Academic literature on the topic 'Enumeraton'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Enumeraton.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Enumeraton"
Beigel, Richard, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan, and Leen Torenvliet. "Enumerations of the Kolmogorov function." Journal of Symbolic Logic 71, no. 2 (June 2006): 501–28. http://dx.doi.org/10.2178/jsl/1146620156.
Full textShahrivari, Saeed, and Saeed Jalili. "Fast Parallel All-Subgraph Enumeration Using Multicore Machines." Scientific Programming 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/901321.
Full textSanei-Mehri, Seyed-Vahid, Apurba Das, Hooman Hashemi, and Srikanta Tirthapura. "Mining Largest Maximal Quasi-Cliques." ACM Transactions on Knowledge Discovery from Data 15, no. 5 (June 26, 2021): 1–21. http://dx.doi.org/10.1145/3446637.
Full textPreviti, Alessandro, and Joao Marques-Silva. "Partial MUS Enumeration." Proceedings of the AAAI Conference on Artificial Intelligence 27, no. 1 (June 30, 2013): 818–25. http://dx.doi.org/10.1609/aaai.v27i1.8657.
Full textvan der Rest, Cas, and Wouter Swierstra. "A completely unique account of enumeration." Proceedings of the ACM on Programming Languages 6, ICFP (August 29, 2022): 411–37. http://dx.doi.org/10.1145/3547636.
Full textCallan, David, and Toufik Mansour. "On permutations avoiding 1324, 2143, and another 4-letter pattern." Pure Mathematics and Applications 26, no. 1 (June 27, 2017): 1–10. http://dx.doi.org/10.1515/puma-2015-0018.
Full textCallan, David, and Toufik Mansour. "On permutations avoiding 1243, 2134, and another 4-letter pattern." Pure Mathematics and Applications 26, no. 1 (June 27, 2017): 11–21. http://dx.doi.org/10.1515/puma-2015-0019.
Full textIMAI, HIROSHI, TOMONARI MASADA, FUMIHIKO TAKEUCHI, and KEIKO IMAI. "ENUMERATING TRIANGULATIONS IN GENERAL DIMENSIONS." International Journal of Computational Geometry & Applications 12, no. 06 (December 2002): 455–80. http://dx.doi.org/10.1142/s0218195902000980.
Full textWatson, Derrick G., Elizabeth A. Maylor, and Lucy A. M. Bruce. "Effects of Age on Searching for and Enumerating Targets that Cannot be Detected Efficiently." Quarterly Journal of Experimental Psychology Section A 58, no. 6 (August 2005): 1119–42. http://dx.doi.org/10.1080/02724980443000511.
Full textCHUNG, K. S., C. N. KIM, and K. NAMGOONG. "Evaluation of the Petrifilm Rapid Coliform Count Plate Method for Coliform Enumeration from Surimi-Based Imitation Crab Slurry." Journal of Food Protection 63, no. 1 (January 1, 2000): 123–25. http://dx.doi.org/10.4315/0362-028x-63.1.123.
Full textDissertations / Theses on the topic "Enumeraton"
Blackburn, Simon R. "Group enumeration." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:caac5ed0-44e3-4bec-a97e-59e11ea268af.
Full textp2andfrasl;27m3+O(m2). (1) We show that the number of groups of nilpotency class at most 3 and order pm satisfies (1). We prove a similar result concerning the number of graded Lie rings of order pm generated by their first grading.
Mishna, Marni. "Cayley graph enumeration." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ51422.pdf.
Full textShoilekova, Bilyana Todorova. "Graphical enumeration methods." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526538.
Full textHannah, Stuart A. "Interval order enumeration." Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26137.
Full textEdeson, Margaret, and n/a. "Investigations in coset enumeration." University of Canberra. Information Sciences & Engineering, 1989. http://erl.canberra.edu.au./public/adt-AUC20050712.083514.
Full textOcansey, Evans Doe. "Enumeration problems on lattices." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80393.
Full textENGLISH ABSTRACT: The main objective of our study is enumerating spanning trees (G) and perfect matchings PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating spanning trees of any connected graph, namely the matrix-tree theorem and as a special value of the Tutte polynomial T(G; x; y). We present a general method for counting spanning trees on lattices in d 2 dimensions. In particular we apply this method on the following regular lattices with d = 2: rectangular, triangular, honeycomb, kagomé, diced, 9 3 lattice and its dual lattice to derive a explicit formulas for the number of spanning trees of these lattices of finite sizes. Regarding the problem of enumerating of perfect matchings, we prove Cayley’s theorem which relates the Pfaffian of a skew symmetric matrix to its determinant. Using this and defining the Pfaffian orientation on a planar graph, we derive explicit formula for the number of perfect matchings on the following planar lattices; rectangular, honeycomb and triangular. For each of these lattices, we also determine the bulk limit or thermodynamic limit, which is a natural measure of the rate of growth of the number of spanning trees (L) and the number of perfect matchings PM(L). An algorithm is implemented in the computer algebra system SAGE to count the number of spanning trees as well as the number of perfect matchings of the lattices studied.
AFRIKAANSE OPSOMMING: Die hoofdoel van ons studie is die aftelling van spanbome (G) en volkome afparings PM(G) in grafieke G en roosters L. Ons beskou twee metodes om spanbome in ’n samehangende grafiek af te tel, naamlik deur middel van die matriks-boom-stelling, en as ’n spesiale waarde van die Tutte polinoom T(G; x; y). Ons behandel ’n algemene metode om spanbome in roosters in d 2 dimensies af te tel. In die besonder pas ons hierdie metode toe op die volgende reguliere roosters met d = 2: reghoekig, driehoekig, heuningkoek, kagomé, blokkies, 9 3 rooster en sy duale rooster. Ons bepaal eksplisiete formules vir die aantal spanbome in hierdie roosters van eindige grootte. Wat die aftelling van volkome afparings aanbetref, gee ons ’n bewys van Cayley se stelling wat die Pfaffiaan van ’n skeefsimmetriese matriks met sy determinant verbind. Met behulp van hierdie stelling en Pfaffiaanse oriënterings van planare grafieke bepaal ons eksplisiete formules vir die aantal volkome afparings in die volgende planare roosters: reghoekig, driehoekig, heuningkoek. Vir elk van hierdie roosters word ook die “grootmaat limiet” (of termodinamiese limiet) bepaal, wat ’n natuurlike maat vir die groeitempo van die aantaal spanbome (L) en die aantal volkome afparings PM(L) voorstel. ’n Algoritme is in die rekenaaralgebra-stelsel SAGE geimplementeer om die aantal spanboome asook die aantal volkome afparings in die toepaslike roosters af te tel.
Meier, Arne [Verfasser]. "Parametrised enumeration / Arne Meier." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2020. http://d-nb.info/1206685859/34.
Full textRamos, Garrido Lander. "Graph enumeration and random graphs." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405943.
Full textEn aquesta tesi utilitzem l'analítica combinatòria per treballar amb dos problemes relacionats: enumeració de grafs i grafs aleatoris de classes de grafs amb restriccions. En particular ens interessa esbossar un dibuix general de determinades famílies de grafs determinant, en primer lloc, quants grafs hi ha de cada mida possible (enumeració de grafs), i, en segon lloc, quin és el comportament típic d'un element de mida fixa triat a l'atzar uniformement, quan aquesta mida tendeix a infinit (grafs aleatoris). Els problemes en què treballem tracten amb grafs que satisfan condicions globals, com ara ésser planars, o bé tenir restriccions en el grau dels vèrtexs. En el Capítol 2 analitzem grafs planar aleatoris amb grau mínim dos i tres. Mitjançant tècniques de combinatòria analítica i els conceptes de nucli i kernel d'un graf, obtenim estimacions asimptòtiques precises i analitzem paràmetres rellevants de grafs aleatoris, com ara el nombre d'arestes o la mida del nucli, on obtenim lleis límit gaussianes. També treballem amb un paràmetre que suposa un repte més important: el paràmetre extremal que es correspon amb la mida de l'arbre més gran que penja del nucli. En aquest cas obtenim una estimació logarítmica per al seu valor esperat, juntament amb un resultat sobre la seva concentració. En el Capítol 3 estudiem el nombre de subgrafs isomorfs a un graf fix en classes de grafs subcrítiques. Quan el graf fix és biconnex, obtenim lleis límit gaussianes amb esperança i variància lineals. L'eina principal és l'anàlisi de sistemes infinits d'equacions donada per Drmota, Gittenberger i Morgenbesser, que utilitza la teoria d'operadors compactes. El càlcul de les constants exactes de la primera estimació dels moments en general es troba fora del nostre abast. Per a la classe de grafs sèrie-paral·lels podem calcular les constants en alguns casos particulars interessants. En el Capítol 4 enumerem grafs (arbitraris) el grau de cada vèrtex dels quals pertany a un subconjunt fix dels nombres naturals. En aquest cas les funcions generatrius associades són divergents i la nostra anàlisi utilitza l'anomenat model de configuració. El nostre resultat consisteix a obtenir estimacions asimptòtiques precises per al nombre de grafs amb un nombre de vèrtexs i arestes donat, amb la restricció dels graus. Aquest resultat generalitza àmpliament casos particulars existents, com ara grafs d-regulars, o grafs amb grau mínim com a mínim d.
Postnikov, Alexander. "Enumeration in algebra and geometry." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42693.
Full textEgebrand, August. "Feynman Diagrams and Map Enumeration." Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-298474.
Full textBooks on the topic "Enumeraton"
Green, Linda L. 1890 Union veterans census: Special enumeration schedules, enumerating Union veterans and widows of the Civil War. Westminister, MD: Willow Bend Books, 2004.
Find full textMarino, Andrea. Analysis and Enumeration. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-097-3.
Full textUnited States. Bureau of the Census, ed. Service-based enumeration. [Washington, D.C.?]: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Bureau of the Census, 1999.
Find full textUnited States. Bureau of the Census., ed. Service-based enumeration. [Washington, D.C.?]: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Bureau of the Census, 1999.
Find full textUnited States. Bureau of the Census., ed. Service-based enumeration. [Washington, D.C.?]: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Bureau of the Census, 1999.
Find full textUnited States. Bureau of the Census., ed. Service-based enumeration. [Washington, D.C.?]: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Bureau of the Census, 1999.
Find full textUnited States. Bureau of the Census, ed. Service-based enumeration. [Washington, D.C.?]: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Bureau of the Census, 1999.
Find full textUnited States. Bureau of the Census, ed. Service-based enumeration. [Washington, D.C.?]: U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Bureau of the Census, 1999.
Find full textPólya, George. Combinatorial enumeration of groups, graphs, and chemical compounds. New York: Springer-Verlag, 1987.
Find full textPólya, George. Combinatorial enumeration of groups, graphs, and chemical compounds. New York: Springer-Verlag, 1987.
Find full textBook chapters on the topic "Enumeraton"
Hanada, Hiroyuki, Shuhei Denzumi, Yuma Inoue, Hiroshi Aoki, Norihito Yasuda, Shogo Takeuchi, and Shin-ichi Minato. "Enumerating Eulerian Trails via Hamiltonian Path Enumeration." In WALCOM: Algorithms and Computation, 161–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15612-5_15.
Full textBendík, Jaroslav, and Kuldeep S. Meel. "Counting Minimal Unsatisfiable Subsets." In Computer Aided Verification, 313–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81688-9_15.
Full textSands, B. "Enumeration." In Graphs and Order, 523–27. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5315-4_17.
Full textSchröder, Bernd S. W. "Enumeration." In Ordered Sets, 263–93. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0053-6_11.
Full textSanchis, Luis E. "Enumeration." In Reflexive Structures, 68–99. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3878-2_3.
Full textGutman, Ivan, and Sven Josef Cyvin. "Enumeration." In Introduction to the Theory of Benzenoid Hydrocarbons, 33–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-87143-6_4.
Full textConforti, Michele, Gérard Cornuéjols, and Giacomo Zambelli. "Enumeration." In Graduate Texts in Mathematics, 351–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11008-0_9.
Full textRival, Ivan. "Enumeration." In Algorithms and Order, 483–86. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2639-4_18.
Full textWeik, Martin H. "enumeration." In Computer Science and Communications Dictionary, 528. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_6312.
Full textSheikh, Ahmed. "Enumeration." In Certified Ethical Hacker (CEH) Preparation Guide, 27–34. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-7258-9_3.
Full textConference papers on the topic "Enumeraton"
de Colnet, Alexis, and Pierre Marquis. "On the Complexity of Enumerating Prime Implicants from Decision-DNNF Circuits." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/358.
Full textArikawa, Keisuke. "Classification and Enumeration of Topological Structures of Robotic Mechanisms: Generation of Robotic Mechanisms With Unconventional Topological Structures." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34992.
Full textJonnalagadda, Srinath, and Sundar Krishnamurty. "Modified Standard Codes in Enumeration and Automatic Sketching of Mechanisms." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1192.
Full textYan, Hong-Sen, Feng-Ming Ou, and Ming-Feng Tang. "An Algorithm for the Enumeration of Serial and/or Parallel Combinations of Kinematic Building Blocks." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57295.
Full textGrégoire, Éric, Yacine Izza, and Jean-Marie Lagniez. "Boosting MCSes Enumeration." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/182.
Full textTsai, Lung-Wen, and Bharath Madhavan. "Systematic Enumeration of 1:1 Constant-Velocity Shaft Couplings." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1202.
Full textAbidi, Aman, Rui Zhou, Lu Chen, and Chengfei Liu. "Pivot-based Maximal Biclique Enumeration." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/492.
Full textMercan, Hanefi, Kamer Kaya, and Cemal Yilmaz. "Enumerator: An Efficient Approach for Enumerating all Valid t-tuples." In 2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 2018. http://dx.doi.org/10.1109/icstw.2018.00064.
Full textTerra-Neves, Miguel, Inês Lynce, and Vasco Manquinho. "Multi-Objective Optimization Through Pareto Minimal Correction Subsets." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/757.
Full textEriksson, Leif, and Victor Lagerkvist. "A Fast Algorithm for Consistency Checking Partially Ordered Time." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/212.
Full textReports on the topic "Enumeraton"
Peñaloza, Rafael, and Barış Sertkaya. On the Complexity of Axiom Pinpointing in Description Logics. Technische Universität Dresden, 2009. http://dx.doi.org/10.25368/2022.173.
Full textCheikes, Brant A., David Waltermire, and Karen Scarfone. Common platform enumeration :. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7695.
Full textParmelee, Mary C., Harold Booth, David Waltermire, and Karen Scarfone. Common planform enumeration :. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7696.
Full textCichonski, Paul, David Waltermire, and Karen Scarfone. Common platform enumeration :. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7697.
Full textWaltermire, David, Paul Cichonski, and Karen Scarfone. Common platform enumeration :. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7698.
Full textSertkaya, Barış. Some Computational Problems Related to Pseudo-intents. Technische Universität Dresden, 2008. http://dx.doi.org/10.25368/2022.169.
Full textVisco, Donald Patrick, Jr, Jean-Loup Michel Faulon, and Diana C. Roe. Enumerating molecules. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/918764.
Full textDamon, Craig A. Selective Enumeration: A Formal Definition. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada339198.
Full textHugue, M. M. Fault Type Enumeration and Classification. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada242541.
Full textCroome, Amy, and Franziska Mager. Doing Research with Enumerators. Oxfam, November 2018. http://dx.doi.org/10.21201/2018.3576.
Full text