 40 (2017): 15298–302. http://dx.doi.org/10.1039/c7nr06315f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Raynal, Matthieu, Pablo Ballester, Anton Vidal-Ferran, and Piet W. N. M. van Leeuwen. "Supramolecular catalysis. Part 2: artificial enzyme mimics." Chem. Soc. Rev. 43, no. 5 (2014): 1734–87. http://dx.doi.org/10.1039/c3cs60037h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wiester, Michael J., Pirmin A. Ulmann, and Chad A. Mirkin. "Enzyme Mimics Based Upon Supramolecular Coordination Chemistry." Angewandte Chemie International Edition 50, no. 1 (October 4, 2010): 114–37. http://dx.doi.org/10.1002/anie.201000380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

KIRBY, A. J. "ChemInform Abstract: Enzyme Mechanisms, Models, and Mimics." ChemInform 27, no. 28 (August 5, 2010): no. http://dx.doi.org/10.1002/chin.199628330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chardet, Crystalle, Sandra Serres, Corinne Payrastre, Jean-Marc Escudier, and Béatrice Gerland. "Functionalized oligonucleotides, synthetic catalysts as enzyme mimics." Comptes Rendus. Chimie 26, S3 (April 19, 2024): 1–13. http://dx.doi.org/10.5802/crchim.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Noureldin, Nada A., Jennifer Richards, Hend Kothayer, Mohammed M. Baraka, Sobhy M. Eladl, Mandy Wootton, and Claire Simons. "Phenylalanyl tRNA synthetase (PheRS) substrate mimics: design, synthesis, molecular dynamics and antimicrobial evaluation." RSC Advances 12, no. 4 (2022): 2511–24. http://dx.doi.org/10.1039/d1ra06439h.

Full text
Abstract:
Nineteen novel compounds were designed to mimic Phe-AMP, as a new hope to find novel antibacterial agents and combat the antibiotic resistance. E. faecalis PheS homology model was constructed to study the mimics–enzyme interactions in more detail.
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Xiaohua, Zhujun Zhang, and Yongbo Li. "Artificial Enzyme Mimics for Catalysis and Double Natural Enzyme Co-immobilization." Applied Biochemistry and Biotechnology 172, no. 4 (November 29, 2013): 1859–65. http://dx.doi.org/10.1007/s12010-013-0625-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhang, Li Min, Xin Zhang, and Zhi Xiang Xu. "The Applications of Molecularly Imprinted Polymer in Immunoassay, Biosensor and Enzyme Mimic Catalyst-A Critical Review." Advanced Materials Research 466-467 (February 2012): 84–87. http://dx.doi.org/10.4028/www.scientific.net/amr.466-467.84.

Full text
Abstract:
Molecularly imprinted polymer with high selectivity and stability has been reported in many applications. In this paper, the recent states, advantages and current problems of its applications in biological samples, such as immunoassay type protocols, biosensors and mimic enzyme catalyst were summarized. The challenges of biomimetic immunosorbent assays and enzyme mimics in catalytic reaction were emphasized specially. Some promising solutions to overcome the existed problems were put forward.
APA, Harvard, Vancouver, ISO, and other styles
29

Shteinman, Albert A. "Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts." Catalysts 13, no. 2 (February 15, 2023): 415. http://dx.doi.org/10.3390/catal13020415.

Full text
Abstract:
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Lingli, Daomei Chen, Bin Li, Dongqi Yang, Jingchen Zhao, Danhua Ma, Liang Jiang, Yepeng Yang, Yizhou Li, and Jiaqiang Wang. "MOFzyme: Enzyme Mimics of Fe/Fe-MIL-101." Journal of Biosciences and Medicines 07, no. 05 (2019): 213–21. http://dx.doi.org/10.4236/jbm.2019.75023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lele, B. S., M. G. Kulkarni, and R. A. Mashelkar. "Productive and nonproductive substrate binding in enzyme mimics." Polymer 40, no. 14 (June 1999): 4063–70. http://dx.doi.org/10.1016/s0032-3861(98)00631-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Du, Baoji, Dan Li, Jin Wang, and Erkang Wang. "Designing metal-contained enzyme mimics for prodrug activation." Advanced Drug Delivery Reviews 118 (September 2017): 78–93. http://dx.doi.org/10.1016/j.addr.2017.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhou, Weiqiang, Hongfeng Li, Bin Xia, Wenlan Ji, Shaobo Ji, Weina Zhang, Wei Huang, Fengwei Huo, and Huaping Xu. "Selenium-functionalized metal-organic frameworks as enzyme mimics." Nano Research 11, no. 10 (October 2018): 5761–68. http://dx.doi.org/10.1007/s12274-017-1623-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ragg, Ruben, Muhammad N. Tahir, and Wolfgang Tremel. "Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics." European Journal of Inorganic Chemistry 2016, no. 13-14 (December 23, 2015): 1906–15. http://dx.doi.org/10.1002/ejic.201501237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ragg, Ruben, Muhammad N. Tahir, and Wolfgang Tremel. "Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics." European Journal of Inorganic Chemistry 2016, no. 13-14 (May 2016): 1896. http://dx.doi.org/10.1002/ejic.201600408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lundberg, Marcus, Yoko Sasakura, Guishan Zheng, and Keiji Morokuma. "Case Studies of ONIOM(DFT:DFTB) and ONIOM(DFT:DFTB:MM) for Enzymes and Enzyme Mimics." Journal of Chemical Theory and Computation 6, no. 4 (March 16, 2010): 1413–27. http://dx.doi.org/10.1021/ct100029p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Zijie, and Juewen Liu. "Intracellular delivery of a molecularly imprinted peroxidase mimicking DNAzyme for selective oxidation." Materials Horizons 5, no. 4 (2018): 738–44. http://dx.doi.org/10.1039/c8mh00453f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Becker, René, Saeed Amirjalayer, Ping Li, Sander Woutersen, and Joost N. H. Reek. "An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media." Science Advances 2, no. 1 (January 2016): e1501014. http://dx.doi.org/10.1126/sciadv.1501014.

