Dissertations / Theses on the topic 'Enzyme function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Enzyme function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Friemann, Rosmarie. "Structure-function studies of iron-sulfur enzyme systems /." Uppsala : Dept. of Molecular Biology, Swedish Univ. of Agricultural Sciences, 2005. http://epsilon.slu.se/a504.pdf.
Full textO'Neil, Crystal L. "Enzyme Exploitation: Manipulating Enzyme Function for Therapy, Synthesis and Natural Product Modification." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293722936.
Full textGwozd, Chantelle Sabrina. "The structural basis of ubiquitin conjugating enzyme function." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22989.pdf.
Full textFriemann, Rosmarie. "Structure-function studies of iron-sulfur enzyme systems /." Uppsala : Dept. of Molecular Biology, Swedish Univ. of Agricultural Sciences, 2004. http://epsilon.slu.se/a504-ab.html.
Full textRoden, D. L. "High specificity automatic function assignment for enzyme sequences." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1321566/.
Full textSzeto, Michelle Wing Yan. "QM/MM studies of enzyme structure and function." Thesis, University of Bristol, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445894.
Full textLiou, Geoffrey. "Enzyme structure, function, and evolution in flavonoid biosynthesis." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122067.
Full textThesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Plant specialized metabolism is a key evolutionary adaptation that has enabled plants to migrate from water onto land and subsequently spread throughout terrestrial environments. Flavonoids are one particularly important class of plant specialized metabolites, playing a wide variety of roles in plant physiology including UV protection, pigmentation, and defense against herbivores and pathogens. Flavonoid diversity has increased in conjunction with land plant evolution over the past 470 million years. This dissertation examines the structure, function, and evolution of enzymes in the flavonoid biosynthetic pathway. First, we structurally and biochemically characterized orthologs of chalcone synthase (CHS), the enzyme that catalyzes the first step of flavonoid biosynthesis, from diverse plant lineages. By doing so, we gained insight into the sequence changes that gave rise to increased reactivity of the catalytic cysteine residue in CHS orthologs in euphyllophytes compared to basal land plants. We then developed methods and transgenic plant lines to study the in vivo function of these CHS orthologs, as well as whether their functional differences play a role in redox-based regulation of flavonoid biosynthesis. Finally, we examined enzymes involved in the biosynthesis of galloylated catechins, a highly enriched class of flavonoids in tea that are thought to have health benefits in humans. These findings contribute to an understanding of the evolution of enzyme structure and function in flavonoid biosynthesis, and how it has facilitated the adaptation of plants to a wide variety of terrestrial habitats.
by Geoffrey Liou.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biology
Ljungberg, Liza. "Angiotensin-converting enzyme in cardiovascular function and dysfunction." Doctoral thesis, Linköpings universitet, Fysiologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67215.
Full textKhan, Amjad. "NMR spectroscopy studies of enzyme function and inhibition." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:698d69c7-d4f1-4bc7-bf0b-3b9e7fb3a4fe.
Full textHamilton, Russell S. "DAROGAN : enzyme function prediction from multiple sequence alignments." Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/14972.
Full textHarris, Katharine Morse. "Studies of structure, function and mechanism in pyrimidine nucleotide biosynthesis." Thesis, Boston College, 2012. http://hdl.handle.net/2345/2594.
Full textThesis advisor: Mary F. Roberts
Living organisms depend on enzymes for the synthesis using small molecule precursors of cellular building blocks. For example, the amino acid aspartate is synthesized in one step by the amination of oxaloacetate, an intermediate compound produced in the citric acid cycle, exclusively by means of an aminotransferase enzyme. Therefore, function of this aminotransferase is critical to produce the amino acid. In the Kantrowitz Lab, we seek to understand the molecular rational for the function of enzymes that control rates for the biosynthesis of cellular building blocks. If one imagines the above aspartate-synthesis example as a single running conveyer belt, any oxaloacetate that finds its way onto that belt will be chemically transformed to give aspartate. We can extend this notion of a conveyer belt to any enzyme. Therefore, the rate at which the belt moves dictates the rate of synthesis. Now imagine many, many conveyer belts lined in a row to give analogy to a biosynthesis pathway requiring more than one enzyme for complete chemical synthesis. This is such the case for the biosynthesis of nucleotides and glucose. Nature has developed clever tricks to exquisitely control the rate of product output but means of altering the rate of one or some of the belts in the line of many, without affecting the rate of others. This type of biosynthetic rate regulation is termed allostery. Studies described in this dissertation will address questions of allosteric processes and the chemistry performed by two entirely different enzymes and biosynthetic pathways. The first enzyme of interest is fructose-1,6-bisphosphatase (FBPase) and its role in the biosynthesis of glucose. Following FBPase introduction in Chapter One, Chapter Two describes the minimal atomic scaffold necessary in a new class of allosteric type 2 diabetes drug molecules to effect catalytic inhibition of Homo sapiens FBPase. Following, is the second enzyme of interest, aspartate transcarbamoylase (ATCase) and its role in the biosynthesis of pyrimidine nucleotides. Succeeding ATCase introduction in Chapter Three, Chapter Four describes a body of work exclusively about the catalysis by ATCase. This work was inspired by the human form of the enzyme following the human genome project completion providing data that show likely Homo sapiens ATCase is not allosterically regulated. Chapter Five describes work on a allosterically-regulated, mutant ATCase and provides a biochemical model for the molecular rational for the catalytic inhibition upon cytidine triphosphate (CTP) binding to the allosteric site. The experimental techniques used for answering research questions were enzyme X-ray crystallography, in silico docking, kinetic assay experiments, genetic sub-cloning and genetic mutation
Thesis (PhD) — Boston College, 2012
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Loftus, Katherine Marie. "Studies of the Structure and Function of E.coli Aspartate Transcarbamoylase." Thesis, Boston College, 2006. http://hdl.handle.net/2345/580.
Full textE.coli Aspartate transcarbamoylase (ATCase) is the allosteric enzyme that catalyzes the committed step of the de novo pyrimidine biosynthesis pathway. ATCase facilitates the reaction between L-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate. The holoenzyme is a dodecamer, consisting of two trimers of catalytic chains, and three dimers of regulatory chains. ATCase is regulated homotropically by its substrates, and heterotropically by the nucleotides ATP, CTP, and UTP. These nucleotides bind to the regulatory chains, and alter the activity of the enzyme at the catalytic site. ATP activates the rate of ATCase's reaction, while CTP inhibits it. Additionally, UTP and CTP act together to inhibit the enzyme synergistically, each nucleotide enhancing the inhibitory effects of the other. Two classes of CTP binding sites have been observed, one class with a high affinity for CTP, and one with a low affinity. It has been theorized that the asymmetry of the binding sites is intrinsic to each of the three regulatory dimers. It has been hypothesized that the second observed class of CTP binding sites, are actually sites intended for UTP. To test this hypothesis, and to gain more information about heterotropic regulation of ATCase and signal transmission in allosteric enzymes, the construction of a hybrid regulatory dimer was proposed. In the successfully constructed hybrid, each of the three regulatory dimers in ATCase would contain one regulatory chain with compromised nucleotide binding. This project reports several attempts at constructing the proposed hybrid, but ultimately the hybrid enzyme was not attained. This project also reports preliminary work on the characterization of the catalytic chain mutant D141A. This residue is conserved in ATCase over a wide array of species, and thus was mutated in order to ascertain its significance
Thesis (BS) — Boston College, 2006
Submitted to: Boston College. College of Arts and Sciences
Discipline: Chemistry
Discipline: College Honors Program
Brokx, Stephen John. "Structure and function of enzyme I of the PTS." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0029/NQ63848.pdf.
Full textvan, der Merwe Mariè. "Enzyme architecture and flexibility affect DNA topoisomerase I function." View the abstract Download the full-text PDF version, 2007. http://etd.utmem.edu/ABSTRACTS/2007-026-van_der_Merwe-Index.html.
Full textTitle from title page screen (viewed on July 29, 2008). Research advisor: Mary-Ann Bjornsti, Ph.D. Document formatted into pages (xiii, 175 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 161-175).
Chiang, Ranyee Agnes. "Ligand-based perspectives on the evolution of enzyme function." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3324594.
