Academic literature on the topic 'Entropic uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entropic uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Entropic uncertainty"
Li, Li-Juan, Fei Ming, Xue-Ke Song, Liu Ye, and Dong Wang. "Review on entropic uncertainty relations." Acta Physica Sinica 71, no. 7 (2022): 070302. http://dx.doi.org/10.7498/aps.71.20212197.
Full textMajerník, V., and L. Richterek. "Entropic uncertainty relations." European Journal of Physics 18, no. 2 (March 1, 1997): 79–89. http://dx.doi.org/10.1088/0143-0807/18/2/005.
Full textCosta, Ana, Roope Uola, and Otfried Gühne. "Entropic Steering Criteria: Applications to Bipartite and Tripartite Systems." Entropy 20, no. 10 (October 5, 2018): 763. http://dx.doi.org/10.3390/e20100763.
Full textHsu, Li-Yi, Shoichi Kawamoto, and Wen-Yu Wen. "Entropic uncertainty relation based on generalized uncertainty principle." Modern Physics Letters A 32, no. 28 (September 4, 2017): 1750145. http://dx.doi.org/10.1142/s0217732317501450.
Full textSANTOS, M. A., and I. V. VANCEA. "ENTROPIC LAW OF FORCE, EMERGENT GRAVITY AND THE UNCERTAINTY PRINCIPLE." Modern Physics Letters A 27, no. 02 (January 20, 2012): 1250012. http://dx.doi.org/10.1142/s0217732312500125.
Full textPuchała, Zbigniew, Łukasz Rudnicki, and Karol Życzkowski. "Majorization entropic uncertainty relations." Journal of Physics A: Mathematical and Theoretical 46, no. 27 (June 21, 2013): 272002. http://dx.doi.org/10.1088/1751-8113/46/27/272002.
Full textMaassen, Hans, and J. B. M. Uffink. "Generalized entropic uncertainty relations." Physical Review Letters 60, no. 12 (March 21, 1988): 1103–6. http://dx.doi.org/10.1103/physrevlett.60.1103.
Full textAdamczak, Radosław, Rafał Latała, Zbigniew Puchała, and Karol Życzkowski. "Asymptotic entropic uncertainty relations." Journal of Mathematical Physics 57, no. 3 (March 2016): 032204. http://dx.doi.org/10.1063/1.4944425.
Full textKhedr, Ahmad N., Abdel-Baset A. Mohamed, Abdel-Haleem Abdel-Aty, Mahmoud Tammam, Mahmoud Abdel-Aty, and Hichem Eleuch. "Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction." Entropy 23, no. 12 (November 28, 2021): 1595. http://dx.doi.org/10.3390/e23121595.
Full textRudnicki, Łukasz. "Uncertainty-reality complementarity and entropic uncertainty relations." Journal of Physics A: Mathematical and Theoretical 51, no. 50 (November 20, 2018): 504001. http://dx.doi.org/10.1088/1751-8121/aaecf5.
Full textDissertations / Theses on the topic "Entropic uncertainty"
Hertz, Anaëlle. "Exploring continuous-variable entropic uncertainty relations and separability criteria in quantum phase space." Doctoral thesis, Universite Libre de Bruxelles, 2018. https://dipot.ulb.ac.be/dspace/bitstream/2013/267632/5/ContratAH.pdf.
