Academic literature on the topic 'Entropy maximization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entropy maximization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Entropy maximization"
Athreya, K. B. "Entropy maximization." Proceedings - Mathematical Sciences 119, no. 4 (September 2009): 531–39. http://dx.doi.org/10.1007/s12044-009-0049-5.
Full textCensor, Yair, and Joseph Segman. "On Block-Iterative Entropy Maximization." Journal of Information and Optimization Sciences 8, no. 3 (September 1987): 275–91. http://dx.doi.org/10.1080/02522667.1987.10698894.
Full textMartı́nez, S., F. Nicolás, F. Pennini, and A. Plastino. "Tsallis’ entropy maximization procedure revisited." Physica A: Statistical Mechanics and its Applications 286, no. 3-4 (November 2000): 489–502. http://dx.doi.org/10.1016/s0378-4371(00)00359-9.
Full textJanečka, Adam, and Michal Pavelka. "Gradient Dynamics and Entropy Production Maximization." Journal of Non-Equilibrium Thermodynamics 43, no. 1 (January 26, 2018): 1–19. http://dx.doi.org/10.1515/jnet-2017-0005.
Full textRatnayake, L. L. "Intercity auto trip estimation for Sri Lanka using entropy maximization." Canadian Journal of Civil Engineering 16, no. 2 (April 1, 1989): 200–201. http://dx.doi.org/10.1139/l89-036.
Full textRé, Christopher, and D. Suciu. "Understanding cardinality estimation using entropy maximization." ACM Transactions on Database Systems 37, no. 1 (February 2012): 1–31. http://dx.doi.org/10.1145/2109196.2109202.
Full textMiller, Gad, and David Horn. "Probability Density Estimation Using Entropy Maximization." Neural Computation 10, no. 7 (October 1, 1998): 1925–38. http://dx.doi.org/10.1162/089976698300017205.
Full textHaegeman, Bart, and Michel Loreau. "Limitations of entropy maximization in ecology." Oikos 117, no. 11 (October 28, 2008): 1700–1710. http://dx.doi.org/10.1111/j.1600-0706.2008.16539.x.
Full textRouge, Richard, and Nicole El Karoui. "Pricing Via Utility Maximization and Entropy." Mathematical Finance 10, no. 2 (April 2000): 259–76. http://dx.doi.org/10.1111/1467-9965.00093.
Full textZou, Jieping, and Greg Holloway. "Entropy maximization tendency in topographic turbulence." Journal of Fluid Mechanics 263 (March 25, 1994): 361–74. http://dx.doi.org/10.1017/s0022112094004155.
Full textDissertations / Theses on the topic "Entropy maximization"
Bæcklund, Anna. "Maximization of the Wehrl Entropy in Finite Dimensions : Maximization of the Wehrl Entropy in Finite Dimensions." Thesis, KTH, Fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120594.
Full textGlocer, Karen A. "Entropy regularization and soft margin maximization /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2009. http://uclibs.org/PID/11984.
Full textGarvey, Jennie Hill. "Independent component analysis by entropy maximization (infomax)." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Jun%5FGarvey.pdf.
Full textThesis Advisor(s): Frank E. Kragh. "June 2007." Includes bibliographical references (p. 103). Also available in print.
Zhao, Mansuo. "Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization." University of Sydney. School of Electrical and Information Engineering, 2005. http://hdl.handle.net/2123/699.
Full textZhao, Mansuo. "Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization." Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/699.
Full textKhabou, Mohamed Ali. "Improving shared weight neural networks generalization using regularization theory and entropy maximization /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9953870.