Full textAlderson, Rosanna Grace. "Tracking the evolution of function in diverse enzyme superfamilies." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/10496.
Full textRees, D. "Studies on energy metabolism by phosphorous nuclear magnetic resonance." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370295.
Full textCharnock, Simon James. "Structure/function analysis of a family 10 glycosol hydrolase." Thesis, University of Newcastle upon Tyne, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262920.
Full textCarrasco, Rodríguez Patricia. "Study of the physiological function of carnitine palmitoyltransferase 1C enzyme." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/79172.
Full textESTUDIO DE LA FUNCIÓN FISIOLÓGICA DE LA ENZIMA CPT1C La isoforma carnitina palmitoil transferasa 1C (CPT1C) se expresa únicamente en cerebro y ha sido implicada en la regulación hipotalámica de la ingesta de alimentos y la homeostasis energética. No obstante, su función molecular y su papel en otras áreas del cerebro son desconocidas. Hemos demostrado que CPT1C se expresa en las neuronas piramidales del hipocampo y se localiza en el retículo endoplásmico a lo largo de la neurona, incluso dentro de las espinas dendríticas. Hemos utilizado métodos moleculares, celulares y conductuales para determinar la función de CPT1C. En primer lugar, analizamos la implicación de CPT1C en el metabolismo de la ceramida. La sobre-expresión de CPT1C en neuronas de hipocampo aumentó los niveles de ceramidas, un efecto que fue bloqueado por el tratamiento con miriocina, un inhibidor de la síntesis de novo de la ceramida. En consecuencia, los ratones CPT1C knock-out (CPT1C-KO) demostraron una reducción de los niveles de ceramidas en el hipocampo, cerebelo, estriado y corteza motora principalmente durante el ayuno. A nivel celular, la deficiencia en CPT1C afecta a la morfología de las espinas dendríticas mediante el aumento de filopodios inmaduros y reduciendo el número de espinas maduras. La densidad de protrusiones totales o el área de la cabeza de la espinas dendrítica no se vieron afectadas. El tratamiento de las neuronas en cultivo con ceramida exógena, como la sobre-expresión ectópica de CPT1C, revirtieron el fenotipo de las espinas CPT1C-KO, lo que indica que CPT1C regula la maduración de las espinas dendríticas a través de las ceramidas. Para estudiar las repercusiones del fenotipo CPT1C-KO en la cognición y en la habilidad motora se realizaron diferentes test conductuales. Los resultados del test cognitivo demostraron que la deficiencia de CPT1C perjudica al aprendizaje espacial. Por otra parte, la realización de test motores demostraron que los ratones CPT1C son hipoactivos y tienen disminuida tanto la coordinación motora como la fuerza muscular. Todos estos resultados demuestran que CPT1C regula la síntesis de novo de ceramidas en el retículo endoplásmico de las neuronas y éste es un mecanismo necesario para la correcta maduración de las espinas dendríticas y para el adecuado procedimiento del aprendizaje espacial y la función motora.
Luu, Luong. "Structure/function studies of hP450RAI, a retinoic acid metabolizing enzyme." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ36051.pdf.
Full textDe, Ferrari Luna Luciana. "On combining collaborative and automated curation for enzyme function prediction." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7538.
Full textChang, Cheng-Fu. "Structure-function and regulation studies of angiotensin-converting enzyme 2." Doctoral thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/3122.
Full textSharma, Narayan Prasad. "STRUCTURE/FUNCTION STUDIES ON METALLO-B- LACTAMASE ImiS FROM Aeromonas bv. sobria." Oxford, Ohio : Miami University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1181583976.
Full textStewart, Lorna. "The active transport systems of proline and potassium in Escherichia coli." Thesis, University of Aberdeen, 1987. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU006337.
Full textTuuttila, Ari. "Structure and function of MMP-2 and its inhibitor TIMP-2 /." Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4468-7/.
Full textWen, Bo. "Analysis of human CYP3A4 structure-function relationships using photoaffinity labels /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/8154.
Full textLombardi, Olivia. "Investigating the role of mRNA capping enzyme in C-MYC function." Thesis, University of Dundee, 2017. https://discovery.dundee.ac.uk/en/studentTheses/4816aeec-c481-4494-9a07-56e74a83c08e.