Full textLe principe d’incertitude se situe au cœur de la physique quantique. Il représente l’une des différences majeures entre des systèmes classiques et quantiques, soit qu’il est impossible de définir un état quantique pour lequel deux observables qui ne commutent pas auraient des valeurs spécifiées simultanément et avec une précision infinie. La formulation originale du principe d’incertitude est due à Heisenberg et est exprimée en termes des variances de deux variables canoniquement conjuguées, telles que la position x et l’impulsion p. Cela fut par la suite généralisé par Schrödinger et Robertson qui ont donné au principe d’incertitude une forme invariante sous transformations symplectiques. Si l’incertitude est mesurée à l’aide de l’entropie différentielle de Shannon plutôt que des variances, il est alors possible de définir d’autres types de relations d’incertitude. Originellement introduites par Białynicki-Birula et Mycielski, elles expriment également l’incompatibilité entre deux variables canoniquement conjuguées. Dans cette thèse, nous proposons différentes améliorations de ces relations d’incertitude entropiques et mettons particulièrement l’accent sur le fait qu’elles s’expriment mieux sous forme de puissances entropiques, une notion empruntée à la théorie de l’information. En premier lieu, nous introduisons une nouvelle relation d’incertitude entropique qui tient compte des corrélations x-p et qui est par conséquent saturée par tous les états purs Gaussiens, ce qui représente une amélioration par rapport à la formulation originale de Białynicki- Birula et Mycielski. En second lieu, nous dérivons une relation d’incertitude entropique valide pour tous les n-uplets de variables non nécessairement canoniquement conjuguées et basée sur la matrice de leurs commutateurs. Nous définissons ensuite une forme plus générale du principe d’incertitude entropique qui combine les deux résultats précédents. Il exprime l’incompatibilité entre deux n-uplets arbitraires de variables et est saturé par tous les états purs Gaussiens. Notons que de ce principe d’incertitude entropique, nous pouvons déduire la forme la plus générale de la relation d’incertitude de Robertson, basée sur la matrice de covariance de n variables. Les résultats précédents soulignent un des points essentiels de notre axe de recherche: définir une relation d’incertitude entropique intrinsèquement invariante sous trans- formations symplectiques. Afin d’atteindre cet objectif, notre première tentative est de conjecturer une relation d’incertitude — invariante sous transformations symplectiques — basée sur l’entropie différentielle jointe de la fonction de Wigner. Cette conjecture n’est cependant légitime que pour des états décrits par une fonction de Wigner non-négative. Nous proposons aussi une extension complexe de cette en- tropie dite entropie de Wigner, qui pourrait ouvrir la voie vers une extension (et une preuve) de la conjecture proposée ci-dessus qui serait alors valide pour tous les états quantiques. Comme seconde tentative, en exploitant une connexion avec l’algèbre des moments angulaires, nous introduisons la notion d’observables d’incertitude agissant sur plusieurs copies d’un état. Exprimer la positivité de la variance de notre observable coïncide avec la relation d’incertitude de Schrödinger-Robertson, ce qui suggère que l’entropie discrète de Shannon d’une telle observable fournit une nouvelle mesure de l’incertitude. Cette relation d’incertitude est invariante sous transformations symplectiques.Les critères de séparabilité actuellement disponibles pour les variables continues donnent une condition nécessaire et suffisante afin qu’un état Gaussien bimodal soit séparable, mais laissent de nombreux états intriqués non-Gaussiens non détectés. Dans cette thèse, nous introduisons deux nouveaux critères de séparabilité qui permettent une meilleure détection de l’intrication. La première nouvelle condition est basée sur la connaissance d’un paramètre supplémentaire, à savoir le degré de Gaussianité de l’état, et exploite une connexion avec les relations d’incertitude de Mandilara et Cerf bornées par ce degré de Gaussianité. En particulier, nous donnons l’exemple de familles d’états intriqués non Gaussiens dont l’intrication est détectée par notre critère, mais pas par celui de Duan-Simon. Le second critère de séparabil- ité entropique que nous proposons est basé sur notre nouvelle relation d’incertitude entropique qui tient compte des corrélations x-p. Son principal avantage par rapport au critère de Walborn et al. est de ne nécessiter aucune procédure d’optimisation.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Rybokas, Mindaugas. "The information analysis and the research on entropy for measurement data." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2006. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2006~D_20060928_151951-20485.
Full textDuomenų įverčiui išreikšti pritaikytas informacinės entropijos parametras pateiktoje rezultato išraiškoje yra papildytas rodikliu apie duomenų imtį, kuri buvo įvertinta iš visos šį objektą charakterizuojančių duomenų aibės. Sukurta modeliavimo sistema ir programinė įranga gali būti naudojama didelio skaičiaus nežinomųjų lygtims spręsti, o praktikoje naudojama rastrinių skalių matavimo duomenims apdoroti.
Vanslette, Kevin M. "Theoretical Study of Variable Measurement Uncertainty h_I and Infinite Unobservable Entropy." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/289.
Full textKane, Thomas Brett. "Reasoning with uncertainty using Nilsson's probabilistic logic and the maximum entropy formalism." Thesis, Heriot-Watt University, 1992. http://hdl.handle.net/10399/789.
Full textYassin-Kassab, Abdullah. "Entropy-based inference and calibration methods for civil engineering system models under uncertainty." Thesis, University of Liverpool, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367272.
Full textMujumdar, Anusha Pradeep. "Cross entropy-based analysis of spacecraft control systems." Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/28006.
Full textLamba, Amrita. "The Effects of Uncertainty on Cooperation: using Bayesian Cognition and Entropy to Model Cooperative Heuristics." W&M ScholarWorks, 2017. https://scholarworks.wm.edu/etd/1516639680.
Full textJohansson, Mathias. "Resource Allocation under Uncertainty : Applications in Mobile Communications." Doctoral thesis, Uppsala University, Signals and Systems Group, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4559.
Full textThis thesis is concerned with scheduling the use of resources, or allocating resources, so as to meet future demands for the entities produced by the resources. We consider applications in mobile communications such as scheduling users' transmissions so that the amount of transmitted information is maximized, and scenarios in the manufacturing industry where the task is to distribute work among production units so as to minimize the number of missed orders.
The allocation decisions are complicated by a lack of information concerning the future demand and possibly also about the capacities of the available resources. We therefore resort to using probability theory and the maximum entropy principle as a means for making rational decisions under uncertainty.
By using probabilities interpreted as a reasonable degree of belief, we find optimum decision rules for the manufacturing problem, bidding under uncertainty in a certain type of auctions, scheduling users in communications with uncertain channel qualities and uncertain arrival rates, quantization of channel information, partitioning bandwidth between interfering and non-interfering areas in cellular networks, hand-overs and admission control. Moreover, a new method for making optimum approximate Bayesian inference is introduced.
We further discuss reasonable optimization criteria for the mentioned applications, and provide an introduction to the topic of probability theory as an extension to two-valued logic. It is argued that this view unifies a wide range of resource-allocation problems, and we discuss various directions for further research.
Boidol, Jonathan [Verfasser], and Volker [Akademischer Betreuer] Tresp. "Monitoring data streams : Classification under uncertainty and entropy-based dependency-detection on streaming data / Jonathan Boidol ; Betreuer: Volker Tresp." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1139977768/34.
Full textXie, Li Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "Finite horizon robust state estimation for uncertain finite-alphabet hidden Markov models." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering, 2004. http://handle.unsw.edu.au/1959.4/38664.
Full textBooks on the topic "Entropic uncertainty"
Jessop, Alan. Informed assessments: An introduction to information, entropy, and statistics. New York: Ellis Horwood, 1995.
Find full textJessop, A. Informed assessments: An introduction to information, entropy and statistics. New York: Ellis Horwood, 1995.
Find full textWatts, Barry D. Clausewitzian friction and future war. Washington, D.C: Institute for National Strategic Studies, National Defense University, 1996.
Find full textWatts, Barry D. Clausewitzian friction and future war. Washington, D.C: Institute for National Strategic Studies, National Defense University, 1996.
Find full textWatts, Barry D. Clausewitzian friction and future war. Washington, D.C: Institute for National Strategic Studies, National Defense University, 2004.
Find full textEntropic Tokyo: Metropolis of Uncertainty, Multiplicity and Flexibility. LetteraVentidue Edizioni, 2021.
Find full textGolan, Amos. The Metrics of Info-Metrics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199349524.003.0003.
Full textNizami, Iftikhar R. *. Uncertainty in psychophysics: evidence for the entropy theory of perception. 1988.
Find full textHackworth, John. Essay Concerning the History of Entropy and the Rise of Uncertainty. BookBaby, 2016.
Find full textRajagopal. Market Entropy: How to Manage Chaos and Uncertainty for Improved Organizational Performance. Business Expert Press, 2020.
Find full textBook chapters on the topic "Entropic uncertainty"
Ohya, Masanori, and Dénes Petz. "Entropic Uncertainty Relations." In Quantum Entropy and Its Use, 283–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-57997-4_17.
Full textMaassen, H. "A discrete entropic uncertainty relation." In Quantum Probability and Applications V, 263–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0085519.
Full textBlankenbecler, R., and M. H. Partovi. "Quantum Density Matrix and Entropic Uncertainty." In Maximum-Entropy and Bayesian Methods in Science and Engineering, 235–44. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3049-0_11.
Full textBialynicki-Birula, Iwo, and Łukasz Rudnicki. "Entropic Uncertainty Relations in Quantum Physics." In Statistical Complexity, 1–34. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-3890-6_1.
Full textBialynicki-Birula, Iwo. "Entropic uncertainty relations in quantum mechanics." In Quantum Probability and Applications II, 90–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074463.
Full textDamgård, Ivan B., Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner. "A Tight High-Order Entropic Quantum Uncertainty Relation with Applications." In Advances in Cryptology - CRYPTO 2007, 360–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74143-5_20.
Full textDias, José G. "Latent Class Models of Time Series Data: An Entropic-Based Uncertainty Measure." In Algorithms from and for Nature and Life, 205–14. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00035-0_20.
Full textBouman, Niek J., Serge Fehr, Carlos González-Guillén, and Christian Schaffner. "An All-But-One Entropic Uncertainty Relation, and Application to Password-Based Identification." In Theory of Quantum Computation, Communication, and Cryptography, 29–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35656-8_3.
Full textSeidenfeld, Teddy. "Entropy and Uncertainty." In Advances in the Statistical Sciences: Foundations of Statistical Inference, 259–87. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4788-7_23.
Full textBouchon-Meunier, Bernadette. "Uncertainty Management: Probability, Possibility, Entropy, and Other Paradigms." In Uncertainty Modeling, 53–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51052-1_4.
Full textConference papers on the topic "Entropic uncertainty"
Man'ko, Margarita A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Tomographic Entropy and New Entropic Uncertainty Relations." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827295.
Full textZozor, Steeve, Mariela Portesi, and Mariela Portesi. "Some entropic extensions of the uncertainty principle." In 2008 IEEE International Symposium on Information Theory Conference. IEEE, 2008. http://dx.doi.org/10.1109/isit.2008.4595273.
Full textSen, Chiradeep, Farhad Ameri, and Joshua D. Summers. "Entropic Method for Sequencing Discrete Design Decisions." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87600.
Full textKrawec, Walter O. "A New High-Dimensional Quantum Entropic Uncertainty Relation with Applications." In 2020 IEEE International Symposium on Information Theory (ISIT). IEEE, 2020. http://dx.doi.org/10.1109/isit44484.2020.9174330.
Full textNawaz, Shahid, and Ariel Caticha. "Momentum and uncertainty relations in the entropic approach to quantum theory." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2012. http://dx.doi.org/10.1063/1.3703627.
Full textZozor, Steeve, and Christophe Vignat. "Non-Gaussian asymptotic minimizers in entropic uncertainty principles and the dimensional effect." In 2006 IEEE International Symposium on Information Theory. IEEE, 2006. http://dx.doi.org/10.1109/isit.2006.261918.
Full textKrawec, Walter O. "Key-Rate Bound of a Semi-Quantum Protocol Using an Entropic Uncertainty Relation." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437303.
Full textLi, M., N. Williams, and S. Azarm. "Interval Uncertainty Reduction and Single-Disciplinary Sensitivity Analysis With Multi-Objective Optimization." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86282.
Full textBialynicki-Birula, Iwo. "Rényi Entropy and the Uncertainty Relations." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713446.
Full textTimashev, S. A., and A. N. Tyrsin. "Entropy Approach to Risk-Analysis of Critical Infrastructures Systems." In First International Symposium on Uncertainty Modeling and Analysis and Management (ICVRAM 2011); and Fifth International Symposium on Uncertainty Modeling and Anaylsis (ISUMA). Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41170(400)18.
Full textReports on the topic "Entropic uncertainty"
Clark, Todd E., Gergely Ganics, and Elmar Mertens. What is the predictive value of SPF point and density forecasts? Federal Reserve Bank of Cleveland, November 2022. http://dx.doi.org/10.26509/frbc-wp-202237.
Full textBielinskyi, Andriy, Serhiy Semerikov, Oleksandr Serdiuk, Victoria Solovieva, Vladimir Soloviev, and Lukáš Pichl. Econophysics of sustainability indices. [б. в.], October 2020. http://dx.doi.org/10.31812/123456789/4118.
Full textDanylchuk, H., V. Derbentsev, Володимир Миколайович Соловйов, and A. Sharapov. Entropy analysis of dynamic properties of regional stock markets. Society for Cultural and Scientific Progress in Central and Eastern Europe, 2016. http://dx.doi.org/10.31812/0564/1154.
Full textSoloviev, Vladimir, Andrii Bielinskyi, and Viktoria Solovieva. Entropy Analysis of Crisis Phenomena for DJIA Index. [б. в.], June 2019. http://dx.doi.org/10.31812/123456789/3179.
Full text