Full textFabro, Adriano Todorovic. "Análise estocástica do comportamento dinâmico de estruturas via métodos probabilísticos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265418.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-16T06:24:37Z (GMT). No. of bitstreams: 1 Fabro_AdrianoTodorovic_M.pdf: 6602156 bytes, checksum: 3a18dd67bde7f65ae2e4dd268670356d (MD5) Previous issue date: 2010
Resumo: Esta dissertação tem como objetivo geral levar 'a realidade industrial subsídios para a modelagem e análise de sistemas mecânicos lineares com variabilidade, assim como metodologias computacionais para quantificação de incertezas, para fins de aplicação em projeto. Neste sentido, foram realizados estudos sobre técnicas de modelagem e análise estocástica de sistemas mecânicos lineares aplicadas, inicialmente, a algumas estruturas simples, de baixo custo computacional, por meio de simulações em MatLabR. Propõe-se uma abordagem probabilística para a modelagem de incertezas baseada no Princípio da Máxima Entropia para a flexibilidade relativa a uma trinca aberta e não propagante em uma barra modelada através do Método do Elemento Espectral (SEM). Também é apresentada uma abordagem para o tratamento de problemas de campo aleatório utilizando o SEM, onde são utilizadas soluções analíticas da decomposição de Karhunen-Lo'eve. Uma formulação para elementos de viga do tipo Euler-Bernoulli é apresentada e um exemplo em que a rigidez à flexão é modelada como um campo aleatório Gaussiano é tratado. Uma abordagem para análise estocástica do comportamento dinâmico de uma tampa de compressor hermético é proposta. Uma aproximação por elementos finitos obtida com o software Ansys R foi utilizada para representar o comportamento determinístico de uma tampa de compressor, e duas abordagens de modelagem estocástica são comparadas. Um ensaio experimental foi realizado com tampas nominalmente idênticas, sendo medidas apenas frequências naturais com excitação por impacto, de modo a se poder compará-las com os valores obtidos teoricamente
Abstract: This dissertation has as a general objective to bring to the industrial reality subsidies for modeling and analysis of linear mechanical systems with variability, as well as computational methodologies to the uncertainty quantification, aiming industrial design applications. In that sense, theoretical studies about stochastic modeling and analysis for mechanical linear systems were performed. They were applied, firstly, to simple and computationally low cost structures using MatlabR. In that sense, a probabilistic modeling approach based on the Maximum Entropy Principle was proposed to treat the flexibility related to an open and nonpropagating crack in a rod modeled using the Spectral Element Method (SEM). An approach for the treatment of random field problems using SEM, which uses analytical solutions of the Karhunen-Lo'eve Decomposition, is also addressed. An Euler-Bernoulli beam formulation was used, and an example where the flexural stiffness is modeled as a Gaussian random field is presented. A finite element approximation obtained with the software Ansys R was used to represent the deterministic dynamic behavior of a compressor cap shell, and two stochastic modeling approaches were compared. Experiments were performed using nominally identical cap samples. Natural frequencies were measured using impact excitation in order to compare with the theoretical results
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Medeiros, Richerland Pinto [UNESP]. "Inferência de emoções em fragmentos de textos obtidos do Facebook." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/150974.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-06-27T17:04:08Z (GMT) No. of bitstreams: 1 medeiros_rp_me_bauru.pdf: 1209454 bytes, checksum: 251490a058f4248162de9508b4627e65 (MD5)
Made available in DSpace on 2017-06-27T17:04:09Z (GMT). No. of bitstreams: 1 medeiros_rp_me_bauru.pdf: 1209454 bytes, checksum: 251490a058f4248162de9508b4627e65 (MD5) Previous issue date: 2017-04-27
Esta pesquisa tem como objetivo analisar o uso da técnica estatística de aprendizado de máquina Maximização de Entropia, voltado para tarefas de processamento de linguagem natural na inferência de emoções em textos obtidos da rede social Facebook. Foram estudados os conceitos primordiais das tarefas de processamento de linguagem natural, os conceitos inerentes a teoria da informação, bem como o aprofundamento no conceito de um modelo entrópico como classificador de textos. Os dados utilizados na presente pesquisa foram obtidos de textos curtos, ou seja, textos com no máximo 500 caracteres. A técnica em questão foi abordada dentro do aprendizado supervisionado de máquina, logo, parte dos dados coletados foram usados como exemplos marcados dentro de um conjunto de classes predefinidas, a fim de induzir o mecanismo de aprendizado a selecionar a classe de emoção mais provável dado o exemplo analisado. O método proposto obteve índice de assertividade médio de 90%, baseado no modelo de validação cruzada.
This research aims to analyze the use of entropy maximization machine learning statistical technique, focused on natural language processing tasks in the inferencing of emotions in short texts from Facebook social network. Were studied the primary concepts of natural language processing tasks, IT intrinsic concepts, as well as deepening the concept of Entropy model as a text classifier. All data used for this research came from short texts found in social networks and had 500 characters or less. The model was used within supervised machine learning, therefore, part of the collected data was used as examples marked within a set of predefined classes in order to induce the learning mechanism to select the most probable emotion class given the analyzed sample. The method has obtained the mean accuracy rate of 90%, based on the cross-validation model.
Hatefi, Armin. "Mixture model analysis with rank-based samples." Statistica Sinica, 2013. http://hdl.handle.net/1993/23849.
Full textLudovic, Moreau. "A Contribution in Stochastic Control Applied to Finance and Insurance." Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00737624.
Full textBooks on the topic "Entropy maximization"
Golan, Amos. Entropy Maximization. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199349524.003.0004.
Full textGell-Mann, Murray, and Constantino Tsallis, eds. Nonextensive Entropy. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195159769.001.0001.
Full textRickard, David. Framboids. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190080112.001.0001.
Full textBook chapters on the topic "Entropy maximization"
Zabarankin, Michael, and Stan Uryasev. "Entropy Maximization." In Statistical Decision Problems, 53–70. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8471-4_5.
Full textBorwein, Jonathan M., and Qiji J. Zhu. "Entropy Maximization in Finance." In Springer Proceedings in Mathematics & Statistics, 275–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36568-4_18.
Full textFröhner, F. H. "Entropy Maximization in Nuclear Physics." In Maximum Entropy and Bayesian Methods, 93–107. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3460-6_9.
Full textShipley, Bill. "Entropy Maximization and Species Abundance." In Encyclopedia of Complexity and Systems Science, 2903–18. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_174.
Full textAyres, Robert. "A Brief History of Ideas: Energy, Entropy and Evolution." In Energy, Complexity and Wealth Maximization, 15–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30545-5_3.
Full textKaushik, Raghav, Christopher Ré, and Dan Suciu. "General Database Statistics Using Entropy Maximization." In Database Programming Languages, 84–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03793-1_6.
Full textUniyal, Nitin, Girish Dobhal, and Alok Darshan Kothiyal. "An Improvement in Key Domain Maximization Technique by Entropy Maximization." In Algorithms for Intelligent Systems, 681–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6307-6_70.
Full textShapiro, Alexander A., and Erling H. Stenby. "Principle of Entropy Maximization for Nonequilibrium Steady States." In Thermal Nonequilibrium Phenomena in Fluid Mixtures, 61–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45791-7_4.
Full textCensor, Yair, Tommy Elfving, and Gabor T. Herman. "Special-Purpose Algorithms for Linearly Constrained Entropy Maximization." In Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems, 241–54. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3961-5_14.
Full textPletscher, Patrick, Cheng Soon Ong, and Joachim M. Buhmann. "Entropy and Margin Maximization for Structured Output Learning." In Machine Learning and Knowledge Discovery in Databases, 83–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15939-8_6.
Full textConference papers on the topic "Entropy maximization"
Fradkov, Alexander L., Dmitry S. Shalymov, and Anton V. Proskurnikov. "Speed-gradient entropy maximization in networks." In 2016 IEEE Conference on Norbert Wiener in the 21st Century (21CW). IEEE, 2016. http://dx.doi.org/10.1109/norbert.2016.7547461.
Full textXu, Dahai. "Compact formulation of Network Entropy Maximization." In 2012 46th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2012. http://dx.doi.org/10.1109/ciss.2012.6310762.
Full textRé, Christopher, and Dan Suciu. "Understanding cardinality estimation using entropy maximization." In the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1807085.1807095.
Full textDhavlle, Abhijitt, Raj Mehta, Setareh Rafatirad, Houman Homayoun, and Sai Manoj Pudukotai Dinakarrao. "Entropy-Shield:Side-Channel Entropy Maximization for Timing-based Side-Channel Attacks." In 2020 21st International Symposium on Quality Electronic Design (ISQED). IEEE, 2020. http://dx.doi.org/10.1109/isqed48828.2020.9137008.
Full textGraham, Rishi, and Jorge Cortes. "Cooperative adaptive sampling via approximate entropy maximization." In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC 2009). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400511.
Full textJin, Qinggui, Guirong Wang, and Yuancheng Liu. "Blind Signal Separation by Entropy Maximization (INFOMAX)." In 2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). IEEE, 2010. http://dx.doi.org/10.1109/wicom.2010.5600111.
Full textHeidemann, Dirk. "A Note on the Entropy Maximization Principle." In Second International Conference on Transportation and Traffic Studies (ICTTS ). Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/40503(277)43.
Full textMailloux, Guy E., Hail Mallouche, Rita Noumeir, and Raymond Lemieux. "MART algorithm for SPECT and entropy maximization." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by Randall L. Barbour and Mark J. Carvlin. SPIE, 1993. http://dx.doi.org/10.1117/12.151193.
Full textSavas, Yagiz, Melkior Ornik, Murat Cubuktepe, and Ufuk Topcu. "Entropy Maximization for Constrained Markov Decision Processes." In 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2018. http://dx.doi.org/10.1109/allerton.2018.8636066.
Full textFu, Geng-Shen, Zois Boukouvalas, and Tulay Adali. "Density estimation by entropy maximization with kernels." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178300.
Full text