Academic literature on the topic 'Entropic Potential'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entropic Potential.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Entropic Potential"
Coffey, M. W. "Semiclassical position and momentum information entropy for sech2 and a family of rational potentials." Canadian Journal of Physics 85, no. 7 (July 1, 2007): 733–43. http://dx.doi.org/10.1139/p07-062.
Full textRastegin, Alexey E. "Tests for quantum contextuality in terms of Q-entropies." Quantum Information and Computation 14, no. 11&12 (September 2014): 996–1013. http://dx.doi.org/10.26421/qic14.11-12-7.
Full textGavriil, Vassilios, Margarita Chatzichristidi, Zoe Kollia, Alkiviadis-Constantinos Cefalas, Nikolaos Spyropoulos-Antonakakis, Vadim Semashko, and Evangelia Sarantopoulou. "Photons Probe Entropic Potential Variation during Molecular Confinement in Nanocavities." Entropy 20, no. 8 (July 24, 2018): 545. http://dx.doi.org/10.3390/e20080545.
Full textBousnane, Z. "Entropic potential as manifold for the reduced entropy representations in superconductivity." Semiconductor physics, quantum electronics and optoelectronics 10, no. 1 (June 1, 2007): 101–5. http://dx.doi.org/10.15407/spqeo10.01.101.
Full textChen, Hao, Yifan Sun, Shize Yang, Hui Wang, Wojciech Dmowski, Takeshi Egami, and Sheng Dai. "Self-regenerative noble metal catalysts supported on high-entropy oxides." Chemical Communications 56, no. 95 (2020): 15056–59. http://dx.doi.org/10.1039/d0cc05860b.
Full textMorales, Rafael, Noé Hernández, Ricardo Cruz, Victor D. Cruz, and Luis A. Pineda. "Entropic associative memory for manuscript symbols." PLOS ONE 17, no. 8 (August 4, 2022): e0272386. http://dx.doi.org/10.1371/journal.pone.0272386.
Full textKorablev, Grigory A. "COVID-19 ENTROPIC CHARACTERISTICS." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 63, no. 9 (August 5, 2020): 101–7. http://dx.doi.org/10.6060/ivkkt.20206309.6284.
Full textZhang, Zi-qiang, De-fu Hou, and Gang Chen. "The effect of chemical potential on imaginary potential and entropic force." Physics Letters B 768 (May 2017): 180–86. http://dx.doi.org/10.1016/j.physletb.2017.02.055.
Full textCurado, Evaldo M. F., and Fernando D. Nobre. "Non-Additive Entropic Forms and Evolution Equations for Continuous and Discrete Probabilities." Entropy 25, no. 8 (July 27, 2023): 1132. http://dx.doi.org/10.3390/e25081132.
Full textIkot, A. N., G. J. Rampho, P. O. Amadi, U. S. Okorie, M. J. Sithole, and M. L. Lekala. "Quantum information-entropic measures for exponential-type potential." Results in Physics 18 (September 2020): 103150. http://dx.doi.org/10.1016/j.rinp.2020.103150.
Full textDissertations / Theses on the topic "Entropic Potential"
Woollings, Tim. "Entropy and potential vorticity in dynamical core atmosphere models." Thesis, University of Reading, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412174.
Full textOrondo, Peter Omondi. "A theoretical analysis of interstitial hydrogen : pressure-composition-temperature, chemical potential, enthalpy and entropy." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78547.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 371-373).
We provide a first principles analysis of the physics and thermodynamics of interstitial hydrogen in metal. By utilizing recent advances in Density Functional Theory (DFT) to get state energies of the metal-hydrogen system, we are able to model the absorption process fairly accurately. A connection to experiment is made via Pressure-Composition-Temperature (PCT) isotherms, and thermodynamic molar quantities. In the model, we understand the excess entropy of absorbed hydrogen in terms of the change in its accessible microstates. A connection is also made between the entropy and electronic states of interstitial hydrogen. However, our model indicates that this connection is too small to account for experimental results. Therefore, a conclusion is made that the entropy of absorbed hydrogen is mostly (non-ideal) configurational in nature. To model the latter in a manner consistent with experiment, we have explored a new model that posits a weak binding between clusters of hydrogen atoms at neighboring sites. We have developed a formulation and fitted the results to experimental data. We find a least squares fitting of the model to the entropy and enthalpy results in model parameters which seem physically reasonable. The resulting model appears to provide a natural physical explanation for the dependence of the excess entropy on loading.
by Peter Omondi Orondo.
Ph.D.
Lima, Lúcio Moreira Campos. "Modelagem de distribuição geográfica para Hydromedusa maximiliani (Mikan, 1820) (Testudines, Chelidae), Brasil." Universidade Federal de Juiz de Fora, 2014. https://repositorio.ufjf.br/jspui/handle/ufjf/1558.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-28T14:19:25Z (GMT) No. of bitstreams: 1 luciomoreiracamposlima.pdf: 5522684 bytes, checksum: e616be5eb2a37187aa4afef3c218cc35 (MD5)
Made available in DSpace on 2016-06-28T14:19:25Z (GMT). No. of bitstreams: 1 luciomoreiracamposlima.pdf: 5522684 bytes, checksum: e616be5eb2a37187aa4afef3c218cc35 (MD5) Previous issue date: 2014-02-27
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O cágado-pescoço-de-cobra, Hydromedusa maximiliani, é uma espécie endêmica da Mata Atlântica e ameaçada de extinção na categoria Vulnerável pela IUCN, cujas populações estão associadas principalmente com riachos de interior de mata, mas a distribuição geográfica relacionada com esses ambientes hidrologicamente dinâmicos ainda é pouco entendida. Modelagem de Distribuição de Espécies tem sido uma ferramenta amplamente usada nos últimos anos. O algoritmo da Máxima Entropia, Maxent, permite prever a distribuição geográfica potencial de espécies a partir de dados de presença. Este estudo teve por objetivos construir modelos ecológicos para prever a distribuição potencial de H. maximiliani que poderão fornecer subsídios para elaboração de novas estratégias de conservação e, dessa forma contribuir com o avanço no conhecimento sobre o padrão de sua distribuição em regiões com domínio da Mata Atlântica. Os Dados de ocorrência foram obtidos, entre setembro de 2012 e setembro de 2013, através de visitas às coleções zoológicas, levantamentos bibliográficos e coleta de coordenadas geográficas no campo. Para a construção do modelo foi usado o algoritmo Maxent, auxiliado pelo ArcGis versão 10 e pelo modelo digital de elevação do “Shuttle Radar Topographic Mission”. As variáveis ambientais foram obtidas pelo Worldclim version 1.1 Global Cimate Surface 10. O modelo foi avalizado pelo valor de AUC (Area Under the ROC Curve) e pelo teste estatístico Jackknife. Foram compilados 42 pontos para a distribuição da H. maximiliani. A distribuição potencial se estendeu desde o sul da Bahia até o estado de São Paulo. O modelo gerado mostrou uma alta capacidade preditiva, com valor AUC superior a 0,97, e apresentou uma transferabilidade satisfatória (i.e. capacidade para prever distribuições em regiões não amostradas). O alto valor AUC evidencia um bom modelo de distribuição geográfica potencial de espécies. No entanto, em modelos de larga escala, esse valor pode-se apresentar proporcional ao tamanho da escala, o que levaria a uma interpretação equivocada do modelo. Contudo, as áreas previstas para a distribuição da H. maximiliani no presente estudo mostraram-se realistas e condizentes com a distribuição real da espécie.