Full text
Abstract:
The transition from a fossil-based economy to a hydrogen-based economy requires cheap and abundant, yet stable and efficient, hydrogen production catalysts. Nature shows the potential of iron-based catalysts such as the iron-iron hydrogenase (H2ase) enzyme, which catalyzes hydrogen evolution at rates similar to platinum with low overpotential. However, existing synthetic H2ase mimics generally suffer from low efficiency and oxygen sensitivity and generally operate in organic solvents. We report on a synthetic H2ase mimic that contains a redox-active phosphole ligand as an electron reservoir, a feature that is also crucial for the working of the natural enzyme. Using a combination of (spectro)electrochemistry and time-resolved infrared spectroscopy, we elucidate the unique redox behavior of the catalyst. We find that the electron reservoir actively partakes in the reduction of protons and that its electron-rich redox states are stabilized through ligand protonation. In dilute sulfuric acid, the catalyst has a turnover frequency of 7.0 × 104s−1at an overpotential of 0.66 V. This catalyst is tolerant to the presence of oxygen, thereby paving the way for a new generation of synthetic H2ase mimics that combine the benefits of the enzyme with synthetic versatility and improved stability.
APA, Harvard, Vancouver, ISO, and other styles
39

Hu, Xile. "Base Metal Complexes as Homogeneous Catalysts and Enzyme Mimics." CHIMIA International Journal for Chemistry 65, no. 9 (September 30, 2011): 646–48. http://dx.doi.org/10.2533/chimia.2011.646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Takahashi, Tsukasa, Bao C. Vo Ngo, Leyang Xiao, Gaurav Arya, and Michael J. Heller. "Molecular mechanical properties of short-sequence peptide enzyme mimics." Journal of Biomolecular Structure and Dynamics 34, no. 3 (June 8, 2015): 463–74. http://dx.doi.org/10.1080/07391102.2015.1039586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Corazza, A., M. Scarpa, A. Corazza, F. Vianello, L. Zennaro, N. Gourova, M. L. Di Paolo, L. Signor, O. Marin, and A. Rigo. "Enzyme mimics complexing Cu(II) ion: structure-function relationships." Journal of Peptide Research 54, no. 6 (December 1999): 491–504. http://dx.doi.org/10.1034/j.1399-3011.1999.00139.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ellis, W. Chadwick, Camly T. Tran, Matthew A. Denardo, Andreas Fischer, Alexander D. Ryabov, and Terrence J. Collins. "Design of More Powerful Iron-TAML Peroxidase Enzyme Mimics." Journal of the American Chemical Society 131, no. 50 (December 23, 2009): 18052–53. http://dx.doi.org/10.1021/ja9086837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Raynal, Matthieu, Pablo Ballester, Anton Vidal-Ferran, and Piet W. N. M. van Leeuwen. "ChemInform Abstract: Supramolecular Catalysis. Part 2. Artificial Enzyme Mimics." ChemInform 45, no. 20 (April 28, 2014): no. http://dx.doi.org/10.1002/chin.201420245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Szilágyi, István, Ottó Berkesi, Mónika Sipiczki, László Korecz, Antal Rockenbauer, and István Pálinkó. "Preparation, Characterization and Catalytic Activities of Immobilized Enzyme Mimics." Catalysis Letters 127, no. 3-4 (October 7, 2008): 239–47. http://dx.doi.org/10.1007/s10562-008-9667-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rentmeister, Andrea, Tristan R. Brown, Christopher D. Snow, Martina N. Carbone, and Frances H. Arnold. "Engineered Bacterial Mimics of Human Drug Metabolizing Enzyme CYP2C9." ChemCatChem 3, no. 6 (April 21, 2011): 1065–71. http://dx.doi.org/10.1002/cctc.201000452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wiester, Michael J., Pirmin A. Ulmann, and Chad A. Mirkin. "ChemInform Abstract: Enzyme Mimics Based upon Supramolecular Coordination Chemistry." ChemInform 42, no. 12 (February 24, 2011): no. http://dx.doi.org/10.1002/chin.201112226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Romanovsky, Boris V. "Transition metal complexes in inorganic polymers as enzyme mimics." Macromolecular Symposia 80, no. 1 (March 1994): 185–92. http://dx.doi.org/10.1002/masy.19940800113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Garrido-González, José J., Ma Mercedes Iglesias Aparicio, Miguel Martínez García, Luis Simón, Francisca Sanz, Joaquín R. Morán, and Ángel L. Fuentes de Arriba. "An Enzyme Model Which Mimics Chymotrypsin and N-Terminal Hydrolases." ACS Catalysis 10, no. 19 (August 31, 2020): 11162–70. http://dx.doi.org/10.1021/acscatal.0c02121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Breslow, Ronald. "Bifunctional acid—base catalysis by imidazole groups in enzyme mimics." Journal of Molecular Catalysis 91, no. 2 (July 1994): 161–74. http://dx.doi.org/10.1016/0304-5102(94)00046-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Takahashi, Tsukasa, Michelle Cheung, Thomas Butterweck, Steve Schankweiler, and Michael J. Heller. "Quest for a turnover mechanism in peptide-based enzyme mimics." Catalysis Communications 59 (January 2015): 206–10. http://dx.doi.org/10.1016/j.catcom.2014.10.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography