Academic literature on the topic 'Enzymatic functionalization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enzymatic functionalization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Enzymatic functionalization"
Lewis, Jared C., Pedro S. Coelho, and Frances H. Arnold. "Enzymatic functionalization of carbon–hydrogen bonds." Chem. Soc. Rev. 40, no. 4 (2011): 2003–21. http://dx.doi.org/10.1039/c0cs00067a.
Full textAcero, Enrique Herrero, Caroline Gamerith, Andreas Ortner, Doris Ribitsch, Georg Steinkellner, Karl Gruber, Helmut Schwab, and Georg M. Guebitz. "Strategies for enzymatic functionalization of synthetic polymers." New Biotechnology 31 (July 2014): S31. http://dx.doi.org/10.1016/j.nbt.2014.05.1684.
Full textHerrera-González, Azucena, Gema Núñez-López, Sandrine Morel, Lorena Amaya-Delgado, Georgina Sandoval, Anne Gschaedler, Magali Remaud-Simeon, and Javier Arrizon. "Functionalization of natural compounds by enzymatic fructosylation." Applied Microbiology and Biotechnology 101, no. 13 (June 8, 2017): 5223–34. http://dx.doi.org/10.1007/s00253-017-8359-5.
Full textFaccio, G., S. Senkalla, L. Thöny-Meyer, and M. Richter. "Enzymatic multi-functionalization of microparticles under aqueous neutral conditions." RSC Advances 5, no. 29 (2015): 22319–25. http://dx.doi.org/10.1039/c5ra00669d.
Full textKaur, Amandeep, J. N. Chakraborty, and Kashyap Kumar Dubey. "Enzymatic Functionalization of Wool for Felting Shrink-Resistance." Journal of Natural Fibers 13, no. 4 (July 3, 2016): 437–50. http://dx.doi.org/10.1080/15440478.2015.1043686.
Full textZhang, Lei, Wenshan Zhao, Hengzhen Chen, and Yuanchen Cui. "Enzymatic synthesis of phenol polymer and its functionalization." Journal of Molecular Catalysis B: Enzymatic 87 (March 2013): 30–36. http://dx.doi.org/10.1016/j.molcatb.2012.10.015.
Full textLewis, Jared C., Pedro S. Coelho, and Frances H. Arnold. "ChemInform Abstract: Enzymatic Functionalization of Carbon-Hydrogen Bonds." ChemInform 42, no. 29 (June 27, 2011): no. http://dx.doi.org/10.1002/chin.201129261.
Full textAhmadi, Yasaman, Elisa De Llano, and Ivan Barišić. "(Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures." Nanoscale 10, no. 16 (2018): 7494–504. http://dx.doi.org/10.1039/c7nr09461b.
Full textGuzmán-Mendoza, José Jesús, David Chávez-Flores, Silvia Lorena Montes-Fonseca, Carmen González-Horta, Erasmo Orrantia-Borunda, and Blanca Sánchez-Ramírez. "A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase." Nanomaterials 12, no. 9 (April 26, 2022): 1465. http://dx.doi.org/10.3390/nano12091465.
Full textGuzmán-Mendoza, José Jesús, David Chávez-Flores, Silvia Lorena Montes-Fonseca, Carmen González-Horta, Erasmo Orrantia-Borunda, and Blanca Sánchez-Ramírez. "A Novel Method for Carbon Nanotube Functionalization Using Immobilized Candida antarctica Lipase." Nanomaterials 12, no. 9 (April 26, 2022): 1465. http://dx.doi.org/10.3390/nano12091465.
Full textDissertations / Theses on the topic "Enzymatic functionalization"
Sen, Mustafa Yasin. "Green Polymer Chemistry: Functionalization of Polymers Using Enzymatic Catalysis." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1258422775.
Full textLiu, Tong. "Enzymatic Synthesis of Poly(lactic acid) Based Polyester Capable of Functionalization." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1430749638.
Full textBicer, Isil. "Chemoenzymatic Functionalization Of Cyclic 1,2-diketones." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607293/index.pdf.
Full textpositions. Enzyme catalyzed enantioselective hydrolysis of hydrolyzed acetoxy derivatives gives the corresponding hydroxylated diketones in optically pure form.
Alvarez, Albarran Alejandra. "Modular Surface Functionalization of Polyisobutylene-based Biomaterials." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1405173637.
Full textIslam, Shohana Subrin Verfasser], Ulrich [Akademischer Betreuer] [Schwaneberg, and Lothar [Akademischer Betreuer] Elling. "Enzymatic functionalization and degradation of natural and synthetic polymers / Shohana Subrin Islam ; Ulrich Schwaneberg, Lothar Elling." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181437/34.
Full textIslam, Shohana Subrin [Verfasser], Ulrich [Akademischer Betreuer] Schwaneberg, and Lothar [Akademischer Betreuer] Elling. "Enzymatic functionalization and degradation of natural and synthetic polymers / Shohana Subrin Islam ; Ulrich Schwaneberg, Lothar Elling." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193181437/34.
Full textLongo, Johan. "Design of biomechanocatalytic surfaces : modulations of enzymatic activity through macromolecular conformational changes." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE022/document.
Full textSince many years, a new generation of materials called « smart materials » and defined by their capacity to adapt to their environment is intensively developed. Systems sensitive to different stimuli such as pH, light or ionic strength have been reported. One of these stimuli can also be a mechanical force which is involved in many reactions in nature such as, cells adhesion and proliferation, tissues growing or even plants developments. The aim of my thesis was dedicated to the elaboration of mechano-responsive materials. More precisely, materials that transform a stretching constraint into a chemical signal by mimicking the physical processes used by nature, namely protein conformational changes. We planned to achieve this goal by covalently grafting proteins or enzymes onto a stretchable substrate or incorporating them into cross-linked polymer networks. Stretching these materials should induce protein conformational changes leading to modifications of their properties
Lorenzen, Jan [Verfasser], Thomas [Akademischer Betreuer] Brück, Thomas [Gutachter] Brück, Thomas [Gutachter] Fässler, Uwe [Gutachter] Bornscheuer, and Wolfgang [Gutachter] Eisenreich. "Enzymatic functionalization of bio based fatty acids and algae based triglycerides / Jan Lorenzen ; Gutachter: Thomas Brück, Thomas Fässler, Uwe Bornscheuer, Wolfgang Eisenreich ; Betreuer: Thomas Brück." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1201819997/34.
Full textMaccow, Awilda. "A chemo-enzymatic approach to expand the chemical space of cellulose-derived materials : Application to eco-friendly dyeing of cellulosic fibers." Electronic Thesis or Diss., Toulouse, INSA, 2022. http://www.theses.fr/2022ISAT0054.
Full textThe extension of the chemical molecular space accessible from plant biomass by soft and clean methods is a timely topic that stimulates the scientific community in order to develop biobased products with low environmental impact and to widen the field of biomass exploitation. The functionalization of cellulose, the most abundant polysaccharide on the planet, and/or cello-oligosaccharides as described in this thesis is part of this approach. Our objective was to develop a chemo-enzymatic method involving the action of a mediator-assisted laccase to oxidize cello-oligosaccharides or cellulosic fibers, followed by reductive amination to graft amino compounds onto the cellulosic material. To this end, we first demonstrated the oxidation of cellobiose and methyl cellobiose using the laccase from Trametes versicolor and TEMPO as a mediator. Oxidation conditions were optimized with methyl cellobiose and applied to a cello-oligosaccharide mixture and cellopentaose. Using LC/MS analysis, we showed that a wide range of oxidized compounds is obtained and that the method is effective in producing acidic cello-oligosaccharides potentially of interest for the biomedical and nutraceutical fields. Then, we showed that the reactivity of oxidized cellopentaose with two aminated molecules, p-toluidine and rhodamine 123 (an aminated dye), allowed the binding of the amino compound to the oligosaccharides. Using LC/ MS and MS/MS techniques, we provided evidence for the presence of a strong, covalent amine bond between the dyes and cellopentaose, thus enlarging the chemical space accessible through this hybrid process. After completed this proof of concept, we attempted the dyeing of cotton threads. Cellulosic fibers are one of the main biosourced and biodegradable textile materials. However, chemical processing of textiles and especially the chemical methods used to covalently fix dyes are extremely polluting and harmful to health. Providing more eco-friendly alternatives is a challenge but of prime interest for a company like PILI, which was involved in the thesis project and is developing natural dyes using synthetic biology. Thus, the potential of the two-pot/two-step hybrid process was used to successfully graft p-Toluidine, rhodamine 123 and Acid Red 33 onto cotton thread. The covalent bond established between these dyes and the cotton fiber was proven for the first time. In addition, good homogeneity and wash-fastness were observed for acid Red 33 dyeing, demonstrating the robustness and applicability of the approach in real life. These original results have been patented. By testing other amino dyes, we also showed that the solubility, reactivity and structure of the aminated dye are important parameters to be addressed for dyeing optimization, which opens the way to the custom synthesis of new amino dyes suitable for this promising hybrid process
Nesterenko, Alla. "Etude et fonctionnalisation de protéines végétales en vue de leur application en microencapsulation." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0148/document.
Full textProteins extracted from vegetables are relatively low-cost, non-toxic, biocompatible and biodegradable raw materials. They represent a good alternative to animal-based proteins and petroleum-extracted polymers. In this study, proteins derived from soybean and sunflower seeds were used as wall materials for microencapsulation of hydrophobic (-tocopherol) or hydrophilic (ascorbic acid) active material by spray-drying technique. Soybean proteins are widely used in food and non-food applications, especially in microencapsulation. They were studied in this work as wall material of reference. Sunflower proteins are not actually used in industrial application, but only in the form of oil-cake for animal feeding. That’s why new ways of valorization of this agricultural by-product should be investigated. Several proteins’ modifications such as enzymatic hydrolysis, acylation, cross-linking and cationization were studied in order to improve encapsulating properties of wall material. In the context of green chemistry, all the modifications and preparations were performed without use of organic solvents and chemical catalysts. The effect of protein chemical and enzymatic modifications, and process parameters (homogenization pressure, wall/core ratio and protein concentration) on different characteristics of liquid preparations and microparticles (viscosity, emulsion droplet size, microparticle size and morphology) and on parameters related to the spray-drying process (yield and efficiency of microencapsulation) was particularly investigated in this study. The obtained results confirmed that sunflower proteins are quite suitable as encapsulating agent and provide the microencapsulation efficiencies significantly higher compared to those obtained with soy proteins
Book chapters on the topic "Enzymatic functionalization"
López-Cortés, N., A. Beloqui, A. Ghazi, and M. Ferrer. "Enzymatic Functionalization of Hydrocarbon-like Molecules." In Handbook of Hydrocarbon and Lipid Microbiology, 2841–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_211.
Full textWaldmann, H., A. Heuser, P. Braun, M. Schultz, and H. Kunz. "New Enzymatic Methods for the Selective Functionalization of Carbohydrate Derivatives." In Microbial Reagents in Organic Synthesis, 113–22. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2444-7_9.
Full textPuskas, Judit E., and Mustafa Y. Sen. "Green Polymer Chemistry: Enzymatic Functionalization of Liquid Polymers in Bulk." In ACS Symposium Series, 417–24. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1043.ch028.
Full textPuskas, Judit E., Kwang Su Seo, Marcela Castaño, Madalis Casiano, and Chrys Wesdemiotis. "Green Polymer Chemistry: Enzymatic Functionalization of Poly(ethylene glycol)s Under Solventless Conditions." In Green Polymer Chemistry: Biocatalysis and Materials II, 81–94. Washington, DC: American Chemical Society, 2013. http://dx.doi.org/10.1021/bk-2013-1144.ch007.
Full textPuton, Bruna Maria Saorin, Julia Lisboa Bernardi, Andressa Franco Denti, Luciana Dornelles Venquiaruto, Victor de Aguiar Pedott, Marcelo Luis Mignoni, Natalia Paroul, and Rogério Marcos Dallago. "Immobilization of enzymatic extract in polyester fiber emulsified with polyurethane resin." In A LOOK AT DEVELOPMENT. Seven Editora, 2023. http://dx.doi.org/10.56238/alookdevelopv1-163.
Full textDerr, Ludmilla. "4. Colloidal particles, their surface functionalization and covalent enzyme mobilization." In Interactions between enzymes and oxide colloidal particles and their influence on enzymatic activity, 27–33. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783185760051-27.
Full text"Carbon Materials for Gas and Bio-Sensing Applications Beyond Graphene." In Materials Research Foundations, 39–68. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901175-2.
Full textBrumer, H. "Enzymatic functionalization of cellulosic fibres for textile and other applications: xyloglucan as a molecular anchor." In Advances in Textile Biotechnology, 266–87. Elsevier, 2010. http://dx.doi.org/10.1533/9780857090232.2.266.
Full textBakhtchadjian, Robert. "Introductory Notes on Mechanisms in Oxygen Atom Transfer Reactions of Transition Metal Complexes." In Oxygen Atom Transfer Reactions, 1–38. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815050929123010005.
Full text