Full textWebb, Catherine Marie. "Polychlorinated biphenyl effects on avian hepatic enzyme induction and thyroid function." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33915.
Full textMaster of Science
Redelinghuys, Pierre. "Structure-function relationship of angiotensin-converting enzyme : glycosylation and domain-selectivity." Doctoral thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/3147.
Full textRaines, C. A. "Comparison of the effects of trypsin and chymotrypsin on thylakoid membrane function." Thesis, University of Glasgow, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375465.
Full textSheikh, Qaiser Iftikhar. "Exploring the structure and function of bacterial cytosine specific DNA methyltransferases using site-directed mutagenesis." Thesis, University of Sheffield, 2001. http://etheses.whiterose.ac.uk/10258/.
Full textKolb, Roman [Verfasser]. "beta-Sultams as Tools for the Study of Enzyme Function / Roman Kolb." München : Verlag Dr. Hut, 2014. http://d-nb.info/1058284762/34.
Full textPretz, Monika Gyöngy. "Thermophilic P-loop transport ATPases enzyme function and energetics at high temperature /." [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/299141012.
Full textSnow, Juliette Elizabeth. "Investigation of the function of disproportionating enzyme in potato (Solanum tuberosum L.)." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/11421.
Full textMa, Huan. "Aldolases for Enzymatic Carboligation : Directed Evolution and Enzyme Structure-Function Relationship Studies." Doctoral thesis, Uppsala universitet, Biokemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-266902.
Full textRood, Jennifer E. (Jennifer Evelyn). "Structure and function of the human Poly(ADP-ribose) polymerase enzyme family." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81033.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
The poly(ADP-ribose) polymerase (PARP) family of enzymes in humans is comprised of 17 proteins. PARP-1, the first member of the family, synthesizes a large, complex post-translational modification, poly(ADP-ribose). While PARP-1 and some other PARPs have been extensively functionally characterized, the enzymatic and cellular functions of many PARPs are unknown. This thesis presents work that seeks to characterize the enzymatic functions of the PARP family. First, experimental demonstration of the automodification capacity of each PARP is presented. We find that PARP enzymatic activity largely conforms to bioinformatic predictions of PARP activity. Then, we seek to provide a structural rationale for these enzymatic capabilities based on the analysis of extant and modeled crystal structures of each PARP. We present a structural hypothesis for catalytic differences among PARPs. Finally, we examine methods for the identification of cellular targets of PARP activity and functional interaction partners of PARPs. Together, these elements of PARP characterization will aid in the discovery of physiologically relevant targets and a mechanistic understanding of PARP enzymatic activity in the cellular context.
by Jennifer E. Rood.
Ph.D.
Ylianttila, M. (Mari). "Structure-function studies of the peroxisomal multifunctional enzyme type 2 (MFE-2)." Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:9514278968.
Full textMartínez, Cuesta Sergio. "The chemistry and evolution of enzyme function : isomerases as a case study." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246994.
Full textSikora, Aneta E. "Structure-function analysis of a multifunctional enzyme using the atomic force microscope." Thesis, University of Portsmouth, 2010. https://researchportal.port.ac.uk/portal/en/theses/structurefunction-analysis-of-a-multifunctional-enzyme-using-the-atomic-force-microscope(fdbd2065-c230-4eba-a7cd-94cbb1bb9e16).html.
Full textHidestrand, Mats. "Structure and function of hepatic cytochromes P450 - implications for drug development /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-418-6/.
Full textMillar, Timothy Marc. "Novel aspects of the activity and function of xanthine oxidase." Thesis, University of Bath, 1999. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311326.
Full textChu, Yuanyuan. "Role of the ubiquitin-editing enzyme A20 in B cell function and disease." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-151826.
Full textGross, Martin. "The tryptophan residues of mitochondrial creatine kinase : roles in enzyme structure and function /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10719.
Full textSliz, Piotr. "Structure, function and interactions of enzyme IIA from the phosphoenolpyruvate, lactose phosphotransferase system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0020/NQ53658.pdf.
