Contents
Academic literature on the topic 'Environnement non stationnaire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Environnement non stationnaire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Environnement non stationnaire"
SAYED MOUCHAWEH, Moamar. "Apprentissage dynamique dans un environnement non-stationnaire." Technologies logicielles Architectures des systèmes, August 2014. http://dx.doi.org/10.51257/a-v1-h3125.
Full textDissertations / Theses on the topic "Environnement non stationnaire"
Honeine, Paul. "Méthodes à noyau pour l'analyse et la décision en environnement non-stationnaire." Troyes, 2007. http://www.theses.fr/2007TROY0018.
Full textThis PhD thesis offers a new framework for the analysis and decision-making in a non-stationary environment in the lack of statistical information, on a crossroad of three disciplines : Time-frequency analysis, adaptive signal processing and pattern recognition with kernel machines. We derive a broad framework to take advantage of recent developments in kernel machines for the time-frequency domain, by an appropriate choice of the reproducing kernel. We study the implementation of the principal component analysis on this domain, before extending its scope to signal classification methods such as Fisher discriminant analysis and Support Vector Machines. We carry out with the problem of selecting and turning a representation for a given classification task, which can take advantage of a new criterion initially developed for selecting the reproducing kernel : the kernel-target alignment. Online learning is essential in a non-stationary and dynamic environment. While kernel machines fail in treating such problems, we propose a new method leading to reduced order models based on a criterion inspired from the sparse functional approximation community : the coherence of a dictionary of functions. Beyond the properties of this parameter that we derive for kernel machines, this notion yields efficient models with extremely low computational complexity. We apply it for online kernel algorithms such as principal component analysis. We also consider a broader class of adaptive methods for nonlinear and non-stationary system identification
He, Xiyan. "Sélection d'espaces de représentation pour la décision en environnement non-stationnaire : application à la segmentation d'images texturées." Troyes, 2009. http://www.theses.fr/2009TROY0027.
Full textThe objectif of this thesis is to improve or preserve the performance of a decision système in the presence of noise, loss of information or feature non-stationarity. The proposed method consists in first generating an ensemble of feature subspaces from the initial full-dimensional space, and then making the decision by usins only the subspaces which are supposed to be immune to the non-stationary disturbance (we call these subspaces as homogenous subspaces). Based on this idea, we propose three different approaches to make the system decision by using an ensemble of carefully constructed homogenous subspaces. The first approach uses an ensemble of NN classifiers, combined with a heuristic strategy targeting to select the so-called homogeneous feature subspaces among a large number of subspaces that are randomly generated from the initial space. The second approach follows the same principle; however, the geenration of the subspaces is no longer a random process, but is accomplished by using a modified and adaptive LASSO algorithm. Finally, in the third approach, the homogeneous feature subspace selection and the decision are realized by using one-class SVMs. The textured image segmentation constitutes an appropriate application for the evalution of the proposed approaches. The obtained experimental results demonstrate the effectiveness of the three decision systems that we have developed. Finally, it is worthwhile pointing out that all the work presented in this thesis is limited to the two-class classification problem
Aklil, Nassim. "Apprentissage actif sous contrainte de budget en robotique et en neurosciences computationnelles. Localisation robotique et modélisation comportementale en environnement non stationnaire." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066225/document.
Full textDecision-making is a highly researched field in science, be it in neuroscience to understand the processes underlying animal decision-making, or in robotics to model efficient and rapid decision-making processes in real environments. In neuroscience, this problem is resolved online with sequential decision-making models based on reinforcement learning. In robotics, the primary objective is efficiency, in order to be deployed in real environments. However, in robotics what can be called the budget and which concerns the limitations inherent to the hardware, such as computation times, limited actions available to the robot or the lifetime of the robot battery, are often not taken into account at the present time. We propose in this thesis to introduce the notion of budget as an explicit constraint in the robotic learning processes applied to a localization task by implementing a model based on work developed in statistical learning that processes data under explicit constraints, limiting the input of data or imposing a more explicit time constraint. In order to discuss an online functioning of this type of budgeted learning algorithms, we also discuss some possible inspirations that could be taken on the side of computational neuroscience. In this context, the alternation between information retrieval for location and the decision to move for a robot may be indirectly linked to the notion of exploration-exploitation compromise. We present our contribution to the modeling of this compromise in animals in a non-stationary task involving different levels of uncertainty, and we make the link with the methods of multi-armed bandits
Alami, Réda. "Bandits à Mémoire pour la prise de décision en environnement dynamique. Application à l'optimisation des réseaux de télécommunications." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG063.
Full textIn this PhD thesis, we study the non-stationary multi-armed bandit problem where the non-stationarity behavior of the environment is characterized by several abrupt changes called "change-points". We propose Memory Bandits: a combination between an algorithm for the stochastic multi-armed bandit and the Bayesian Online Change-Point Detector (BOCPD). The analysis of the latter has always been an open problem in the statistical and sequential learning theory community. For this reason, we derive a variant of the Bayesian Online Change-point detector which is easier to mathematically analyze in term of false alarm rateand detection delay (which are the most common criteria for online change-point detection). Then, we introduce the decentralized exploration problem in the multi-armed bandit paradigm where a set of players collaborate to identify the best arm by asynchronously interacting with the same stochastic environment. We propose a first generic solution called decentralized elimination: which uses any best arm identification algorithm as a subroutine with the guar-antee that the algorithm ensures privacy, with a low communication cost. Finally, we perform an evaluation of the multi-armed bandit strategies in two different context of telecommunication networks. First, in LoRaWAN (Long Range Wide Area Network) context, we propose to use multi-armed bandit algorithms instead of the default algorithm ADR (Adaptive Data Rate) in order to minimize the energy consumption and the packet losses of end-devices. Then, in a IEEE 802.15.4-TSCH context, we perform an evaluation of 9 multi-armed bandit algorithms in order to select the ones that choose high-performance channels, using data collected through the FIT IoT-LAB platform. The performance evaluation suggests that our proposal can significantly improve the packet delivery ratio compared to the default TSCH operation, thereby increasing the reliability and the energy efficiency of the transmissions
Ngo, Ho Anh Khoi. "Méthodes de classifications dynamiques et incrémentales : application à la numérisation cognitive d'images de documents." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4006/document.
Full textThis research contributes to the field of dynamic learning and classification in case of stationary and non-stationary environments. The goal of this PhD is to define a new classification framework able to deal with very small learning dataset at the beginning of the process and with abilities to adjust itself according to the variability of the incoming data inside a stream. For that purpose, we propose a solution based on a combination of independent one-class SVM classifiers having each one their own incremental learning procedure. Consequently, each classifier is not sensitive to crossed influences which can emanate from the configuration of the models of the other classifiers. The originality of our proposal comes from the use of the former knowledge kept in the SVM models (represented by all the found support vectors) and its combination with the new data coming incrementally from the stream. The proposed classification model (mOC-iSVM) is exploited through three variations in the way of using the existing models at each step of time. Our contribution states in a state of the art where no solution is proposed today to handle at the same time, the concept drift, the addition or the deletion of concepts, the fusion or division of concepts while offering a privileged solution for interaction with the user. Inside the DIGIDOC project, our approach was applied to several scenarios of classification of images streams which can correspond to real cases in digitalization projects. These different scenarios allow validating an interactive exploitation of our solution of incremental classification to classify images coming in a stream in order to improve the quality of the digitized images
El, Bouchikhi El Houssin. "Sur l'estimation spectrale paramétrique pour la détection des défauts dans les machines asynchrones en environnements stationnaire et non stationnaire." Phd thesis, Université de Bretagne occidentale - Brest, 2013. http://tel.archives-ouvertes.fr/tel-01019643.
Full textDeloux, Estelle. "POLITIQUES DE MAINTENANCE CONDITIONNELLE POUR UN SYSTEME A DEGRADATION CONTINUE SOUMIS A UN ENVIRONNEMENT STRESSANT." Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00348191.
Full textHadoux, Emmanuel. "Markovian sequential decision-making in non-stationary environments : application to argumentative debates." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066489/document.
Full textIn sequential decision-making problems under uncertainty, an agent makes decisions, one after another, considering the current state of the environment where she evolves. In most work, the environment the agent evolves in is assumed to be stationary, i.e., its dynamics do not change over time. However, the stationarity hypothesis can be invalid if, for instance, exogenous events can occur. In this document, we are interested in sequential decision-making in non-stationary environments. We propose a new model named HS3MDP, allowing us to represent non-stationary problems whose dynamics evolve among a finite set of contexts. In order to efficiently solve those problems, we adapt the POMCP algorithm to HS3MDPs. We also present RLCD with SCD, a new method to learn the dynamics of the environments, without knowing a priori the number of contexts. We then explore the field of argumentation problems, where few works consider sequential decision-making. We address two types of problems: stochastic debates (APS ) and mediation problems with non-stationary agents (DMP). In this work, we present a model formalizing APS and allowing us to transform them into an MOMDP in order to optimize the sequence of arguments of one agent in the debate. We then extend this model to DMPs to allow a mediator to strategically organize speak-turns in a debate
Hadoux, Emmanuel. "Markovian sequential decision-making in non-stationary environments : application to argumentative debates." Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066489.
Full textIn sequential decision-making problems under uncertainty, an agent makes decisions, one after another, considering the current state of the environment where she evolves. In most work, the environment the agent evolves in is assumed to be stationary, i.e., its dynamics do not change over time. However, the stationarity hypothesis can be invalid if, for instance, exogenous events can occur. In this document, we are interested in sequential decision-making in non-stationary environments. We propose a new model named HS3MDP, allowing us to represent non-stationary problems whose dynamics evolve among a finite set of contexts. In order to efficiently solve those problems, we adapt the POMCP algorithm to HS3MDPs. We also present RLCD with SCD, a new method to learn the dynamics of the environments, without knowing a priori the number of contexts. We then explore the field of argumentation problems, where few works consider sequential decision-making. We address two types of problems: stochastic debates (APS ) and mediation problems with non-stationary agents (DMP). In this work, we present a model formalizing APS and allowing us to transform them into an MOMDP in order to optimize the sequence of arguments of one agent in the debate. We then extend this model to DMPs to allow a mediator to strategically organize speak-turns in a debate