Academic literature on the topic 'Environmental geochemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Environmental geochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Environmental geochemistry"

1

Fuge, Ron. "Environmental Geochemistry." Applied Geochemistry 17, no. 8 (August 2002): 959. http://dx.doi.org/10.1016/s0883-2927(02)00094-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, M. H., and I. Thornton. "Applied Environmental Geochemistry." Journal of Applied Ecology 22, no. 3 (December 1985): 1028. http://dx.doi.org/10.2307/2403267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

O'Day, Peggy A. "Molecular environmental geochemistry." Reviews of Geophysics 37, no. 2 (May 1999): 249–74. http://dx.doi.org/10.1029/1998rg900003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ELLIOTT, HERSCHEL A. "Applied Environmental Geochemistry." Soil Science 140, no. 4 (October 1985): 307. http://dx.doi.org/10.1097/00010694-198510000-00015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamilton, E. I. "Applied environmental geochemistry." Science of The Total Environment 43, no. 1-2 (May 1985): 190–91. http://dx.doi.org/10.1016/0048-9697(85)90044-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bowman, Robert S. "Aqueous Environmental Geochemistry." Eos, Transactions American Geophysical Union 78, no. 50 (1997): 586. http://dx.doi.org/10.1029/97eo00355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

POORTER, R. "Applied environmental geochemistry." Earth-Science Reviews 24, no. 3 (September 1987): 220–22. http://dx.doi.org/10.1016/0012-8252(87)90028-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Runnells, Donald D. "Applied environmental geochemistry." Journal of Geochemical Exploration 25, no. 3 (May 1986): 404–5. http://dx.doi.org/10.1016/0375-6742(86)90091-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

DEMETRIADES, A. "Applied geochemistry in the twenty-first century: mineral exploration and environmental surveys." Bulletin of the Geological Society of Greece 34, no. 3 (January 1, 2001): 1131. http://dx.doi.org/10.12681/bgsg.17173.

Full text
Abstract:
Applied (exploration and environmental) geochemistry in the twentieth century is briefly reviewed, and its future developments in the twenty-first century are envisaged in the light of advances in analytical instruments (laboratory and field) and computer technology. It is concluded that applied geochemical methods must be used by well-trained applied geochemists, and the potential for future developments is limited only by their ingenuity.
APA, Harvard, Vancouver, ISO, and other styles
10

Hostettler, Frances, and Keith Kvenvolden. "Alkytcyclohexanes in Environmental Geochemistry." Environmental Forensics 3, no. 3 (January 1, 2002): 293–301. http://dx.doi.org/10.1080/713848390.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Environmental geochemistry"

1

Krishnamurthy, Prabakaran. "Environmental Geochemistry of the Lower Baram River, Borneo." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/59727.

Full text
Abstract:
In order to understand the environmental geochemistry of the Lower Baram River, seasonal surface water and sediment samples, core sediments, and root, bark and leaves from mangrove trees were collected and examined for major, trace and rare earth elements. The provenance and prevailing geochemical processes which govern the characteristics of water and sediments were revealed. Further, risk assessment and bioaccumulation of trace elements as well as the mechanism of element uptake in mangroves were discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Dredge, Jonathan. "Aerosol contributions to speleothem geochemistry." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5136/.

Full text
Abstract:
There is developing interest in cave aerosols due to the increasing awareness of their impacts on the cave environment and speleothems. This study presents the first multidisciplinary investigation into cave aerosols and their contribution to speleothem geochemistry. Modern monitoring of suspended aerosol concentrations, CO2 and temperature in Gough’s Cave, Cheddar Gorge have presented a strong relationship with cave ventilation processes. Temporal variations of aerosol levels have demonstrated the ability of aerosol monitoring to record seasonal ventilation shifts, beyond anthropogenic influences. When used in combination with more established monitoring methods, suspended aerosol monitoring is a beneficial addition to cave environmental studies Theoretical modelling and calculations based on modern aerosol monitoring have established that aerosol contributions are highly variable. Aerosol contributions are of greatest significance under slow growth or hiatus scenarios and high aerosol deposition scenarios. Marine and terrestrial aerosol contributions have been quantified in a flowstone core from New St Michaels Cave, Gibraltar. Additionally, bio-aerosol deposits and bacterial colonisation have been identified as a potential source of trace element bioaccumulation and flowstone coloration in Yarrangobilly Caves, Australia.
APA, Harvard, Vancouver, ISO, and other styles
3

Harraway, Trevor John. "Chemical characterisation of landfill leachate and its potential mobility through the Cape Flats sand." Thesis, University of Cape Town, 1996. http://hdl.handle.net/11427/26218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, Sarah Jane. "Geochemistry of ferruginous clogging of Karoo wells." Master's thesis, University of Cape Town, 2000. http://hdl.handle.net/11427/4213.

Full text
Abstract:
Summary in English.
Includes bibliographical references.
The main source of potable water in the Karoo is groundwater and thus any problems resulting from the abstraction of water or from diffifulties in abstractions of water are important. The iron clogging of screens, pumps and filter packs in supply wells is a worldwide problem and the consequences can be severe, leading to costly and harsh rehabilitation measures or even loss of the well. A study was undertaken in order to determine the chemistry and morphology of the precipitates found in relation to the water chemistry, in several wells in the Albertinia-Oudtshoorn-Calitzdorp area of South Africa.
APA, Harvard, Vancouver, ISO, and other styles
5

Chowdhury, Md Abu Raihan. "Removal of Select Chlorinated Hydrocarbons by Nanoscale Zero-valent Iron Supported on Powdered Activated Charcoal." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496150130687849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, Jason Alistair Christian. "The marine environmental geochemistry of the southern Baltic Sea." Thesis, University of Edinburgh, 1999. http://hdl.handle.net/1842/16931.

Full text
Abstract:
The initial focus of this research sought to investigate the marine geochemistry of radium and barium in order to elucidate upon the processes governing circulation patterns and residence times in the southern Baltic Sea. The project has since developed and transformed into a detailed study of the spatial and temporal distribution of a select group of metals, and in some respects pollutants, in the region north of the river Oder where it discharges into the Baltic Sea. A transect of progressively deepening water depths, thought to trace the major outflow of the river Oder into a depositional basin, were investigated over a period of 15 months. Four cruises during this time were undertaken to coincide with each season in order to investigate any broad scale seasonalities. This thesis looks at the main compartments and integrated processes associated with the sediment, nepheloid layer and the water column of this marine environment. This has been achieved by the use of coupled radionuclide and trace metal data followed by the calculation of fluxes and inventories for a select group of elements. Major and trace metals were analysed via ICPMS and XRF and radionuclides were measured by gamma ray spectrometry. Supporting data in the form of grain size analysis, XRD and carbon and nitrogen measurements were also made. Radium measurements were attempted using the Photo-Electron Rejecting Alpha Liquid Scintillation (PERALS) spectrometer system. Of particular interest Pb, Zn, and Sn and their enrichment over average shale in the Arkona Basin. Coupled with this, stable lead isotope data details a historical picture of increased pollution associated with the rise of the automobile and subsequent decline of lead with the advent of unleaded petrol in the mid eighties. In addition the significance of the mobile nepheloid layer is investigated as a primary transport and modification route for the elements of interest. This thesis challenges the traditional role and concept of the Arkona basin as a depositional site for the pollutants discharged from the river Oder and instead evaluates the depositional role of the Arkona Basin as being primarily a sink for the atmospheric input rather than that associated with riverine discharge.
APA, Harvard, Vancouver, ISO, and other styles
7

Lax, Kaj. "Environmental applications of biogeochemical data from Geological Survey of Sweden." Licentiate thesis, Luleå : Luleå University of Technology, 2005. http://epubl.luth.se/1402-1757/2005/95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Linduo. "Iron redox process in clay minerals and its environmental significance." Miami University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=miami1438388284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Huebner, Ralf. "Sediment geochemistry : a case study approach." Thesis, Bournemouth University, 2009. http://eprints.bournemouth.ac.uk/13139/.

Full text
Abstract:
The geochemistry of sediments is a very wide field and several important aspects must be taken into account, including, but not limited to, various methodological questions, the analysis of distribution patterns, determination of origins and the assessment of risks. Therefore, this research project adapted a case study approach and analysed several important aspects of contamination in sediments at a time. In case study 1, the distribution of metals in the sediments was analysed in Bigge and Olpe, two small and fast running watercourses in Germany. The metal/metalloid concentrations showed very different distribution patterns. Mobile elements like zinc showed a very homogenous and predictable pattern, while elements with low mobility stick to the sediment and do not migrate much, leading to areas with different concentrations. In addition, it was found that the local monitoring tools in force, which are largely based on analyses of the water, are not sufficient for a reliable assessment of the environmental quality. Case study 2 aimed both to investigate the contamination profile caused by a closed landfill within the Christchurch Harbour nature reserve and the strengths/weaknesses of a partial extraction scheme based on the industrial standardised process DIN 19730. It was found that this procedure can predict the actual migration in the homogenous marshland structure rather well. In the vicinity of a linear channel, however, no correlation between the mobility and dispersion could be detected; the channel acts as an effective drainage system for both the landfill itself and the intertidal marshland in its sphere of influence. Partial extractions are only limited in their ability to predict the migration of contaminants in the ground directly affected by the channel. The main objective of case study 3 was the determination of metal distribution within the Poole Harbour estuary, both in regard to total and mobile metal concentrations. In addition, it was tested if the chosen methodology is an efficient protocol (fast, yet scientifically defendable) for the assessment of the environmental quality of an area of that size. The concentrations and mobilities of all analysed contaminants in Poole Harbour were greatest in the heavily industrialised secondary embayment Holes Bay. Although Wareham Channel typically showed higher concentrations in the total content analyses compared to Southern Bights, the potential risk associated with metals, calculated based on both total concentrations and mobile fractions, was comparable in both areas. In case study 4 a simplified grain-size based normalisation scheme was tested. The efficiency of this approach, together several other normalisation schemes was evaluated in Wareham Channel, located in the west of Poole Harbour. In such fine-grained environments, neither geochemical analyses based on aluminium, nor granulometric normalisation schemes yielded a substantial improvement. Normalisations based on the much simpler iron-ratio reduced the variance considerably. This approach was then applied to the sediments close to a former weapons facility. Case study 5 investigated the interactions between the die-back of the cord grass Spartina anglica in Poole Harbour and the metal contamination in the sediments. Despite having several evolutionary advantages over other plants in this environment, S. anglica is dying back in the estuary since 1925 and the reasons for this process are insufficiently understood. No obvious impact of the metal contamination on S. anglica growth/ die-back could be detected, although the die-back has influenced, in turn, the metal concentrations in the estuary. The overall cadmium concentrations and potential risk of adverse effects have risen since 1925, but in the zones affected by die-back, cadmium stored in the sediment by S. anglica appears to have been washed out rapidly. Existing patches still retain elevated concentrations and are potentially at risk of further cadmium release, especially if sea level rise, caused by climate change, would accelerate the die-back.
APA, Harvard, Vancouver, ISO, and other styles
10

Hartland, Adam. "Colloidal geochemistry of speleothem-forming groundwaters." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1659/.

