Academic literature on the topic 'Entropy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entropy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Entropy"
Siagian, Ruben Cornelius, Lulut Alfaris, Arip Nurahman, and Eko Pramesti Sumarto. "TERMODINAMIKA LUBANG HITAM: HUKUM PERTAMA DAN KEDUA SERTA PERSAMAAN ENTROPI." Jurnal Kumparan Fisika 6, no. 1 (May 11, 2023): 1–10. http://dx.doi.org/10.33369/jkf.6.1.1-10.
Full textKang, Jin-Wen, Ke-Ming Shen, and Ben-Wei Zhang. "A Note on the Connection between Non-Additive Entropy and h-Derivative." Entropy 25, no. 6 (June 9, 2023): 918. http://dx.doi.org/10.3390/e25060918.
Full textLi, Shu-Nan, and Bing-Yang Cao. "On Entropic Framework Based on Standard and Fractional Phonon Boltzmann Transport Equations." Entropy 21, no. 2 (February 21, 2019): 204. http://dx.doi.org/10.3390/e21020204.
Full textKOSSAKOWSKI, A., M. OHYA, and N. WATANABE. "QUANTUM DYNAMICAL ENTROPY FOR COMPLETELY POSITIVE MAP." Infinite Dimensional Analysis, Quantum Probability and Related Topics 02, no. 02 (June 1999): 267–82. http://dx.doi.org/10.1142/s021902579900014x.
Full textHuang, Yiqi. "An overview of the development and applications of information entropy." Theoretical and Natural Science 50, no. 1 (August 27, 2024): 52–57. http://dx.doi.org/10.54254/2753-8818/50/20240663.
Full textHuang, Yiqi. "An overview of the development and applications of information entropy." Theoretical and Natural Science 42, no. 1 (August 27, 2024): 52–57. http://dx.doi.org/10.54254/2753-8818/42/20240663.
Full textJawad, Abdul, and Ayesha Iqbal. "Modified cosmology through Renyi and logarithmic entropies." International Journal of Geometric Methods in Modern Physics 15, no. 08 (June 22, 2018): 1850130. http://dx.doi.org/10.1142/s021988781850130x.
Full textXIAO, CHANGMING, and LIXIN HUANG. "ENTROPIC FORCE IN A CLOSED IDEAL GAS." Modern Physics Letters B 20, no. 09 (April 10, 2006): 495–500. http://dx.doi.org/10.1142/s0217984906010731.
Full textSilva, Carlos, and Kalyan Annamalai. "Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level." Entropy 10, no. 2 (June 20, 2008): 100–123. http://dx.doi.org/10.3390/entropy-e10020100.
Full textZhao, Lina, Chengyu Liu, Shoushui Wei, Qin Shen, Fan Zhou, and Jianqing Li. "A New Entropy-Based Atrial Fibrillation Detection Method for Scanning Wearable ECG Recordings." Entropy 20, no. 12 (November 26, 2018): 904. http://dx.doi.org/10.3390/e20120904.
Full textDissertations / Theses on the topic "Entropy"
Bernier, Jobe Paul. "Entropy and Architecture entropic phenomena actuating dynamic space /." Thesis, Montana State University, 2008. http://etd.lib.montana.edu/etd/2008/bernier/BernierJ0508.pdf.
Full textSognnæs, Ida Andrea Braathen. "Maximum Entropy and Maximum Entropy Production in Macroecology." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12651.
Full textAsaad-Sultan, Asaad M. Abu. "Entropic vector optimization and simulated entropy : theory and applications." Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293838.
Full textCullen, Carley Nicole. "Empathy + entropy." Thesis, University of Iowa, 2019. https://ir.uiowa.edu/etd/6721.
Full textŠelinga, Martin. "Software pro hodnocení zdrojů entropie." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-401953.