The Maximilian’s snake-necked-turtle, Hydromedusa maximiliani, is specie endemic to the Atlantic Forest and endangered in category Vulnerable by IUCN, whose populations are mainly associated with streams inside the forest, but the geographical distribution related to these environments hydrologically dynamic is poorly understood. Species Distribution Modeling has been a tool widely used in recent years. The Maximum Entropy algorithm, Maxent predicts the potential geographic distribution of species from presence data. This study aimed to build ecological models to predict the potential distribution of H. maximiliani that may provide support for development of new strategies for the conservation and thus contribute to the advancement in knowledge about the pattern of their distribution in regions with the Atlantic Forest domain. The occurrence data were obtained between September 2012 and September 2013, through visits to the zoological collections, bibliographic and collection of geographic coordinates in the field. To construct the model we used the Maxent algorithm, aided by ArcGIS version 10 and the digital elevation model of the "Shuttle Radar Topographic Mission". The environmental variables were obtained by Worldclim version 1.1 Cimate Global Surface 10. The model was endorsed by the AUC (Area Under the ROC Curve) and the statistical test Jackknife. 42 points were compiled for the distribution of H. maximiliani. The potential distribution extended from southern Bahia to São Paulo. The generated model showed high predictive ability, with higher AUC value to 0.97, and showed a satisfactory transferability (i.e. ability to predict distributions in regions not sampled ). The high AUC value shows a good distribution model geographic potential of species. However, in models of large scale, this value can be presented proportional to the size of the scale, which would lead to a misinterpretation of the model. However, the areas provided for the distribution of H. maximiliani in this study are realistic and consistent with the distribution realityof the species.
Tchamba, Junias. "Modelling the Potential Distribution of Golden Eagle Based on Maximum Entropy : The Experimental Cases of Sweden and Norway." Thesis, Högskolan i Gävle, Datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26754.
Full textAra?jo, Daniel Sabino Amorim de. "An?lise de Agrupamentos Com Base na Teoria da Informa??o: Uma Abordagem Representativa." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15208.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Currently, one of the biggest challenges for the field of data mining is to perform cluster analysis on complex data. Several techniques have been proposed but, in general, they can only achieve good results within specific areas providing no consensus of what would be the best way to group this kind of data. In general, these techniques fail due to non-realistic assumptions about the true probability distribution of the data. Based on this, this thesis proposes a new measure based on Cross Information Potential that uses representative points of the dataset and statistics extracted directly from data to measure the interaction between groups. The proposed approach allows us to use all advantages of this information-theoretic descriptor and solves the limitations imposed on it by its own nature. From this, two cost functions and three algorithms have been proposed to perform cluster analysis. As the use of Information Theory captures the relationship between different patterns, regardless of assumptions about the nature of this relationship, the proposed approach was able to achieve a better performance than the main algorithms in literature. These results apply to the context of synthetic data designed to test the algorithms in specific situations and to real data extracted from problems of different fields
Atualmente, um dos maiores desafios para o campo de minera??o de dados ? realizar a an?lise de agrupamentos em dados complexos. At? o momento, diversas t?cnicas foram propostas mas, em geral, elas s? conseguem atingir bons resultados dentro de dom?nios espec?ficos, n?o permitindo, dessa maneira, que exista um consenso de qual seria a melhor forma para agrupar dados. Essas t?cnicas costumam falhar por fazer suposi??es nem sempre realistas sobre a distribui??o de probabilidade que modela os dados. Com base nisso, o trabalho proposto neste documento cria uma nova medida baseada no Potencial de Informa??o Cruzado que utiliza pontos representativos do conjunto de dados e a estat?stica extra?da diretamente deles para medir a intera??o entre grupos. A abordagem proposta permite usar todas as vantagens desse descritor de informa??o e contorna as limita??es impostas a ele pela sua pr?pria forma de funcionamento. A partir disso, duas fun??es custo de otimiza??o e tr?s algoritmos foram constru?dos para realizar a an?lise de agrupamentos. Como o uso de Teoria da Informa??o permite capturar a rela??o entre diferentes padr?es, independentemente de suposi??es sobre a natureza dessa rela??o, a abordagem proposta foi capaz de obter um desempenho superior aos principais algoritmos citados na literatura. Esses resultados valem tanto para o contexto de dados sint?ticos desenvolvidos para testar os algoritmos em situa??es espec?ficas quanto em dados extra?dos de problemas reais de diferentes naturezas
Santos, Maria Oliveira. "Estudo da regra das áreas na variação da entropia magnética no contexto da universalidade." Pós-Graduação em Física, 2013. https://ri.ufs.br/handle/riufs/5293.
Full textIn ferromagnets, magnetic entropy change is written by function that starts (in Ti = 0) and finish (in Tf ? 8) in zero after going through a maximum (the transition temperature TC). The enclosed area is thus A = Z Tf?8Ti=0SdT wherein S =Z HfHi ?M?T!HdH. AsM ? 0 writing for high temperatures independent of values of accessible field, the area is A =Z HfHi M(Ti ,H)dH defining the so-called rule of areas. This rule states that the enclosed areais defined by the values M(Ti,H) in the interval [Hi,Hf ]. Of course that it can be used at any interval [Ti, TF ]. This suggests that in a narrow region of temperatures around TC, A shouldvary with H (assuming Hi = 0) according to a power law: A ? Hm. The fact M(Ti,H) define the area is evident because the ferromagnet in question must follow an equation of state. Thus,M(Ti,H) and M(TF ,H) contains the information of the area A between Ti and TF . In this issue we consider since the equation of state more simple for a ferromagnet (Brillouin function) up to corresponding to systems that present crystal field effects and subject to hydrostatic pressure too. We analyze compounds RAl2 (R: Dy, Nd and Pr) and we have determined the values of the exponent m. We check the universality curvas of magnetocaloric potential (isothermal S ? Hn and adiabatic T ? Mp), of its areas and the exponents m and n. Finally, we obtain the usual critical exponents, analyzed the graphs of Arrott of the magnetic curves, based on the criteria Banerjee, and using the method Kouvel-Fisher. Main result is that, despite the application of pressure tends to induce discontinuous transitions, there are regions of applied field, in that is observed the collapse S curves. The scaled curves also suggests a continuous-discontinuous way with the definition of a tricritical point (he case ofPrAl2 under pressure 3,8 kbar).
Em ferromagnetos, a variação de entropia magnética é uma função que inicia (em Ti = 0 ) e termina (em Tf ? 8) no zero após passar por um máximo (na temperatura de transição TC). A área encerrada é assim dada por A =Z Tf?8Ti=0SdT em que S =Z HfHi?M?T!HdH. Como M ? 0 para temperaturas altas, independente dos valores de campo acessíveis, a área resulta A =Z HfHiM(Ti ,H)dH definindo a chamada regra das áreas. Esta regra estabelece que a área encerrada fica definida pelos valores M(Ti ,H) no intervalo [Hi,Hf ]. É claro que a mesma pode ser usada em qualquer intervalo [Ti, Tf ] . Isto sugere que em uma região estreita de temperaturas, ao redor de TC, A deve variar com H (supondo Hi = 0) segundo uma lei de potência: A ? Hm. O fato de M(Ti,H) definir a área é evidente pois o ferromagneto em questão deve seguir uma equação de estado. Desta forma, M(Ti,H) e M(Tf ,H) contém a informação da área A entre Ti e Tf. Neste trabalho consideramos desde a equação de estado mais simples para um ferromagneto (a função de Brillouin) até a correspondente a sistemas que apresentam efeitos de campo cristalino e ainda sujeitos a pressão hidrostática. Analisamos os compostos RAl2 (R: Dy, Nd e Pr) e determinamos os valores do expoente m. Verificamos a universalidade nas curvas dos potenciais magnetocalóricos (isotérmico S ? Hn e adiabático T ? Mp), de suas áreas e dos expoentes m e n. Finalmente, para a obtenção dos expoentes críticos usuais, analisamos os gráficos de Arrott das curvas magnéticas, com base no critério de Banerjee, e usando o método Kouvel-Fisher. Um dos principais resultados é que, apesar da aplicação de pressão tender a induzir transições descontínuas, existem regiões de campo aplicado em que é observado o colapso das curvas de S. As curvas reescaladas também sugerem a passagem contínua-descontínua com a definição de um ponto tricrítico (caso do PrAl2 sob pressão de 3,8 kbar).
Shishmarev, Aleksei. "Problemas de campo forte na eletrodinâmica e teoria quântica de campos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22022017-133541/.
Full textThis thesis is devoted to strong field problems in electrodynamics and quantum field theory. Some well known physical systems are studied in a framework of quantum electrodynamics with external field and nonlinear electrodynamics. First, the statistical properties of states of quantized charged massive Dirac and Klein-Gordon fields interacting with a time-dependent background that violates the vacuum stability, first in general terms and then for a special electromagnetic background. As a starting point, a nonperturbative expression for the density operators of such fields. The reduced density operators for electron and positron subsystems are constructed and a decoherence that may occur in course of the evolution due to an intermediate measurement is discussed. The loss of the information in QED states due to partial reductions and a possible decoherence is studied by calculating the von Neumann entropy. Next, the so-called T-constant external electric field as an external background is considered. This exactly solvable example allows the explicit calculation of all statistical properties for various quantum states of the massive charged fields under consideration. Next, a nonperturbative approach to QED with x-electric critical potential steps is used. The general consideration is illustrated by the example of so-called exponential in two different configurations (slowly varying field and sharp peak field); differential and full mean numbers of particles created by these field configurations are calculated. The conditions when in- and out- spaces of the QED under consideration are unitarily equivalent are found. Then, a general density operator with the vacuum initial condition is constructed. Such an operator describes a deformation of the initial vacuum state by x-electric critical potential steps. The reductions of the deformed state to electron and positron subsystems are found, and the loss of the information in these reductions is calculated. The general consideration is illustrated by studying the deformation of the quantum vacuum between two capacitor plates. The entanglement measures of these reduced states are calculated as von Neumann entropies. Third, the field of a moving pointlike charge is determined in nonlinear local electrodynamics. The Euler-Heisenberg Lagrangian of quantum electrodynamics truncated at the leading term of its expansion in powers of the first field invariant is used as a model Lagrangian. The total energy of the field produced by a point charge is calculated and shown to be finite; thereby making its field configuration a soliton. A finite energy-momentum vector of this field configuration is defined to demonstrate that its components satisfy the standard mechanical relation characteristic of a freely moving massive particle
三嶋, 浩和. "AcrA/AcrB/TolCの多剤排出機構に関する統計力学的研究." Kyoto University, 2015. http://hdl.handle.net/2433/199547.
Full textMishima, Hirokazu. "Studies Based on Statistical Mechanics for Mechanism of Multidrug Efflux of AcrA/AcrB/TolC." Kyoto University, 2015. http://hdl.handle.net/2433/199416.
Full textBürki, Sarah Barbara Schlauri Rebekka Mirjam. "Auditory event-related potentials, BIS index and entropy for the discrimination of different levels of sedation in icu patients /." [S.l.] : [s.n.], 2009. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textBooks on the topic "Entropic Potential"
M, Hafez M., Osher Stanley, and Langley Research Center, eds. An entropy correction method for unsteady full potential flows with strong shocks. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.
Find full textM, Hafez M., Osher Stanley J, and Langley Research Center, eds. An entropy correction method for unsteady full potential flows with strong shocks. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1986.
Find full textCenter, Langley Research, ed. Application of a nonisentropic full potential method to AGARD standard airfoils. Hampton, Va: National Aeronautics and Space Administration, Langley Reserarch Center, 1988.
Find full textFiscaletti, Davide. Geometry of Quantum Potential: Entropic Information of the Vacuum. World Scientific Publishing Co Pte Ltd, 2018.
Find full textKanduč, M., A. Schlaich, E. Schneck, and R. R. Netz. Interactions between biological membranes: theoretical concepts. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198789352.003.0012.
Full textEntropy Demystified: Potential Order, Life and Money. Universal Publishers, 2000.
Find full textHuffaker, Ray, Marco Bittelli, and Rodolfo Rosa. Entropy and Surrogate Testing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198782933.003.0005.
Full textMinerals, The. Defining Pathways for Realizing the Revolutionary Potential of High Entropy Alloys: A TMS Accelerator Study. TMS, 2021.
Find full textLiaw, Peter K., and Y. Y. Shang. Mechanical Behavior of High-Entropy Alloys: Key Topics in Materials Science and Engineering. ASM International, 2022. http://dx.doi.org/10.31399/asm.tb.mbheaktmse.9781627084185.
Full textSengupta, Ramprasad. Entropy Law, Sustainability, and Third Industrial Revolution. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190121143.001.0001.
Full textBook chapters on the topic "Entropic Potential"
Yeh, Jien-Wei, An-Chou Yeh, and Shou-Yi Chang. "Potential Applications and Prospects." In High-Entropy Alloys, 493–512. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27013-5_15.
Full textStarzak, Michael E. "Chemical Potentials in Solution." In Energy and Entropy, 119–27. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77823-5_8.
Full textTian, Fuyang, Yang Wang, Douglas L. Irving, and Levente Vitos. "Applications of Coherent Potential Approximation to HEAs." In High-Entropy Alloys, 299–332. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27013-5_9.
Full textLedrappier, François. "Sharp Estimates for the Entropy." In Harmonic Analysis and Discrete Potential Theory, 281–88. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2323-3_23.
Full textPendock, Neil. "Bayesian Source Estimation from Potential Field Data." In Maximum Entropy and Bayesian Methods, 287–93. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2217-9_35.
Full textVoiculescu, Dan. "Perturbations of Operators, Connections with Singular Integrals, Hyperbolicity and Entropy." In Harmonic Analysis and Discrete Potential Theory, 181–91. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2323-3_14.
Full textSalvacion, Arnold R. "Groundwater Potential Mapping Using Maximum Entropy." In Water Resources Management and Sustainability, 239–56. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6573-8_13.
Full textKaimanovich, Vadim A. "Measure-Theoretic Boundaries of Markov Chains, 0–2 Laws and Entropy." In Harmonic Analysis and Discrete Potential Theory, 145–80. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2323-3_13.
Full textKouh, Minjoon, and Taejoon Kouh. "Entropy, Temperature, Energy, and Other Potentials." In Thermal Physics Tutorials with Python Simulations, 123–46. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003287841-10.
Full textLicata, Ignazio, and Davide Fiscaletti. "Entropy, Information, Chaos and the Quantum Potential." In SpringerBriefs in Physics, 93–106. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00333-7_4.
Full textConference papers on the topic "Entropic Potential"
Kalinay, Pavol, Leonardo Dagdug, A. García-Perciante, A. Sandoval-Villalbazo, and L. S. García-Colín. "Mapping of diffusion in confined systems (beyond the concept of entropic potential)." In IV MEXICAN MEETING ON MATHEMATICAL AND EXPERIMENTAL PHYSICS: RELATIVISTIC FLUIDS AND BIOLOGICAL PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3533198.
Full textDomenikos, G.-R., E. Rogdakis, and I. Koronaki. "Studying the Superfluid Transformation in Helium 4 Through the Partition Function and Entropic Behavior." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70225.
Full textKarpov, Eduard. "Random Sampling Monte-Carlo Approach to Studying Entropic Elasticity Properties of Cell Proteins and Lipids." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13271.
Full textXueliang, Bai, and Zhou Shaoxiang. "Specific Consumption Analysis of Vapor Compression Refrigeration System." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70799.
Full textRoy, Samit, and Avinash Akepati. "Multi-Scale Modeling of Fracture Properties for Nano-Particle Reinforced Polymers Using Atomistic J-Integral." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36419.
Full textChen, Jen Ping, M. L. Celestina, and J. J. Adamczyk. "A New Procedure for Simulating Unsteady Flows Through Turbomachinery Blade Passages." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-151.
Full textGrendar, Marian. "Randomness as an equilibrium. Potential and probability density." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING. AIP, 2002. http://dx.doi.org/10.1063/1.1477062.
Full textRadko, S. G. "Entropy in the Management of Labor Potential." In International Conference on Economics, Management and Technologies 2020 (ICEMT 2020). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/aebmr.k.200509.079.
Full textLeggett, John, Yaomin Zhao, Edward S. Richardson, and Richard D. Sandberg. "Turbomachinery Loss Analysis: The Relationship Between Mechanical Work Potential and Entropy Analyses." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59436.
Full textMiller, Robert J. "Mechanical Work Potential." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95488.
Full textReports on the topic "Entropic Potential"
Zilberman, Mark. Good and Evil from the Point of View of Physics. Intellectual Archive, December 2022. http://dx.doi.org/10.32370/iaj.2763.
Full textBaker, Matt. Defining Pathways for Realizing the Revolutionary Potential of High Entropy Alloys: A TMS Accelerator Study. The Minerals, Metals & Materials Society, September 2021. http://dx.doi.org/10.7449/heapathways.
Full textJohra, Hicham. Performance overview of caloric heat pumps: magnetocaloric, elastocaloric, electrocaloric and barocaloric systems. Department of the Built Environment, Aalborg University, January 2022. http://dx.doi.org/10.54337/aau467469997.
Full text