Full textCarter, Lisa, Devaiah P. Shivakumar, and Cecelia A. McIntosh. "Mutagenesis of a Flavonol- 3-O-Glucosyltransferase and the Effect on Enzyme Function." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etsu-works/349.
Full textMyllykoski, M. (Matti). "Structure and function of the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526201375.
Full textTiivistelmä Myeliinituppi on tärkeä osa selkärankaisten hermostoa. Myeliiniä muodostuu, kun gliasolun solukalvo kiertyy hermosolun aksonin ympärille. Myeliini mahdollistaa hermoimpulssien nopean välityksen, ja sen tuhoutuminen ja vajaatoiminta aiheuttavat vakavia neurologisia oireita. Myeliinin molekyylikoostumus on ainutlaatuinen, ja monet myeliiniproteiineista eivät esiinny muualla elimistössä. Myeliinissä esiintyvää entsyymiä, 2′,3′-syklisten nukleotidien 3′-fosfodiesteraasia (CNPaasi), esiintyy runsaasti tietyillä myeliinialueilla, ja se on yksi aivojen runsaslukuisimmista proteiineista. Substraatteja CNPaasin katalyyttiselle aktiivisuudelle muodostuu aivovaurion aikana. CNPaasi on myös vuorovaikutuksessa solun tukirangan ja solukalvon kanssa, ja sen uskotaan vaikuttavan myeliinin muodostumiseen. Hiiret, joilta puuttuu CNPaasi, kärsivät aksonien rappeumista ja kuolevat ennenaikaisesti. Tämän tutkimuksen tavoite oli karakterisoida CNPaasin rakennetta ja toimintaa. Tätä tarkoitusta varten ensin kehitettiin menetelmä analysoitavan proteiinin tuottamiseksi. Tavoitteena oli karakterisoida CNPaasin katalyyttinen mekanismi määrittämällä sen kolmiulotteinen molekyylirakenne katalyysireaktion eri vaiheissa. Myös CNPaasin vuorovaikutuksia sen toimintaan liittyvien molekyylien kanssa tutkittiin. Lopuksi kokopitkän proteiinin rakenteen avulla selvitettiin karakterisoimattoman aminoterminaalisen alayksikön toimintaa. CNPaasin katalyyttisen alayksikön rakenne määritettiin käyttäen röntgenkristallografiaa substraatti- ja tuotemolekyylien läsnäollessa. Rakennetta, täydennettynä mutaatioilla inaktivoitujen entsyymimuunnosten analyysillä, käytettiin katalyyttisen reaktion molekyylitason karakterisointiin. Katalyyttisen alayksikön rakennetta verrattiin eri organismeissa esiintyviin homologisiin entsyymeihin. CNPaasin ja kalsiumia sitovan kalmoduliinin vuorovaikutusta karakterisoitiin. Kokopitkän CNPaasin liuosrakenne selvitettiin pienkulmaröntgensironnan avulla, ja CNPaasin sekvenssin säilymistä eläinten evoluution aikana tarkasteltiin proteiinisekvenssitietokantoja käyttämällä. Tulokset antavat uutta tietoa CNPaasin katalyyttisestä aktiivisuudesta ja tämän arvoituksellisen entsyymin toiminnasta. Jatkotutkimukset ovat tarpeen sen täsmällisen roolin selvittämiseksi, mutta on kasvavassa määrin selvää, että CNPaasi pystyy suorittamaan useita tärkeitä tehtäviä hermostossa
Haapalainen, A. (Antti). "Structure-function studies of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2)." Doctoral thesis, University of Oulu, 2002. http://urn.fi/urn:isbn:9514268385.
Full textJust, Sissy [Verfasser]. "T cell specific function of the deubiquitinating enzyme A20 in murine listeriosis / Sissy Just." Magdeburg : Universitätsbibliothek, 2017. http://d-nb.info/1128726459/34.
Full textMcIntosh, Cecilia A. "Structure and Function of Flavonoid Glucosyltransferases: Using a Specific Grapefruit Enzyme as a Model." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/355.
Full textMcIntosh, Cecilia A. "Structure and Function of Flavonoid Glucosyltransferases: Using a specific Grapefruit Enzyme as a Model." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etsu-works/369.
Full text