Full textMendes, Ronã Rinston Amaury [UNESP]. "Uma contribuição para a otimização de portfólios de séries heteroscedásticas usando projeto de experimento de misturas: uma abordagem do desirability aplicada a modelos." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/103053.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Esta tese apresenta uma proposta inovadora com base no DOE (Design of Experiments) para tratar a otimização de portfólios multiobjetivos utilizando uma abordagem híbrida que combina arranjos de experimentos do tipo Misturas (Mixture Design of Experiments – MDE) e funções Desirability para se encontrar um portfólio ótimo modelado pelo algoritmo ARMA–GARCH. Neste tipo de estratégia experimental, as proporções investidas em cada ativo do portfólio são tratadas como fatores de um arranjo de misturas adequado para o tratamento de portfólios em geral. Ao invés de utilizar a tradicional programação matemática de portfólios de média variância (MVP), o conceito da função desirability é aqui utilizado para resolver problemas de otimização não linear multiobjetiva para a predição de valores condicionais de retorno (média), risco (variância) e entropia com suas respectivas superfícies de resposta estimadas pelo MDE. Para evitar a falta de diversificação dos portfólios, o princípio da Máxima Entropia de Shannon é incorporado ao modelo de otimização. O método fatorial de ajuste da função desirability proposto nesta tese aperfeiçoa o desempenho do algoritmo desirability conduzindo a uma eficiente alocação dos ativos no portfólio. Esta abordagem também permite a inclusão da aversão ao risco na rotina de otimização e engloba as interações (efeitos não lineares) dos efeitos entre diversos ativos enquanto reduz o esforço computacional requerido para resolver o problema de otimização não linear restrito. Para avaliar a viabilidade proposta, o método foi testado com dados reais de séries semanais do mercado mundial de preços spot de petróleo bruto. Os resultados numéricos demonstram a adequação da proposta
This thesis presents a new Design of Experiments (DOE)–based approach to treat multi– objective portfolio optimization combining Mixture Design of Experiments (MDE) and Desirability functions to find an optimal portfolio modeled by ARMA–GARCH algorithm. In this kind of experimental strategy, the design factors are treated as proportions in a mixture system considered quite adequate for treating portfolios in general. Instead of using traditional MVP mathematical programming, the concept of desirability function is here used to solve multiobjective nonlinear objective optimization problem for the predicted conditional values of return (mean), risk (variance) and entropy with their respective response surfaces estimated by MDE. To avoid the portfolio’s lack of diversity, the principle of Shannon’s maximum entropy is embodied in the optimization model. The computer–aided desirability tuning method proposed in this paper improves the desirability algorithm performance leading to an efficient assets allocation. This approach also allows the inclusion of risk aversion in the optimization routine and encompasses the interaction (nonlinear) effects among the several assets while reduces the computational effort required to solve the constrained nonlinear optimization problem. To assess the proposal feasibility, the method is tested with a real data set formed by weekly world crude oil spot prices. The numerical results verify the proposal’s adequacy
Mendes, Ronã Rinston Amaury. "Uma contribuição para a otimização de portfólios de séries heteroscedásticas usando projeto de experimento de misturas: uma abordagem do desirability aplicada a modelos /." Guaratinguetá : [s.n.], 2012. http://hdl.handle.net/11449/103053.
Full textCoorientador: Pedro Paulo Balestrassi
Banca: Marcela Aparecida Guerreira Machado de Freitas
Banca: Antonio Fernando Branco Costa
Banca: Rafael Coradi Leme
Banca: João Roberto Ferreira
Resumo: Esta tese apresenta uma proposta inovadora com base no DOE (Design of Experiments) para tratar a otimização de portfólios multiobjetivos utilizando uma abordagem híbrida que combina arranjos de experimentos do tipo Misturas (Mixture Design of Experiments - MDE) e funções Desirability para se encontrar um portfólio ótimo modelado pelo algoritmo ARMA-GARCH. Neste tipo de estratégia experimental, as proporções investidas em cada ativo do portfólio são tratadas como fatores de um arranjo de misturas adequado para o tratamento de portfólios em geral. Ao invés de utilizar a tradicional programação matemática de portfólios de média variância (MVP), o conceito da função desirability é aqui utilizado para resolver problemas de otimização não linear multiobjetiva para a predição de valores condicionais de retorno (média), risco (variância) e entropia com suas respectivas superfícies de resposta estimadas pelo MDE. Para evitar a falta de diversificação dos portfólios, o princípio da Máxima Entropia de Shannon é incorporado ao modelo de otimização. O método fatorial de ajuste da função desirability proposto nesta tese aperfeiçoa o desempenho do algoritmo desirability conduzindo a uma eficiente alocação dos ativos no portfólio. Esta abordagem também permite a inclusão da aversão ao risco na rotina de otimização e engloba as interações (efeitos não lineares) dos efeitos entre diversos ativos enquanto reduz o esforço computacional requerido para resolver o problema de otimização não linear restrito. Para avaliar a viabilidade proposta, o método foi testado com dados reais de séries semanais do mercado mundial de preços spot de petróleo bruto. Os resultados numéricos demonstram a adequação da proposta
Abstract: This thesis presents a new Design of Experiments (DOE)-based approach to treat multi- objective portfolio optimization combining Mixture Design of Experiments (MDE) and Desirability functions to find an optimal portfolio modeled by ARMA-GARCH algorithm. In this kind of experimental strategy, the design factors are treated as proportions in a mixture system considered quite adequate for treating portfolios in general. Instead of using traditional MVP mathematical programming, the concept of desirability function is here used to solve multiobjective nonlinear objective optimization problem for the predicted conditional values of return (mean), risk (variance) and entropy with their respective response surfaces estimated by MDE. To avoid the portfolio's lack of diversity, the principle of Shannon's maximum entropy is embodied in the optimization model. The computer-aided desirability tuning method proposed in this paper improves the desirability algorithm performance leading to an efficient assets allocation. This approach also allows the inclusion of risk aversion in the optimization routine and encompasses the interaction (nonlinear) effects among the several assets while reduces the computational effort required to solve the constrained nonlinear optimization problem. To assess the proposal feasibility, the method is tested with a real data set formed by weekly world crude oil spot prices. The numerical results verify the proposal's adequacy
Doutor
Pougaza, Doriano-Boris. "Utilisation de la notion de copule en tomographie." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00684637.
Full textNilsson, Mattias. "Entropy and Speech." Doctoral thesis, Stockholm : Sound and Image Processing Laboratory, School of Electrical Engineering, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3990.
Full textCharter, Mark Keith. "Maximum entropy pharmacokinetics." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316691.
Full textBooks on the topic "Entropy"
Ivanovici, Andreea Livia. Entropie, volatilitate: Entropy, volatility. Bucureşti: Editura Fundaţiei Arhitext Design, 2014.
Find full textS, Shiner J., ed. Entropy and entropy generation: Fundamentals and applications. Dordrecht: Kluwer, 1996.
Find full textShiner, J. S., ed. Entropy and Entropy Generation. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/0-306-46932-4.
Full text1953-, Greven Andreas, Keller Gerhard 1954-, and Warnecke Gerald 1956-, eds. Entropy. Princeton, N.J: Princeton University Press, 2003.
Find full textill, Dunbar Max, ed. Micronauts: Entropy. San Diego, CA: Idea & Design Works, LLC, 2016.
Find full textBryant, John. Entropy man. Harpenden, Herts, UK: VOCAT International Ltd, 2015.
Find full textRifkin, Jeremy. Entropy: A new world view. London: Paladin, 1985.
Find full textRifkin, Jeremy. Entropy: Into the greenhouse world. New York: Bantam Books, 1989.
Find full textScherer, Leopoldo García Colín. De la máquina de vapor al cero absoluto: Calor y entropía. 3rd ed. México: SEP, 2003.
Find full textKarmeshu, ed. Entropy Measures, Maximum Entropy Principle and Emerging Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8.
Full textBook chapters on the topic "Entropy"
Herwig, Heinz. "Entropie S * (entropy S *)." In Wärmeübertragung A-Z, 43–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_10.
Full textLandsberg, P. T., A. De Vos, P. Baruch, and J. E. Parrott. "Multiple Source Photovoltaics." In Entropy and Entropy Generation, 175–95. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/0-306-46932-4_12.
Full textGibson, Jerry D. "Differential Entropy, Entropy Rate, and Maximum Entropy." In Synthesis Lectures on Engineering, Science, and Technology, 13–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65388-9_3.
Full textJones, Gareth A., and J. Mary Jones. "Entropy." In Springer Undergraduate Mathematics Series, 35–53. London: Springer London, 2000. http://dx.doi.org/10.1007/978-1-4471-0361-5_3.
Full textMoses, Carl O. "Entropy." In Encyclopedia of Earth Sciences Series, 1–6. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39193-9_40-1.
Full textMoses, Carl O. "Entropy." In Encyclopedia of Earth Sciences Series, 447–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_40.
Full textSprackling, Michael. "Entropy." In Heat and Thermodynamics, 61–81. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-12690-3_6.
Full textSprackling, Michael. "Entropy." In Thermal physics, 97–116. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_8.
Full textCoudène, Yves. "Entropy." In Universitext, 101–12. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7287-1_10.
Full textIordache, Octavian. "Entropy." In Understanding Complex Systems, 125–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17946-4_8.
Full textConference papers on the topic "Entropy"
Ding, Ni, Mohammad Amin Zarrabian, and Parastoo Sadeghi. "A Cross Entropy Interpretation of Renyi Entropy for $\alpha$ -leakage." In 2024 IEEE International Symposium on Information Theory (ISIT), 2760–65. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619672.
Full textKocaoglu, Murat, Alexandros G. Dimakis, Sriram Vishwanath, and Babak Hassibi. "Entropic Causality and Greedy Minimum Entropy Coupling." In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, 2017. http://dx.doi.org/10.1109/isit.2017.8006772.
Full textLi, Jiange, Arnaud Marsiglietti, and James Melbourne. "Entropic Central Limit Theorem for Rényi Entropy." In 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019. http://dx.doi.org/10.1109/isit.2019.8849533.
Full textMan'ko, Margarita A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Tomographic Entropy and New Entropic Uncertainty Relations." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827295.
Full textHermenier, Fabien, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall. "Entropy." In the 2009 ACM SIGPLAN/SIGOPS international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1508293.1508300.
Full textStenholm, Stig. "When is an Entropy an Entropy?" In QUANTUM THEORY: Reconsideration of Foundations - 3. AIP, 2006. http://dx.doi.org/10.1063/1.2158728.
Full textArias, Cesar, Felipe Diaz, and Per Sundell. "Gibbons–Hawking entropy as entanglement entropy." In PROCEEDINGS OF THE 23RD INTERNATIONAL SCIENTIFIC CONFERENCE OF YOUNG SCIENTISTS AND SPECIALISTS (AYSS-2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5130124.
Full textZhang, Hong, and Sha-sha He. "Analysis and Comparison of Permutation Entropy, Approximate Entropy and Sample Entropy." In 2018 International Symposium on Computer, Consumer and Control (IS3C). IEEE, 2018. http://dx.doi.org/10.1109/is3c.2018.00060.
Full textGutierrez, Rafael M., Chandrashekhar U. Murade, Jianfeng Guo, and George Shubeita. "Entropy and entropic forces to model biological fluids." In Entropy 2021: The Scientific Tool of the 21st Century. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/entropy2021-09781.
Full textXiang, Gang, and Vladik Kreinovich. "Extending maximum entropy techniques to entropy constraints." In NAFIPS 2010 - 2010 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2010. http://dx.doi.org/10.1109/nafips.2010.5548264.
Full textReports on the topic "Entropy"
Cordwell, William, and Mark Torgerson. PUF Entropy. Office of Scientific and Technical Information (OSTI), March 2023. http://dx.doi.org/10.2172/2431723.
Full textXu, X., S. Kini, P. Psenak, C. Filsfils, S. Litkowski, and M. Bocci. Signaling Entropy Label Capability and Entropy Readable Label Depth Using OSPF. RFC Editor, August 2021. http://dx.doi.org/10.17487/rfc9089.
Full textJaegar, Stefan. Entropy, Perception, and Relativity. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada453569.
Full textDrost, M. K., and M. D. White. Local entropy generation analysis. Office of Scientific and Technical Information (OSTI), February 1991. http://dx.doi.org/10.2172/6078657.
Full textVu, Vincent Q., Bin Yu, and Robert E. Kass. Coverage Adjusted Entropy Estimation. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada472999.
Full textXu, X., S. Kini, P. Psenak, C. Filsfils, S. Litkowski, and M. Bocci. Signaling Entropy Label Capability and Entropy Readable Label Depth Using IS-IS. RFC Editor, August 2021. http://dx.doi.org/10.17487/rfc9088.
Full textBalachandran, A. P., L. Chandar, and A. Momen. Edge states and entanglement entropy. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/212697.
Full textMelendez, Eduardo. Steganography Detection Using Entropy Measures. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada586643.
Full textMelendez, Eduardo. Steganography Detection Using Entropy Measures. Fort Belvoir, VA: Defense Technical Information Center, November 2012. http://dx.doi.org/10.21236/ada622733.
Full textLinville, Lisa M., Joshua James Michalenko, and Dylan Zachary Anderson. Multimodal Data Fusion via Entropy Minimization. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1614682.
Full text