Full text
Abstract:
Natural aquatic colloids (solids with dimensions between 1 nm and 1 micron) were studied in cave waters that feed secondary carbonates [speleothems]. Results show that during hydrologically quiescent periods, trace metal (Tr) binding (e.g. Cu, Ni, Co) is dominated by humic-like, natural organic matter (NOM), with the smallest NOM-Tr complexes (≤1 to ca. 4 nm diameter) being the least labile at high pH (>pH 10). Partitioning of NOM:Tr between solution and crystal occurs minimally for the strongest complexes, providing a measure of NOM adsorption. Rapid fluxes of coarse (>100 nm) soil organic matter (SOM) and Tr in dripwaters often follow peak infiltration events, the coarse fraction of NOM quenching fluorescence in finer fractions (<100 nm). Termed ‘high-flux’ (HF), this mode of NOM-metal transport contrasts with the humic-like or ‘low-flux’ (LF) mode both hydrologically and chemically, resulting in shifts in trace metal ratios (e.g. Cu:Ni) which are characteristic of changes in the competitive binding of metals for suitable sites in NOM, and diagnostic of qualitative shifts in NOM composition (i.e. relatively more aromatic/hydrophobic). This process becomes manifest in speleothems, resulting in high- and low-flux trace metal end-members and providing information on NOM aromaticity. Changes in HF:LF metal ratios in speleothems are linked to processes in soils which are ultimately mediated by climate (i.e. ambient temperature and infiltrating precipitation); they may provide information on infiltrating precipitation, on the occurrence of surface disturbances (e.g. deforestation) and NOM composition. HF:LF indices complement the existing array of speleothem climate proxies, but each specific system and setting must be understood to ensure their proper interpretation.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Environmental geochemistry"

1

S, Lollar B., ed. Environmental geochemistry. Amsterdam: Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bowie, S. H. U., and I. Thornton, eds. Environmental Geochemistry and Health. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5265-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heling, Dietrich, Peter Rothe, Ulrich Förstner, and Peter Stoffers, eds. Sediments and Environmental Geochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drude de Lacerda, Luiz, Ricardo Erthal Santelli, Egbert K. Duursma, and Jorge João Abrão, eds. Environmental Geochemistry in Tropical and Subtropical Environments. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07060-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

1962-, Wasserman Julio C., Silva-Filho Emmanoel V. 1956-, and Villas Bôas Roberto C, eds. Environmental geochemistry in the tropics. New York: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wasserman, Julio C., Emmanuel V. Silva-Filho, and Roberto Villas-Boas, eds. Environmental Geochemistry in the Tropics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0010900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alpers, Charles N., and David W. Blowes, eds. Environmental Geochemistry of Sulfide Oxidation. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1994-0550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eganhouse, Robert P., ed. Molecular Markers in Environmental Geochemistry. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baskaran, Mark, ed. Handbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10637-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Baskaran, Mark. Handbook of environmental isotope geochemistry. Berlin: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Environmental geochemistry"

1

Alexandre, Paul. "Environmental Geochemistry." In Springer Textbooks in Earth Sciences, Geography and Environment, 85–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72453-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Depetris, Pedro José. "Fresh Water Geochemistry: Overview." In Environmental Geology, 55–100. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-8787-0_969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manahan, Stanley E. "The Geosphere and Geochemistry." In Environmental Chemistry, 373–402. 11th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003096238-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bowie, S. H. U., and I. Thornton. "Principles of Environmental Geochemistry." In The GeoJournal Library, 5–33. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5265-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Giannossi, Maria Luigia, and Vito Summa. "An Observation on the Composition of Urinary Calculi: Environmental Influence." In Medical Geochemistry, 67–90. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4372-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bathurst, Robin G. C. "Thoughts on the Growth of Stratiform Stylolites in Buried Limestones." In Sediments and Environmental Geochemistry, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sessler, Wolfgang. "The Influence on Subrosion of Three Different Types of Salt Deposits." In Sediments and Environmental Geochemistry, 179–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kühn, Robert. "Particle Size Distribution of Saliferous Clays in the German Zechstein." In Sediments and Environmental Geochemistry, 197–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fischbeck, R. "Mineralogical and Petrographic Studies on the Anhydritmittelsalz (Leine Cycle z3) in the Gorleben Salt Dome." In Sediments and Environmental Geochemistry, 210–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schäfer, Andreas, Ullrich Rast, and Roger Stamm. "Lacustrine Paper Shales in the Permocarboniferous Saar-Nahe Basin (West Germany) — Depositional Environment and Chemical Characterization." In Sediments and Environmental Geochemistry, 220–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75097-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Environmental geochemistry"

1

Ding, S., N. J. Bale, E. C. Hopmans, L. Villanueva, M. Arts, S. Schouten, and J. S. Sinninghe Damsté. "Lipidomics of Environmental Microbial Communities." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pearce, Alexandra R. "Environmental geochemistry of St. Anthony Mine uranium ores." In 71st Annual Fall Field Conference. New Mexico Geological Society, 2021. http://dx.doi.org/10.56577/ffc-71.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carney, Melissa, Andre Ellis, Thomas Bullen, and Jeff Langman. "Geochemistry of Yukon and Copper River Tributaries, Alaska." In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huguet, A., L. Rouyer, C. Anquetil, M. Mendez-Millan, S. Coffinet, and T. T. Nguyen Tu. "Environmental Changes in Tanzania During Holocene: New Insights from Hydroxylated Biomarkers (Abundance and 13C)." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Z. Z., Z. Y. Bao, and B. X. Feng. "Environmental geochemistry of rock selenium in Ziyang area, China." In International Conference on Environmental Science and Biological Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/esbe140161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacob, J., A. Simonneau, A. Thibault, T. Thiebault, C. Le Milbeau, R. Boscardin, L. Fougère, E. Destandau, and C. Morio. "Environmental and Anthropic Controls on Sediments and Biomarker Deposition in a Decantation Tank (Orleans, France)." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perez Gallego, R., MTJ van der Meer, N. Bale, J. Lattaud, J. Sinninghe Damsté, and L. Villanueva. "Distribution of Alkenone Desaturase Genes in Long-Chain Alkenone Haptophyte Producers Under Changing Environmental Conditions." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wuchter, C., L. Mucina, S. Stanley, A. Sessions, and K. Grice. "Environmental Drivers Shaping Physiological Flexibility of Plants in Saline Habitats from Shark Bay, Western Australia." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gayantha, Kasun, Joyanto Routh, Krishnamurthy Anupama, Jean Lazar, Srinivasan Prasad, Rohana Chandrajith, Patrick Roberts, and Gerd Gleixner. "Biomarker and Pollen Approach to Reconstruct Late Holocene Climate and Environmental History in Western Sri Lnka." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Richter, N., S. Van Grinsven, L. Villanueva, E. C. Hopmans, N. Bale, and D. Rush. "ENVIRONMENTAL CONTROLS ON BACTERIAL LIPID PRODUCTION BY A METHANOTROPH-METHYLOTROPH CO-CULTURE." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134062.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Environmental geochemistry"

1

Brown, J. R. Environmental geochemistry: the micro perspective. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/304491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bryan, Charles R., and Malcolm Dean Siegel. Environmental geochemistry of radioactive contamination. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/915153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knight, R. D., and R. A. Klassen. Environmental geochemistry and geochemical hazards. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/212221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vitali, F., M. M. Savard, É. Bourque, and Y. Michaud. Environmental isotope geochemistry of Laurentian piedmont groundwater, Quebec. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1999. http://dx.doi.org/10.4095/210860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McMartin, I., G. E. M. Hall, J. A. Kerswill, S. Douma, S P Goff, A. L. Sangster, and J A Vaive. Environmental geochemistry of the Kaminak Lake area, Kivalliq region, Nunavut. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2001. http://dx.doi.org/10.4095/212834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knauss, K. G., and R. D. Aines. Experimental and theoretical modeling expertise of the Organic and Inorganic Environmental Geochemistry Groups. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/218213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kliza, D. A., K. T. Telmer, G. F. Bonham-Carter, and G. E. M. Hall. Geochemistry of snow from the Rouyn-Noranda region of western Quebec: an environmental database. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2000. http://dx.doi.org/10.4095/211650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Volpe, A. M., and B. K. Esser. Selenium isotope geochemistry: A new approach to characterizing the environmental chemistry of selenium. Final report. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/505158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hershey, R. L., and S. Y. Acheampong. Estimation of groundwater velocities from Yucca Flat to the Amargosa Desert using geochemistry and environmental isotopes. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/515514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blake, W. D., F. Goff, A. I. Adams, and D. Counce. Environmental geochemistry for surface and subsurface waters in the Pajarito Plateau and outlying areas, New Mexico. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography