To see the other types of publications on this topic, follow the link: Environmental magnetic.

Journal articles on the topic 'Environmental magnetic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Environmental magnetic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Keith, McLauchlan. "Are environmental magnetic fields dangerous?" Physics World 5, no. 1 (January 1992): 41–45. http://dx.doi.org/10.1088/2058-7058/5/1/30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Jiahua, Suying Wei, Minjiao Chen, Hongbo Gu, Sowjanya B. Rapole, Sameer Pallavkar, Thomas C. Ho, Jack Hopper, and Zhanhu Guo. "Magnetic nanocomposites for environmental remediation." Advanced Powder Technology 24, no. 2 (March 2013): 459–67. http://dx.doi.org/10.1016/j.apt.2012.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Juutilainen, J. "Environmental Health Criteria 69: Magnetic Fields." International Journal of Radiation Biology 54, no. 3 (January 1988): 505. http://dx.doi.org/10.1080/09553008814551891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HU, Shouyun. "Environmental magnetic studies of lacustrine sediments." Chinese Science Bulletin 47, no. 7 (2002): 613. http://dx.doi.org/10.1360/02tb9141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Snowball, I. "Mineral magnetic signatures of environmental change." GFF 118, sup004 (October 1996): 70. http://dx.doi.org/10.1080/11035899609546361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tiwow, Vistarani Arini, Meytij Jeanne Rampe, and Sulistiawaty Sulistiawaty. "Suseptibilitas Magnetik dan Konsentrasi Logam Berat Sedimen Sungai Tallo di Makassar." JURNAL ILMIAH SAINS 22, no. 1 (April 27, 2022): 60. http://dx.doi.org/10.35799/jis.v22i1.38681.

Full text
Abstract:
Keberadaan Sungai Tallo sangat penting bagi industri dan masyarakat yang berada di daerah aliran sungai. Namun, aktivitas sosial-ekonomi tidak dibarengi dengan pengelolaan sampah yang bertanggung jawab. Dengan demikian, secara umum sungai tercemar oleh polutan seperti logam berat. Oleh karena itu, perlu dilakukan monitoring sebagai langkah pengendalian kualitas Sungai Tallo untuk menghindari kondisi yang semakin buruk. Tujuan penelitian ini yaitu untuk meningkatkan pemahaman tentang hubungan antara parameter magnetik dan kandungan logam berat pada sedimen Sungai Tallo. Metode yang digunakan adalah metode magnetik lingkungan menggunakan parameter suseptibilitas magnetik. Selanjutnya, dilakukan pengujian X-Ray Fluorescence (XRF) untuk mengetahui konsentrasi unsur logam berat. Hasil menunjukkan Suseptibilitas magnetic sedimen Sungai Tallo berkisar 47,7 sampai 968,7 × 10-8 m3/kg. Suseptibilitas magnetik berhasil mengidentifikasi kelimpahan logam berat pada Sungai Tallo. Fe memiliki konsentrasi yang lebih tinggi dibandingkan Cr, Mn, dan Zn. Korelasi antara unsur logam berat Fe, Mn, dan Zn dengan suseptibilitas magnetik diperoleh korelasi positif kuat dimana unsur logam berat berkontribusi terhadap suseptibilitas magnetik. Studi ini mendukung parameter magnetic seperti suseptibilitas magnetik dapat berpotensial digunakan sebagai indikator polusi logam berat pada Sungai Tallo.Kata kunci: Logam berat; magnetik lingkungan; suseptibilitas magnetikMagnetic Susceptibility and Heavy Metal Concentration of Tallo River Sediments in MakassarABSTRACTThe existence of the Tallo River is very important for industry and people living in the watershed. However, socio-economic activities are not accompanied by responsible waste management. Thus, rivers are generally polluted by pollutants such as heavy metals. Therefore, monitoring is necessary as a measure to control the quality of the Tallo River to avoid worsening conditions. The purpose of this study was to improve understanding of the relationship between magnetic parameters and heavy metal content in Tallo River sediments. The method used was the environmental magnetic method using magnetic susceptibility parameters. Furthermore, X-Ray Fluorescence (XRF) was tested to determine the concentration of heavy metal elements. The results showed that the magnetic susceptibility of the Tallo River sediments ranged from 47.7 to 968.7 × 10-8 m3/kg. Magnetic susceptibility identified the abundance of heavy metals in the Tallo River. Fe has a higher concentration than Cr, Mn, and Zn. The correlation between heavy metal elements Fe, Mn, and Zn with magnetic susceptibility showed a strong positive correlation where heavy metal elements contribute to magnetic susceptibility. This study supports magnetic parameters such as magnetic susceptibility that can potentially be used as an indicator of heavy metal pollution in the Tallo River.Keywords: Environmental magnetic; heavy metal; magnetic susceptibility
APA, Harvard, Vancouver, ISO, and other styles
7

Tiwow, Vistarani Arini, Meytij Jeanne Rampe, and Sulistiawaty Sulistiawaty. "Suseptibilitas Magnetik dan Konsentrasi Logam Berat Sedimen Sungai Tallo di Makassar." JURNAL ILMIAH SAINS 22, no. 1 (April 27, 2022): 60. http://dx.doi.org/10.35799/jis.v22i1.38681.

Full text
Abstract:
Keberadaan Sungai Tallo sangat penting bagi industri dan masyarakat yang berada di daerah aliran sungai. Namun, aktivitas sosial-ekonomi tidak dibarengi dengan pengelolaan sampah yang bertanggung jawab. Dengan demikian, secara umum sungai tercemar oleh polutan seperti logam berat. Oleh karena itu, perlu dilakukan monitoring sebagai langkah pengendalian kualitas Sungai Tallo untuk menghindari kondisi yang semakin buruk. Tujuan penelitian ini yaitu untuk meningkatkan pemahaman tentang hubungan antara parameter magnetik dan kandungan logam berat pada sedimen Sungai Tallo. Metode yang digunakan adalah metode magnetik lingkungan menggunakan parameter suseptibilitas magnetik. Selanjutnya, dilakukan pengujian X-Ray Fluorescence (XRF) untuk mengetahui konsentrasi unsur logam berat. Hasil menunjukkan Suseptibilitas magnetic sedimen Sungai Tallo berkisar 47,7 sampai 968,7 × 10-8 m3/kg. Suseptibilitas magnetik berhasil mengidentifikasi kelimpahan logam berat pada Sungai Tallo. Fe memiliki konsentrasi yang lebih tinggi dibandingkan Cr, Mn, dan Zn. Korelasi antara unsur logam berat Fe, Mn, dan Zn dengan suseptibilitas magnetik diperoleh korelasi positif kuat dimana unsur logam berat berkontribusi terhadap suseptibilitas magnetik. Studi ini mendukung parameter magnetic seperti suseptibilitas magnetik dapat berpotensial digunakan sebagai indikator polusi logam berat pada Sungai Tallo.Kata kunci: Logam berat; magnetik lingkungan; suseptibilitas magnetikMagnetic Susceptibility and Heavy Metal Concentration of Tallo River Sediments in MakassarABSTRACTThe existence of the Tallo River is very important for industry and people living in the watershed. However, socio-economic activities are not accompanied by responsible waste management. Thus, rivers are generally polluted by pollutants such as heavy metals. Therefore, monitoring is necessary as a measure to control the quality of the Tallo River to avoid worsening conditions. The purpose of this study was to improve understanding of the relationship between magnetic parameters and heavy metal content in Tallo River sediments. The method used was the environmental magnetic method using magnetic susceptibility parameters. Furthermore, X-Ray Fluorescence (XRF) was tested to determine the concentration of heavy metal elements. The results showed that the magnetic susceptibility of the Tallo River sediments ranged from 47.7 to 968.7 × 10-8 m3/kg. Magnetic susceptibility identified the abundance of heavy metals in the Tallo River. Fe has a higher concentration than Cr, Mn, and Zn. The correlation between heavy metal elements Fe, Mn, and Zn with magnetic susceptibility showed a strong positive correlation where heavy metal elements contribute to magnetic susceptibility. This study supports magnetic parameters such as magnetic susceptibility that can potentially be used as an indicator of heavy metal pollution in the Tallo River.Keywords: Environmental magnetic; heavy metal; magnetic susceptibility
APA, Harvard, Vancouver, ISO, and other styles
8

Tiwow, Vistarani Arini, Meytij Jeanne Rampe, and Sulistiawaty Sulistiawaty. "Suseptibilitas Magnetik dan Konsentrasi Logam Berat Sedimen Sungai Tallo di Makassar." JURNAL ILMIAH SAINS 22, no. 1 (April 27, 2022): 60. http://dx.doi.org/10.35799/jis.v22i1.38681.

Full text
Abstract:
Keberadaan Sungai Tallo sangat penting bagi industri dan masyarakat yang berada di daerah aliran sungai. Namun, aktivitas sosial-ekonomi tidak dibarengi dengan pengelolaan sampah yang bertanggung jawab. Dengan demikian, secara umum sungai tercemar oleh polutan seperti logam berat. Oleh karena itu, perlu dilakukan monitoring sebagai langkah pengendalian kualitas Sungai Tallo untuk menghindari kondisi yang semakin buruk. Tujuan penelitian ini yaitu untuk meningkatkan pemahaman tentang hubungan antara parameter magnetik dan kandungan logam berat pada sedimen Sungai Tallo. Metode yang digunakan adalah metode magnetik lingkungan menggunakan parameter suseptibilitas magnetik. Selanjutnya, dilakukan pengujian X-Ray Fluorescence (XRF) untuk mengetahui konsentrasi unsur logam berat. Hasil menunjukkan Suseptibilitas magnetic sedimen Sungai Tallo berkisar 47,7 sampai 968,7 × 10-8 m3/kg. Suseptibilitas magnetik berhasil mengidentifikasi kelimpahan logam berat pada Sungai Tallo. Fe memiliki konsentrasi yang lebih tinggi dibandingkan Cr, Mn, dan Zn. Korelasi antara unsur logam berat Fe, Mn, dan Zn dengan suseptibilitas magnetik diperoleh korelasi positif kuat dimana unsur logam berat berkontribusi terhadap suseptibilitas magnetik. Studi ini mendukung parameter magnetic seperti suseptibilitas magnetik dapat berpotensial digunakan sebagai indikator polusi logam berat pada Sungai Tallo.Kata kunci: Logam berat; magnetik lingkungan; suseptibilitas magnetikMagnetic Susceptibility and Heavy Metal Concentration of Tallo River Sediments in MakassarABSTRACTThe existence of the Tallo River is very important for industry and people living in the watershed. However, socio-economic activities are not accompanied by responsible waste management. Thus, rivers are generally polluted by pollutants such as heavy metals. Therefore, monitoring is necessary as a measure to control the quality of the Tallo River to avoid worsening conditions. The purpose of this study was to improve understanding of the relationship between magnetic parameters and heavy metal content in Tallo River sediments. The method used was the environmental magnetic method using magnetic susceptibility parameters. Furthermore, X-Ray Fluorescence (XRF) was tested to determine the concentration of heavy metal elements. The results showed that the magnetic susceptibility of the Tallo River sediments ranged from 47.7 to 968.7 × 10-8 m3/kg. Magnetic susceptibility identified the abundance of heavy metals in the Tallo River. Fe has a higher concentration than Cr, Mn, and Zn. The correlation between heavy metal elements Fe, Mn, and Zn with magnetic susceptibility showed a strong positive correlation where heavy metal elements contribute to magnetic susceptibility. This study supports magnetic parameters such as magnetic susceptibility that can potentially be used as an indicator of heavy metal pollution in the Tallo River.Keywords: Environmental magnetic; heavy metal; magnetic susceptibility
APA, Harvard, Vancouver, ISO, and other styles
9

Chaves, Thais de Oliveira, Raquel Dosciatti Bini, Verci Alves de Oliveira Junior, Andressa Domingos Polli, Adriana Garcia, Gustavo Sanguino Dias, Ivair Aparecido dos Santos, Paula Nunes de Oliveira, João Alencar Pamphile, and Luiz Fernando Cotica. "Fungus-Based Magnetic Nanobiocomposites for Environmental Remediation." Magnetochemistry 8, no. 11 (October 26, 2022): 139. http://dx.doi.org/10.3390/magnetochemistry8110139.

Full text
Abstract:
The use of a variety of microorganisms for the degradation of chemicals is a green solution to the problem of environmental pollution. In this work, fungi–magnetic nanoparticles were studied as systems with the potential to be applied in environmental remediation and pest control in agriculture. High food demand puts significant pressure on increasing the use of herbicides, insecticides, fungicides, pesticides, and fertilizers. The global problem of water pollution also demands new remediation solutions. As a sustainable alternative to commercial chemical products, nanobiocomposites were obtained from the interaction between the fungus M. anisopliae and two different types of magnetic nanoparticles. Fourier transform infrared spectroscopy, optical and electron microscopy, and energy dispersive spectroscopy were used to study the interaction between the fungus and nanoparticles, and the morphology of individual components and the final nanobiocomposites. Analyses show that the nanobiocomposites kept the same morphology as that of the fungus in natura. Magnetic measurements attest the magnetic properties of the nanobiocomposites. In summary, these nanobiocomposites possess both fungal and nanoparticle properties, i.e., nanobiocomposites were obtained with magnetic properties that provide a low-cost approach benefiting the environment (nanobiocomposites are retrievable) with more efficiency than that of the application of the fungus in natura.
APA, Harvard, Vancouver, ISO, and other styles
10

Crockford, R. H., and P. M. Fleming. "Environmental magnetism as a stream sediment tracer: an interpretation of the methodology and some case studies." Soil Research 36, no. 1 (1998): 167. http://dx.doi.org/10.1071/s97040.

Full text
Abstract:
A comprehensive sediment sampling program was undertaken in the upper Molonglo catchment in south-eastern New South Wales to determine if mineral magnetics could be used to estimate sidestream contribution at river confluences in this environment. Some 12 confluences were examined over 1400 km 2 in 2 major basins and over 2 contrasting geological types. Sediment samples were divided into 7 size classes and the following magnetic properties measured: magnetic susceptibility at 2 frequencies, isothermal remanent magnetisation at 3 flux densities, and anhysteristic remanent magnetisation. The sidestream inputs were calculated for each particle size class from the range of magnetic parameters. Significant discrepancies and differences appeared in the resultant sidestream inputs, and this paper outlines the conclusions as to the reliability of the different analytical procedures. It is shown that both the concentration and magnetic grain size of ferrimagnetic minerals in the sediments must be taken into account. Where the difference in magnetic grain size between the upstream and sidestream sediments is small, the use of parameter crossplots or bulked magnetic ratios is generally not appropriate. The use of mass (concentration) magnetic values may be better. The difference in the demands of the crossplots and mass values methods is that crossplots require a wide range of mass magnetic concentrations in each branch, with the upstream and sidestream sediments having different magnetic grain sizes, whereas the mass values procedure does best with a very limited (but different) range of concentrations at the upstream and sidestream branches, but similar magnetic grain sizes. This paper provides an extensive discussion of the estimation technique using different parameter combinations, and uses 3 contrasting confluences as case studies.
APA, Harvard, Vancouver, ISO, and other styles
11

David, Valeriu, Ionut Nica, Alexandru Salceanu, and Liviu Breniuc. "MONITORING OF ENVIRONMENTAL LOW FREQUENCY MAGNETIC FIELDS." Environmental Engineering and Management Journal 8, no. 5 (2009): 1253–61. http://dx.doi.org/10.30638/eemj.2009.184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tran, Dai Lam, Van Hong Le, Hoai Linh Pham, Thi My Nhung Hoang, Thi Quy Nguyen, Thien Tai Luong, Phuong Thu Ha, and Xuan Phuc Nguyen. "Biomedical and environmental applications of magnetic nanoparticles." Advances in Natural Sciences: Nanoscience and Nanotechnology 1, no. 4 (January 25, 2011): 045013. http://dx.doi.org/10.1088/2043-6262/1/4/045013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Birn, J., J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, et al. "Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge." Journal of Geophysical Research: Space Physics 106, A3 (March 1, 2001): 3715–19. http://dx.doi.org/10.1029/1999ja900449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

WEISSKOPF, M. G. "Magnetic Resonance Spectroscopy and Environmental Toxicant Exposure." Annals of the New York Academy of Sciences 1097, no. 1 (February 1, 2007): 179–82. http://dx.doi.org/10.1196/annals.1379.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Jia-Hui, Zong-Han Wu, and Wei-Lung Tseng. "Extraction of environmental pollutants using magnetic nanomaterials." Analytical Methods 2, no. 12 (2010): 1874. http://dx.doi.org/10.1039/c0ay00575d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Xiao, Kangda, Li Wang, Jun Guo, Maohua Zhu, Xiuchao Zhao, Xianping Sun, Chaohui Ye, and Xin Zhou. "Quieting an environmental magnetic field without shielding." Review of Scientific Instruments 91, no. 8 (August 1, 2020): 085107. http://dx.doi.org/10.1063/5.0007464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Grbic, Jelena, Brian Nguyen, Edie Guo, Jae Bem You, David Sinton, and Chelsea M. Rochman. "Magnetic Extraction of Microplastics from Environmental Samples." Environmental Science & Technology Letters 6, no. 2 (January 25, 2019): 68–72. http://dx.doi.org/10.1021/acs.estlett.8b00671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yi, Yunqiang, Zhexi Huang, Baizhou Lu, Jingyi Xian, Eric Pokeung Tsang, Wen Cheng, Jianzhang Fang, and Zhanqiang Fang. "Magnetic biochar for environmental remediation: A review." Bioresource Technology 298 (February 2020): 122468. http://dx.doi.org/10.1016/j.biortech.2019.122468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cameron, Ivan L., W. Elaine Hardman, Wendell D. Winters, Selma Zimmerman, and Arthur M. Zimmerman. "Environmental magnetic fields: Influences on early embryogenesis." Journal of Cellular Biochemistry 51, no. 4 (April 1, 1993): 417–25. http://dx.doi.org/10.1002/jcb.2400510406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Aidona, E., S. Pechlivanidou, and Ch Pennos. "Environmental magnetism: Application to cave sediments." Bulletin of the Geological Society of Greece 47, no. 2 (January 24, 2017): 892. http://dx.doi.org/10.12681/bgsg.11128.

Full text
Abstract:
Environmental magnetism techniques allow a rapid, low cost and sensitive characterization of sediments and can be applied in a wide range of environments. More specific, magnetic properties can be successfully used to reconstruct paleoenvironmental and paleoclimatic conditions in rockshelter and cave sites. Cave sediments, imprint the environmental conditions at the Earth’s surface at the time of deposition since are well protected both at the interior and at the entrance of the cave systems. In addition, many cultural sequences and archaeological artifacts are well preserved in rockshelter and cave sediment records and can be effectively used for paleoenvironmental interpretations. In this study we present data from two different cave sites from Northern Greece. In the first cave (Maronia Cave) magnetic measurements were performed in two cores 80 and 90 cm, respectively, located inside the cave area. High values of magnetic susceptibility are directly linked with the human activity inside the cave, while lower values show deposition under infiltration and fluvial processes. In the second cave (Mikro Eptamilon Cave), magnetic susceptibility and frequency dependent magnetic susceptibility depicted from a sedimentary sequence with a thickness of 200 cm, located in the entrance of the cave. Results lead to conclusions concerning the velocity of the paleo-flow likely related to the paleoclimatic conditions that dominated the broader area.
APA, Harvard, Vancouver, ISO, and other styles
21

Nishikawa, Takao, and Ken Sakuta. "Reduction of Environmental Magnetic Field Noise for Detection of Small Magnetic Contaminants." Journal of Physics: Conference Series 1293 (September 2019): 012054. http://dx.doi.org/10.1088/1742-6596/1293/1/012054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rahok, Sam Ann, Hirohisa Oneda, Taichi Nakayama, Kazumichi Inoue, Shigeji Osawa, Akio Tanaka, and Koichi Ozaki. "Enhancement of Scan Matching Using an Environmental Magnetic Field." Journal of Robotics and Mechatronics 30, no. 4 (August 20, 2018): 532–39. http://dx.doi.org/10.20965/jrm.2018.p0532.

Full text
Abstract:
Scan matching is one of the most reliable localization methods for mobile robots in known environments. However, an unexpected shift in posture remains its major issue. A method that uses an environmental magnetic field, a magnetic field that occurs in the environment, is presented to address this issue. The environmental magnetic field, which mostly refers to the geomagnetic field, is rarely changed by time. This unique property provides a means to enhance scan matching to provide a more robust localization method by using it to compensate the mobile robot’s pose. In this study, we describe how to compensate the mobile robot’s pose with the environmental magnetic field. Through experiments, we show that a mobile robot with the proposed method can recover, even if irregular changes in posture occur during the navigation.
APA, Harvard, Vancouver, ISO, and other styles
23

Oikawa, S., A. Haga, and K. Yamazaki. "Examination of Environmental Magnetic Fields in Office Space: Measurement of Environmental Magnetic Fields in Power-Receiving and Transformer rooms." Journal of the Magnetics Society of Japan 30, no. 2 (2006): 316–20. http://dx.doi.org/10.3379/jmsjmag.30.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Schmidt, M. A. "Assessment of environmental disturbances to the static magnetic field in magnetic resonance installations." British Journal of Radiology 79, no. 941 (May 2006): 432–36. http://dx.doi.org/10.1259/bjr/76396327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Xu, Xinwen, Xiaoke Qiang, Hui Zhao, and Chaofeng Fu. "Rock magnetic and environmental magnetic data of lacustrine sediments from the Heqing basin." Data in Brief 29 (April 2020): 105107. http://dx.doi.org/10.1016/j.dib.2020.105107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kim, Y. S., and Y. S. Cho. "ENVIRONMENTAL EXPOSURE TO MAGNETIC FIELDS IN TRANSPORTATION SYSTEMS." Epidemiology 9, Supplement (July 1998): S127. http://dx.doi.org/10.1097/00001648-199807001-00424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhou, Qingxiang, Jing Li, Mengyun Wang, and Danchen Zhao. "Iron-based magnetic nanomaterials and their environmental applications." Critical Reviews in Environmental Science and Technology 46, no. 8 (April 17, 2016): 783–826. http://dx.doi.org/10.1080/10643389.2016.1160815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nestle, Nikolaus, Thomas Baumann, and Reinhard Niessner. "Peer Reviewed: Magnetic Resonance Imaging in Environmental Science." Environmental Science & Technology 36, no. 7 (April 2002): 154A—160A. http://dx.doi.org/10.1021/es0222723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Tang, Samuel C. N., and Irene M. C. Lo. "Magnetic nanoparticles: Essential factors for sustainable environmental applications." Water Research 47, no. 8 (May 2013): 2613–32. http://dx.doi.org/10.1016/j.watres.2013.02.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kaczorowski, D., and M. Koźlik. "Environmental effect on the magnetic behaviour in CePd3Gax." Physica B: Condensed Matter 259-261 (January 1999): 105–7. http://dx.doi.org/10.1016/s0921-4526(98)00977-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ioan, C., A. Republic of Moldovanu, C. Macovei, Elena Republic of Moldovanu, and M. Macoviciuc. "Dynamical cancellation of the environmental magnetic disturbing fields." Sensors and Actuators A: Physical 59, no. 1-3 (April 1997): 329–33. http://dx.doi.org/10.1016/s0924-4247(97)80200-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dong, Jie, Zhenghe Xu, and Steven M. Kuznicki. "Magnetic Multi-Functional Nano Composites for Environmental Applications." Advanced Functional Materials 19, no. 8 (April 23, 2009): 1268–75. http://dx.doi.org/10.1002/adfm.200800982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Byoung Chan, Jinwoo Lee, Wooyong Um, Jaeyun Kim, Jin Joo, Jin Hyung Lee, Ja Hun Kwak, et al. "Magnetic mesoporous materials for removal of environmental wastes." Journal of Hazardous Materials 192, no. 3 (September 2011): 1140–47. http://dx.doi.org/10.1016/j.jhazmat.2011.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kalia, Susheel, Sarita Kango, Amit Kumar, Yuvaraj Haldorai, Bandna Kumari, and Rajesh Kumar. "Magnetic polymer nanocomposites for environmental and biomedical applications." Colloid and Polymer Science 292, no. 9 (August 8, 2014): 2025–52. http://dx.doi.org/10.1007/s00396-014-3357-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Che Nan, Siti Nursyamsulbahria binti, Danial Wan Hazman, Mohd Fuad Miskon, Shafida Abd Hamid, Rosliza Mohd. Salim, and Azaima Razali. "Reduced Graphene Oxide Functionalized Magnetic Nanocomposites for Environmental Pollutant Removal." Materials Science Forum 1076 (December 8, 2022): 109–17. http://dx.doi.org/10.4028/p-io4k1f.

Full text
Abstract:
Nowadays, the excessive and uncontrolled discharge of chemicals are imposing major health threats. The demands for clean and safe water amplifies the need to develop improved technologies for environmental contaminant removal. Considering the limitations of conventional methods for contaminants removal, we have prepared magnetic iron oxide nanoparticles functionalised with reduced graphene oxide as a potential material for environmental pollutants removal. The magnetic properties in potential adsorbent materials are highly desirable due to several advantages. Among which are their large adsorptive surface area, low diffusion resistance, high adsorption capacity and fast separation in large volumes of solution. The surface functionalised magnetic iron oxide nanoparticles (MNP) were fabricated using a one-pot hydrothermal method by adding reduced graphene oxide (rGO) into the reaction system. The graphene oxide were reduced prior to the addition in the hydrothemal decomposition step. The resultant rGO-MNP nanocomposites were characterised using FT-IR, SEM and VSM to investigate the functional groups, morphology and magnetic properties, resepectively. We also demonstrated the potential of the hybridised magnetic material with hydrophobic reduced graphene oxide for environmental pollutant removal.
APA, Harvard, Vancouver, ISO, and other styles
36

Jordanova, Diana, Viktor Hoffmann, and Karl Thomas Fehr. "Integrated Study of Single Anthropogenic Particles—Magnetic and Environmental Implications." Environmental Chemistry 1, no. 1 (2004): 31. http://dx.doi.org/10.1071/en04007.

Full text
Abstract:
Environmental Context.Industrial metal production, thermoelectric power plants, and similar technologies can release a large amount of particles (with sizes up to the millimetre scale) of heavy metals into the local surrounds. Up to 10% of these particles are strongly magnetic and easily detectable above the background magnetism. A map of the regional magnetic signals, which would be relatively simple and cheap to produce, provides a guide to pollution ‘hotspots’. But it’s not that simple: The authors integrate chemistry, microscopy, and magnetism studies of single particles of sediments from the Danube River to show rock magnetic parameters established for natural rocks cannot be directly used on environmental man-made particles. Abstract.The presence of significant amounts of strongly magnetic phases in anthropogenic particulate industrial emissions allows the use of magnetic methods for fast and cheap detection of environmental pollution. The aim of our study is to check the validity of some of the constitutive magnetic parameters and their ratios used for estimation of grain sizes and distance from the pollution source. The results from our integrated magnetic, microscopic, and microchemical study on large, single, anthropogenic particles show that classical rock magnetic parameters (Mrs/Mr, Bcr/Bc) for mineral magnetic characterization cannot be directly applied to the anthropogenic phases. This results from their inhomogeneous composition, often with dendritic exsolution of iron oxides within an aluminosilicate matrix.
APA, Harvard, Vancouver, ISO, and other styles
37

Cheng, Yuan, Yaozhi Luo, Ruihong Shen, Liang Zhao, and Weiyong Zhou. "Measurement and Analysis on Magnetic Field Influence of Substation for Magnetic Shielding Device." Applied Sciences 13, no. 5 (March 1, 2023): 3161. http://dx.doi.org/10.3390/app13053161.

Full text
Abstract:
The residual magnetic field in a magnetic shielding device with a multilayer high permeability material (permalloy) structure can be obtained at the nanotesla (nT) level or even lower. At present, in the process of designing a magnetic shielding device, most of the external environmental magnetic field settings are set at the size of the Earth’s environmental magnetic field, but the instruments inside the magnetic shielding device need to be powered, the active compensation coil needs to be powered, and the degaussing coil of passive shielding layer needs to be powered, so substations need to be used around magnetic shielding devices. The magnetic field generated by the substation will affect the magnetic shielding device, so this paper analyzes and measures the magnetic field generated by the substation. Firstly, the finite element model of a substation is established, and the influence of different substations on the environmental magnetic field is analyzed by changing the power. Secondly, the test method of a substation environment magnetic field is determined. Finally, the site test was carried out to measure the influence of different power substations and different distances on the magnetic field, and its influence on the magnetic shielding device was analyzed, which provided an important basis for the construction of the magnetic shielding device.
APA, Harvard, Vancouver, ISO, and other styles
38

Takiya, Takashi, and Tsuyoshi Uchiyama. "Environmental Magnetic Noise Reduction Effect of the Active Magnetic Shielding System for MI Gradiometer." IEEJ Transactions on Fundamentals and Materials 137, no. 8 (2017): 454–59. http://dx.doi.org/10.1541/ieejfms.137.454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

NAKAHIRA, Atsushi, Shigeki NISHIDA, and Koji FUKUNISHI. "Synthesis of Magnetic Activated Carbons for Removal of Environmental Endocrine Disrupter Using Magnetic Vector." Journal of the Ceramic Society of Japan 114, no. 1325 (2006): 135–37. http://dx.doi.org/10.2109/jcersj.114.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Linh, Pham Hoai, Do Hung Manh, Tran Dai Lam, Le Van Hong, Nguyen Xuan Phuc, Nguyen Anh Tuan, Nguyen Thanh Ngoc, and Vu Anh Tuan. "Magnetic nanoparticles: study of magnetic heating and adsorption/desorption for biomedical and environmental applications." International Journal of Nanotechnology 8, no. 3/4/5 (2011): 399. http://dx.doi.org/10.1504/ijnt.2011.038215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

LU, Sheng-Gao, and Shi-Qing BAI. "Magnetic Characterization and Magnetic Mineralogy of the Hangzhou Urban Soils and Its Environmental Implications." Chinese Journal of Geophysics 51, no. 3 (May 2008): 549–57. http://dx.doi.org/10.1002/cjg2.1245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Xiang, Huaili Zheng, Zhengan Zhang, Chuanliang Zhao, Yuhao Zhou, Fang Li, and Wei Chen. "Research Progress of Magnetic Polymer Microspheres in Environmental Engineering." Mini-Reviews in Organic Chemistry 13, no. 2 (May 6, 2016): 118–25. http://dx.doi.org/10.2174/1570193x13666160324155319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hirota, Minoru, and Katsuyuki Ninomiya. "Applications of nuclear magnetic resonance spectroscopy in environmental science." Japan journal of water pollution research 8, no. 12 (1985): 781–85. http://dx.doi.org/10.2965/jswe1978.8.781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hayashi, Amane, Hiroshi Oyama, Yoshihiro Hirata, and Shinya Kuriki. "Reduction of Environmental Magnetic Field Noise for Biomagnetic Measurements." IEEJ Transactions on Electronics, Information and Systems 121, no. 11 (2001): 1704–10. http://dx.doi.org/10.1541/ieejeiss1987.121.11_1704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Amrutha, K., Anish Kumar Warrier, K. Sandeep, Arya Jyothinath, A. L. Ananthapadmanabha, and R. Shankar. "Environmental Magnetic Properties of Lateritic Soils from Southwestern India." Eurasian Soil Science 54, no. 2 (February 2021): 238–48. http://dx.doi.org/10.1134/s1064229321020022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mokhodoeva, O. B., V. V. Maksimova, R. Kh Dzhenloda, and V. M. Shkinev. "Magnetic Nanoparticles Modified by Ionic Liquids in Environmental Analysis." Journal of Analytical Chemistry 76, no. 6 (June 2021): 675–84. http://dx.doi.org/10.1134/s1061934821060058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shekhovtsova, E. V., V. V. Romanko, and S. L. Kim. "Environmental aspects of the magnetic influence on oil sludge." Environmental Protection in Oil and Gas Complex, no. 5 (2021): 46–50. http://dx.doi.org/10.33285/2411-7013-2021-5(302)-46-50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Longzhi Jiang and T. J. Havens. "Environmental Vibration Induced Magnetic Field Disturbance in MRI Magnet." IEEE Transactions on Applied Superconductivity 22, no. 3 (June 2012): 4400704. http://dx.doi.org/10.1109/tasc.2011.2177051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rabinovici, R., B. Z. Kaplan, Y. Karon, and R. Karo. "An instrument for environmental 50 Hz magnetic fields measurements." IEEE Transactions on Magnetics 28, no. 5 (September 1992): 2476–78. http://dx.doi.org/10.1109/20.179531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nishijima, Shigheiro. "Magnetic Force Control Technique for Recycling and Environmental Preservation." Progress in Superconductivity and Cryogenics 14, no. 4 (November 30, 2012): 1–4. http://dx.doi.org/10.9714/sac.2012.14.4.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography