Academic literature on the topic 'Entanglement Classification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Entanglement Classification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Entanglement Classification"

1

Sanz, M., D. Braak, E. Solano, and I. L. Egusquiza. "Entanglement classification with algebraic geometry." Journal of Physics A: Mathematical and Theoretical 50, no. 19 (April 18, 2017): 195303. http://dx.doi.org/10.1088/1751-8121/aa6926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chitambar, Eric, Carl A. Miller, and Yaoyun Shi. "Matrix pencils and entanglement classification." Journal of Mathematical Physics 51, no. 7 (July 2010): 072205. http://dx.doi.org/10.1063/1.3459069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Pingxun. "A Convex Hull-Based Machine Learning Algorithm for Multipartite Entanglement Classification." Applied Sciences 12, no. 24 (December 13, 2022): 12778. http://dx.doi.org/10.3390/app122412778.

Full text
Abstract:
Quantum entanglement becomes more complicated and capricious when more than two parties are involved. There have been methods for classifying some inequivalent multipartite entanglements, such as GHZ states and W states. In this paper, based on the fact that the set of all W states is convex, we approximate the convex hull by some critical points from the inside and propose a method of classification via the tangent hyperplane. To accelerate the calculation, we bring ensemble learning of machine learning into the algorithm, thus improving the accuracy of the classification.
APA, Harvard, Vancouver, ISO, and other styles
4

AULBACH, MARTIN. "CLASSIFICATION OF ENTANGLEMENT IN SYMMETRIC STATES." International Journal of Quantum Information 10, no. 07 (October 2012): 1230004. http://dx.doi.org/10.1142/s0219749912300045.

Full text
Abstract:
Quantum states that are symmetric with respect to permutations of their subsystems appear in a wide range of physical settings, and they have a variety of promising applications in quantum information science. In this thesis, the entanglement of symmetric multipartite states is categorized, with a particular focus on the pure multi-qubit case and the geometric measure of entanglement. An essential tool for this analysis is the Majorana representation, a generalization of the single-qubit Bloch sphere representation, which allows for a unique representation of symmetric n-qubit states by n points on the surface of a sphere. Here this representation is employed to search for the maximally entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an intuitive visual understanding of the upper bound on the maximal symmetric entanglement is given. Furthermore, it will be seen that the Majorana representation facilitates the characterization of entanglement equivalence classes such as stochastic local operations and classical communication (SLOCC) and the degeneracy configuration (DC). It is found that SLOCC operations between symmetric states can be described by the Möbius transformations of complex analysis, which allows for a clear visualization of the SLOCC freedoms and facilitates the understanding of SLOCC invariants and equivalence classes. In particular, explicit forms of representative states for all symmetric SLOCC classes of up to five qubits are derived. Well-known entanglement classification schemes such as the four qubit entanglement families or polynomial invariants are reviewed in the light of the results gathered here, which leads to sometimes surprising connections. Some interesting links and applications of the Majorana representation to related fields of mathematics and physics are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Jafarizadeh, M. A., F. Eghbalifam, S. Nami, and M. Yahyavi. "Entanglement classification in the noninteracting Fermi gas." International Journal of Quantum Information 15, no. 07 (October 2017): 1750055. http://dx.doi.org/10.1142/s0219749917500551.

Full text
Abstract:
In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group [Formula: see text]. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur–Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even [Formula: see text] qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of [Formula: see text]. The restricted density matrix to the subspaces of the irreducible representations: [Formula: see text], [Formula: see text] and [Formula: see text] are denoted by [Formula: see text], [Formula: see text] and [Formula: see text], respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix [Formula: see text] and [Formula: see text], so these classes do not exist in the total Fermi gas density matrix.
APA, Harvard, Vancouver, ISO, and other styles
6

CHEN, LIN, and MASAHITO HAYASHI. "NONDISTILLABLE ENTANGLEMENT GUARANTEES DISTILLABLE ENTANGLEMENT." International Journal of Modern Physics B 26, no. 27n28 (September 18, 2012): 1243008. http://dx.doi.org/10.1142/s0217979212430084.

Full text
Abstract:
The monogamy of entanglement is one of the basic quantum mechanical features, which says that when two partners Alice and Bob are more entangled then either of them has to be less entangled with the third party. Here we qualitatively present the converse monogamy of entanglement: given a tripartite pure system and when Alice and Bob are entangled and nondistillable, then either of them is distillable with the third party. Our result leads to the classification of tripartite pure states based on bipartite reduced density operators, which is a novel and effective way to this long-standing problem compared to the means by stochastic local operations and classical communications. Furthermore we systematically indicate the structure of the classified states and generate them. We also extend our results to multipartite states.
APA, Harvard, Vancouver, ISO, and other styles
7

Lyons, David W., Abigail M. Skelton, and Scott N. Walck. "Werner State Structure and Entanglement Classification." Advances in Mathematical Physics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/463610.

Full text
Abstract:
We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called thedecoherence-freestates, which are states ofnquantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state and a construction that assembles these qubits into Werner states.
APA, Harvard, Vancouver, ISO, and other styles
8

Fu, Hongchen, Xiaoguang Wang, and Allan I. Solomon. "Maximal entanglement of nonorthogonal states: classification." Physics Letters A 291, no. 2-3 (December 2001): 73–76. http://dx.doi.org/10.1016/s0375-9601(01)00720-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chruściński, Dariusz, and Gniewomir Sarbicki. "Entanglement witnesses: construction, analysis and classification." Journal of Physics A: Mathematical and Theoretical 47, no. 48 (November 11, 2014): 483001. http://dx.doi.org/10.1088/1751-8113/47/48/483001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Hui, Yu-Qiu Liu, Zhi-Xi Wang, and Shao-Ming Fei. "A note on entanglement classification for tripartite mixed states." Acta Polytechnica 62, no. 1 (February 28, 2022): 222–27. http://dx.doi.org/10.14311/ap.2022.62.0222.

Full text
Abstract:
We study the classification of entanglement in tripartite systems by using Bell-type inequalities and principal basis. By using Bell unctions and the generalized three dimensional Pauli operators, we present a set of Bell inequalities which classifies the entanglement of triqutrit fully separable and bi-separable mixed states. By using the correlation tensors in the principal basis representation of density matrices, we obtain separability criteria for fully separable and bi-separable 2 ⊗ 2 ⊗ 3 quantum mixed states. Detailed example is given to illustrate our criteria in classifying the tripartite entanglement.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Entanglement Classification"

1

Aulbach, Martin. "Classification of entanglement in symmetric states." Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/1923/.

Full text
Abstract:
Quantum states that are symmetric with respect to permutations of their subsystems appear in a wide range of physical settings, and they have a variety of promising applications in quantum information science. In this thesis the entanglement of symmetric multipartite states is categorised, with a particular focus on the pure multi-qubit case and the geometric measure of entanglement. An essential tool for this analysis is the Majorana representation, a generalisation of the single-qubit Bloch sphere representation, which allows for a unique representation of symmetric n qubit states by n points on the surface of a sphere. Here this representation is employed to search for the maximally entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an intuitive visual understanding of the upper bound on the maximal symmetric entanglement is given. Furthermore, it will be seen that the Majorana representation facilitates the characterisation of entanglement equivalence classes such as Stochastic Local Operations and Classical Communication (SLOCC) and the Degeneracy Configuration (DC). It is found that SLOCC operations between symmetric states can be described by the Möbius transformations of complex analysis, which allows for a clear visualisation of the SLOCC freedoms and facilitates the understanding of SLOCC invariants and equivalence classes. In particular, explicit forms of representative states for all symmetric SLOCC classes of up to 5 qubits are derived. Well-known entanglement classification schemes such as the 4 qubit entanglement families or polynomial invariants are reviewed in the light of the results gathered here, which leads to sometimes surprising connections. Some interesting links and applications of the Majorana representation to related fields of mathematics and physics are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Xie Ph D. Massachusetts Institute of Technology. "Many-body entanglement in gapped quantum systems : representation, classification, and application." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79515.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 189-205).
Entanglement is a special form of quantum correlation that exists among quantum particles and it has been realized that surprising things can happen when a large number of particles are entangled together. For example, topological orders emerge in condensed matter systems where the constituent 1023 particles are entangled in a nontrivial way; moreover, quantum computers, which can perform certain tasks significantly faster than classical computers, are made possible by the existence of entanglement among a large number of particles. However, a systematic understanding of entanglement in many-body systems is missing, leaving open the questions of what kinds of many-body entanglement exist, where to find them and what they can be used for. In this thesis, I present my work towards a more systematic understanding of many-body entanglement in systems where the particles interact with each other locally and the ground state of the system is separated from the excited states by a finite energy gap. Under such physically realistic locality and gap constraints, I am able to obtain more understanding concerning the efficient representation of many-body entangled states, the classification of such states according to their universal properties and the application of such states in quantum computation. More specifically, this thesis is focused on the tensor network representation of many-body entangled states and studies how the tensors in the representation reflect the universal properties of the states. An algorithm is presented to extract the universal properties from the tensors and certain symmetry constraints are found necessary for the tensors to represent states with nontrivial topological order. Classification of gapped quantum states is then carried out based on this representation. An operational procedure relating states with the same universal properties is established which is then applied to systems in one and higher dimensions. This leads not only to the discovery of new quantum phases but also to a more systematic understanding of them. A more complete understanding of possible many-body entanglement structures enables us to design an experimentally more feasible many-body entangled state for application in measurement-based quantum computation. Moreover, the framework of measurement-based quantum computation is generalized from spin to fermion systems leading to new possibilities for experimental realization.
by Xie Chen.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Leonhardt, Karsten. "Interplay of excitation transport and atomic motion in flexible Rydberg aggregates." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-213759.

Full text
Abstract:
Strong resonant dipole-dipole interactions in flexible Rydberg aggregates enable the formation of excitons, many-body states which collectively share excitation between atoms. Exciting the most energetic exciton of a linear Rydberg chain whose outer two atoms on one end are closely spaced causes the initiation of an exciton pulse for which electronic excitation and diatomic proximity propagate directed through the chain. The emerging transport of excitation is largely adiabatic and is enabled by the interplay between atomic motion and dynamical variation of the exciton. Here, we demonstrate the coherent splitting of such pulses into two modes, which induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. The mechanism exploits local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The conical intersection is a consequence of the exciton pulses moving along a linear Rydberg chain and approaching an additional linear, perpendicularly aligned Rydberg chain. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. We demonstrate that this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains. Initially, we demonstrate the pulse splitting on planar aggregates with atomic motion one-dimensionally constrained and employing isotropic interactions. Subsequently, we confirm the splitting mechanism for a fully realistic scenario in which all spatial restrictions are removed and the full anisotropy of the dipole-dipole interactions is taken into account. Our results enable the experimental observation of non-adiabatic electronic dynamics and entanglement transport with Rydberg atoms. The conical intersection crossings are clearly evident, both in atomic mean position information and excited state spectra of the Rydberg system. This suggests flexible Rydberg aggregates as a test-bench for quantum chemical effects in experiments on much inflated length scales. The fundamental ideas discussed here have general implications for excitons on a dynamic network.
APA, Harvard, Vancouver, ISO, and other styles
4

Javanmard, Younes. "Strongly Correlated Systems, Transport, Entanglement, and Dynamics." Doctoral thesis, 2018. https://tud.qucosa.de/id/qucosa%3A33188.

Full text
Abstract:
Strongly correlated systems, i.e., quantum materials for which the interactions between its constituents are strong, are good candidates for the development of applications based on quantum-mechanical principles, such as quantum computers. Two paradigmatic models of strongly correlated systems are heavy-fermionic systems and one-dimensional spin-12 systems, with and without quenched disorder. In the past decade, improvement in computational methods and a vast enhancement in computational power has made it possible to study these systems in a a non-perturbative manner. In this thesis we present state-of-the-art numerical methods to investigate the properties of strongly correlated systems, and we apply these methods to solve a couple of selected problems in quantum condensed matter theory. We start by revisiting the phase diagram of the Falicov-Kimball model on the square lattice which can be considered as a heavy-fermionic systems. This model describes an interplay between conduction electrons and heavy electrons and reveals several distinct metal-insulator phase transitions. Using a lattice Monte-Carlo method, we study the transport properties of the model. Our analysis describes the role of temperature and interaction strength on the metal-insulator phase transitions in the Falicov-Kimball model. The second part of the thesis investigate the spatial structure of the entanglement in ground and thermal statesof the transverse-field Ising chain. We use the logarithmic negativity as a measure for the entanglement between two disjoint blocks. We investigate how logarithmic negativity depends on the spatial separation between two blocks, which can be viewed as the entanglement analog of a spatial correlation function. We find sharp entanglement thresholds at a critical distance beyond which the logarithmic negativity vanishes exactly and thus the two blocks become unentangled. Our results hold even in the presence of long-ranged quantum correlations, i.e., at the system’s quantum critical point. Using Time-Evolving Block Decimation (TEBD), we explore this feature as a function of temperature and size of the two blocks. We present a simple model to describe our numerical observations. In the last part of this thesis, we introduce an order parameter for a many-body localized spin-glass (MBL-SG) phase. We show that many-body localized spin-glass order can also be detected from two-site reduced density matrices, which we use to construct an eigenstate spin-glass order parameter. We find that this eigenstate spin-glass order parameter captures spin-glass phases in random Ising chains, both in many-body eigenstates as well as in the nonequilibrium dynamics, from a local in time measurement. We discuss how our results can be used to observe MBL-SG order within current experiments in Rydberg atoms and trapped ion systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Pastori, Lorenzo. "Entanglement and Topology in Quantum Many-Body Dynamics." 2020. https://tud.qucosa.de/id/qucosa%3A76132.

Full text
Abstract:
A defining feature of quantum many-body systems is the presence of entanglement among their constituents. Besides providing valuable insights on several physical properties, entanglement is also responsible for the computational complexity of simulating quantum systems with variational methods. This thesis explores several aspects of entanglement in many-body systems, with the primary goal of devising efficient approaches for the study of topological properties and quantum dynamics of lattice models. The first focus of this work is the development of variational wavefunctions inspired by artificial neural networks. These can efficiently encode long-range and extensive entanglement in their structure, as opposed to the case of tensor network states. This feature makes them promising tools for the study of topologically ordered phases, quantum critical states as well as dynamical properties of quantum systems. In this thesis, we characterize the representational power of a specific class of artificial neural network states, constructed from Boltzmann machines. First, we show that wavefunctions obtained from restricted Boltzmann machines can efficiently parametrize chiral topological phases, such as fractional quantum Hall states. We then turn our attention to deep Boltzmann machines. In this framework, we propose a new class of variational wavefunctions, coined generalized transfer matrix states, which encompass restricted Boltzmann machine and tensor network states. We investigate the entanglement properties of this ansatz, as well as its capability of representing physical states. Understanding how the entanglement properties of a system evolve in time is the second focus of this thesis. In this context, we first investigate the manifestation of topological properties in the unitary dynamics of systems after a quench, using the degeneracy of the entanglement spectrum as a possible signature. We then analyze the phenomenon of entanglement growth, which limits to short timescales the applicability of tensor network methods in out-of-equilibrium problems. We investigate whether these limitations can be overcome by exploiting the dependence of entanglement entropies on the chosen computational basis. Specifically, we study how the spreading of quantum correlations can be contained by means of time-dependent basis rotations of the state, using exact diagonalization to simulate its dynamics after a quench. Going beyond the case of sudden quenches, we then show how, in certain weakly interacting problems, the asymptotic value of the entanglement entropy can be tuned by modifying the velocity at which the parameters in the Hamiltonian are changed. This enables the simulation of longer timescales using tensor network approaches. We present preliminary results obtained with matrix product states methods, with the goal of studying how equilibration affects the transport properties of interacting systems at long times.
APA, Harvard, Vancouver, ISO, and other styles
6

Burchardt, Adam. "Symmetry and classification of multipartite entangled states." Praca doktorska, 2022. https://ruj.uj.edu.pl/xmlui/handle/item/285756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mengoni, Riccardo. "Quantum Approaches to Data Science and Data Analytics." Doctoral thesis, 2020. http://hdl.handle.net/11562/1018231.

Full text
Abstract:
In this thesis are explored different research directions related to both the use of classical data analysis techniques for the study of quantum systems and the employment of quantum computing to speed up hard Machine Learning tasks
APA, Harvard, Vancouver, ISO, and other styles
8

Lezama, Mergold Love Talía. "Some dynamical aspects of generic disordered systems." 2019. https://tud.qucosa.de/id/qucosa%3A37765.

Full text
Abstract:
In this thesis, we focus attention on the effects of disorder in closed interacting quantum systems that give rise to a many-body localization (MBL) transition between an ergodic phase and a many-body localized phase. This transition is not a conventional one, since it takes place at any finite energy density and can neither be described by thermodynamics nor conventional statistical mechanics. We explain why systems experiencing such an MBL transition can be regarded as generic in many ways, we do so by discussing many of their spectral properties and by giving a detailed account of their manifestation in the nonequilibrium dynamics and long-time behavior. Surprisingly, a wide variety of MBL systems consistently reflect strikingly similar characteristic effects in each side of the MBL transition. This is backed by myriads of numerical and experimental observations which in turn can be partially explained by theories developed in the past decade. However, some mechanisms behind the ergodic side of the MBL transition and the nature of the MBL transition itself remain elusive. These, as well as the lack of an accurate description of the nonergodic character of the steady states of such systems, have been some of the issues for active research and speculation by scholars that need to be timely addressed. In the following, we describe our modest contributions at bridging the gap of understanding of some of the issues exposed above. On the one hand, reduced density matrices are central objects for the description of the relaxation of local observables in closed quantum many-body systems, and on the other, quench protocols are experimentally relevant procedures. In the first part of this thesis we study the long-time behavior of the one-particle density matrix (OPDM) occupation spectrum after a quench. It was shown that, in the many-body localized phase (which can be understood in terms of localized quasiparticles), the OPDM occupation spectrum in eigenstates shows a zero-temperature Fermi liquid-like discontinuity at any finite energy density. In this thesis we show that in the steady state reached at long times after a global quench from a perfect density-wave state, the discontinuity in the OPDM occupation spectrum is absent, reminiscent of a Fermi liquid at a finite temperature, while the full occupation function remains strongly nonthermal. We discuss how one can understand this as a consequence of the local structure of the density-wave state and the resulting partial occupation of quasiparticles. We further show how these partial occupations can be controlled by tuning the structure of initial state and described by an effective temperature. Another part of this thesis was devoted to the study of dynamics on the ergodic side of the transition in periodically driven systems in the absence of global conservation laws. Most numerical studies in this context were done in models with conserved quantities (e.g., energy and/or particle number) which could account for the reduction of the overall complexity of the problem, while in this thesis, we use a numerical technique based on the fast Walsh-Hadamard transform that allows us to perform an exact time evolution for large systems and long times. As in models with conserved quantities, we observe a slowing down of the dynamics as the transition into the many-body localized phase is approached. This is reflected in anomalous behavior of the energy absorption of the system, as well as consistent with a subballistic spread of entanglement and a stretched-exponential decay of an autocorrelation function, with their associated exponents reflecting slow dynamics near the transition for a fixed system size. However, with access to larger system sizes, we observe a clear flow of the exponents towards faster dynamics and cannot rule out that the slow dynamics is a finite-size effect. Furthermore, we observe examples of nonmonotonic dependence of the exponents with time, with the dynamics initially slowing down but accelerating again at larger times, which could be consistent with the slow dynamics being a crossover phenomenon with a localized critical point. In addition, we observe no difference between the typical and average value of the autocorrelation function and therefore our results are inconsistent with the phenomenological explanation of the anomalous behavior based on Griffiths effects. In the last part of this thesis, we study dynamics in the ergodic phase relating to two main quantum information measures: One is the entanglement entropy, which is an intrinsic property of the wave function and generated by the time evolution operator, while the other is the operator entanglement entropy of the time evolution operator, which quantifies the complexity of the latter. It is known that generic quantum many-body systems typically show a linear growth of the entanglement entropy growth after a quench from a product state. In this thesis we show that there is a robust correspondence between the operator entanglement entropy of the time evolution operator and the entanglement entropy growth of typical product states, whereas special product states, e.g., $\sigma_z$ basis states, may exhibit faster entanglement production. We base our analysis on numerical simulations of a static and a periodically driven quantum spin chain in the presence of a disordered magnetic field, showing that both the wave function and operator entanglement entropies exhibit a power-law growth with the same disorder-dependent exponent. With this, we clarify the discrepancy between the exponents observed in previous results. Our results provide further evidence for slow information spreading on the ergodic side of the many-body localization transition in the absence of conservation laws.
In dieser Dissertation setzen wir uns mit dem Effekt von Unordnung auf geschlossene wechselwirkende Quantensysteme auseinander. Unordnung kann einen Übergang von einer ergodischen in eine lokalisierte Phase induzieren, eine sogenannte Vielteilchenlokalisierung oder Many body localization (MBL). Dieser Phasenübergang ist alles andere als konventionell: Er kann weder durch Thermodynamik noch durch klassische statistische Mechanik beschrieben werden. Wir erklären, warum Systeme, die solch einen MBL Übergang aufweisen, in vielerlei Hinsicht als generisch angesehen werden können. Dazu diskutieren wir die spektralen Eigenschaften, die Nichtgleichgewichtsdynamik und das Langzeitverhalten. Erstaunlicherweise weist eine große Vielfalt verschiedener MBL Systeme auf beiden Seiten des MBL Übergangs mit großer Konsistenz ähnliche Charakteristiken auf. Dies wird durch unzählige numerische und experimentelle Beobachtungen unterstützt, die wiederum zumindest teilweise durch theoretische Arbeiten aus dem letzten Jahrzehnt erklärt werden können. Trotzdem bleiben manche Mechanismen auf der ergodischen Seite des MBL Übergangs und die Art des MBL Übergangs weiterhin im Verborgenen. Zusammen mit der fehlenden akkuraten Beschreibung des nicht-ergodischen Charakters der stationären Zustände dieser Systeme sind diese Probleme im derzeitigen Fokus der Forschung, wobei es eine Vielzahl fundierter Vermutungen gibt, die diese Phänomene erklären. Im Folgenden beschreiben wir unseren Beitrag wie diese oben gelisteten Probleme überwunden werden können. Reduzierte Dichteoperatoren sind zentrale Objekte, um die Relaxation von lokalen Observablen in geschlossenen Quantenvielkörpersystemen zu beschreiben und sogenannte Quenches, also die plötzliche Änderung einiger systemrelevanter Parameter, ähnlich wie beim Abschrecken mit Wasser oder Luft, sind experimentell relevante Vorgänge. Im ersten Teil dieser Arbeit untersuchen wir das Langzeitverhalten des Besetzungsspektrums des Einteilchendichteoperators (one-particle density matrix, OPDM) nach solch einem Quench. Wie zuvor gezeigt wurde, weist das OPDM Besetzungsspektrum in der MBL Phase (die im Sinne von lokalisierten Quasiteilchen verstanden werden kann) für alle endlichen Energiedichten eine Diskontinuität auf, ähnlich wie in Fermi-Flüssigkeiten. In dieser Arbeit zeigen wir, dass diese Diskontinuität in stationären Zuständen, die von perfekten Dichtewellen ausgehend nach langer Zeit nach einem globalen Quench erreicht werden, abwesend ist, ähnlich wie in einer Fermi-Flüssigkeit bei einer endlichen Temperatur, während die gesamte Besetzungsfunktion stark nicht-thermal bleibt. Wir diskutieren, wie man dies als Konsequenz der lokalen Struktur des Dichtewellenzustands und der daraus folgenden teilweisen Besetzung der Quasiteilchen verstehen kann. Wir zeigen außerdem, wie die teilweise Besetzung durch Änderung der Struktur des Ausgangszustands kontrolliert und durch eine effektive Temperatur beschrieben werden kann. Im nächsten Teil dieser Arbeit untersuchen wir die Dynamik der ergodischen Seite des MBL Übergangs in periodisch getriebenen Systemen ohne globale Erhaltungsgrößen. Die meisten bisherigen in diesem Zusammenhang vorgenommenen numerischen Untersuchungen wurden in Modellen mit Erhaltungsgrößen (wie Energie und/oder Teilchenzahl) durchgeführt, was an der Reduzierung der Komplexität des Problems liegen mag. In dieser Arbeit nutzen wir hingegen eine numerische Methode, die auf einer schnellen Walsh-Hadamard Transformation beruht, was uns ermöglicht, eine exakte Zeitentwicklung für lange Zeiten und große Systeme vorzunehmen. Wie in Modellen mit Erhaltungsgrößen beobachten wir eine Verlangsamung der Dynamik, wenn wir uns dem Übergangspunkt zu der MBL Phase nähern. Dies macht sich in einem ungewöhnlichen Verhalten der Energieabsorption des Systems bemerkbar, was mit einer unterballistischen Ausbreitung der Verschränkung und einem gedehnt-exponentiellen Abklingen der Autokorrelationsfunktion im Einklang steht, wobei die zugehörigen Exponenten die verlangsamte Dynamik für fixe Systemgrößen widerspiegeln. Durch den Zugang zu größeren Systemen können wir jedoch einen deutlichen Fluss der Exponenten Richtung schnellerer Dynamik feststellen und daher nicht ausschließen, dass die verlangsamte Dynamik durch die endlichen Systemgrößen hervorgerufen wird (ein sogenannter finite size effect). Des weiteren finden wir Beispiele für eine nicht-monotone Zeitabhängigkeit der Exponenten, wobei die Dynamik sich zunächst verlangsamt, bevor sie zu späteren Zeiten wieder beschleunigt. Dies könnte mit der Betrachtung der verlangsamten Dynamik als Crossover-Phänomen mit einem lokalisierten kritischen Punkt vereinbar sein. Außerdem können wir keinen Unterschied zwischen dem geometrischen und arithmetischen Mittel der Autokorrelationsfunktion feststellen, sodass unsere Ergebnisse der phänomenologischen Erklärung des ungewöhnlichen Verhaltens, die auf Griffiths-Effekten beruht, widersprechen. Im letzten Teil der Dissertation widmen wir der Dynamik in der ergodischen Phase und verknüpfen zwei zentrale Größen der Quanteninformation: die Verschränkungsentropie, eine der Wellenfunktion intrinsische Größe, die aus dem Zeitentwicklungsoperator generiert werden kann, und der Operatorverschränkungsentropie des Zeitentwicklungsoperators, die die Komplexität des Operators quantifiziert. In generischen Quantenvielkörpersystemen wächst die Verschränkungsentropie nach einem Quench aus einem Produktzustand typischerweise linear. In dieser Arbeit zeigen wir, dass es eine belastbaren Übereinstimmung zwischen der Operatorverschränkungsentropie des Zeitentwicklungsoperators und der Verschränkungsentropie typischer Produktzustände gibt, wobei bestimmte Produktzustände, z.B. $\sigma_z$-Basiszustände, eine schnellere Verschränkungsproduktion aufweisen können. Unsere Analyse basiert auf numerischen Simulationen von statischen und periodisch getriebenen Quanten-Spinketten in einem ungeordneten Magnetfeld. Sowohl die Verschränkungsentropie der Wellenfunktion als auch die Operatorverschränkungsentropie wächst einem Potenzgesetz folgend mit den selben unordnungsabhängigen Exponenten. Damit schaffen wir Klarheit bezüglich der Unstimmigkeiten der Exponenten in den vorherigen Ergebnissen. Unsere Resultate geben außerdem Hinweise auf eine verlangsamte Informationsausbreitung auf der ergodischen Seite des MBL Übergangs ohne Erhaltungsgrößen.
APA, Harvard, Vancouver, ISO, and other styles
9

Zopf, Hartmut Michael. "Semiconductor-generated entangled photons for hybrid quantum networks." 2019. https://monarch.qucosa.de/id/qucosa%3A71745.

Full text
Abstract:
The deterministic generation and manipulation of quantum states has attracted much interest ever since the rise of quantum mechanics. Large-scale, distributed quantum states are the basis for novel applications such as quantum communication, quantum remote sensing, distributed quantum computing or quantum voting protocols. The necessary infrastructure will be provided by distributed quantum networks, allowing for quantum bit processing and storage at single nodes. Quantum states of light then allow for inter-node transmission of quantum information. Transmission losses in optical fibers may be overcome by quantum repeaters, the quantum equivalent of classical signal amplifiers. The fragility of quantum superposition states makes building such networks very challenging. Hybrid solutions combine the strengths of different physical systems: Efficient quantum memories can be realized using alkali atoms such as rubidium. Leading in the deterministic generation of single photons and polarization entangled photon pairs are semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method. Despite remarkable progress in the last twenty years, complex quantum optical protocols could not be realized due to low degree of entanglement, low brightness and broad wavelength distribution. In this work, an emerging family of epitaxially grown GaAs/AlGaAs quantum dots obtained by droplet etching and nanohole infilling is studied. Under pulsed resonant two-photon excitation, they emit single pairs of entangled photons with high purity and unprecedented degree of entanglement. Entanglement fidelities up to f = 0.94 are observed, which are only limited by the optical setup or a residual exciton fine structure. The samples exhibit a very narrow wavelength distribution at rubidium memory transitions. Strain tuning is applied via piezoelectric actuators to allow for reversible fine-tuning of the emission frequency. In a next step, active feedback is employed to stabilize the frequency of single photons emitted by two separate quantum dots to an atomic rubidium standard. The transmission of a rubidium-based Faraday filter serves as the error signal for frequency stabilization. A residual frequency deviation of < 30MHz is achieved, which is less than 1.5% of the quantum dot linewidth. Long-term stability is demonstrated by Hong-Ou-Mandel interference between photons from the two quantum dots. Their internal dephasing limits the expected visibility to V = 40%. For frequency-stabilized dots, V = (41 ± 5)% is observed as opposed to V = (31 ± 7)% for free-running emission. This technique reaches the maximally expected visibility for the given system and therefore facilitates quantum networks with indistinguishable photons from distributed sources. Based on the presented techniques and improved emission quality, pivotal quantum communication protocols can now be implemented with quantum dots, such as transferring entanglement between photon pairs. Embedding quantum dots in a dielectric antenna ensures a bright emission. For the first time, entanglement swapping between two pairs of photons emitted by a single quantum dot is realized. A joint Bell measurement heralds the successful generation of the Bell state Ψ+ with a fidelity of up to (0.81 ± 0.04). The state's nonlocal nature is confirmed by violating the CHSH-Bell inequality with S = (2.28 ± 0.13). The photon source is tuned into resonance with rubidium transitions, facilitating implementation of hybrid quantum repeaters. This work thus represents a major step forward for the application of semiconductor based entangled photon sources in real-world scenarios.
APA, Harvard, Vancouver, ISO, and other styles
10

Mukherjee, Rick. "Strong interactions in alkaline-earth Rydberg ensembles." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28445.

Full text
Abstract:
Ultra-cold atoms in optical lattices provide a versatile and robust platform to study fundamental condensed-matter physics problems and have applications in quantum optics as well as quantum information processing. For many of these applications, Rydberg atoms (atoms excited to large principal quantum numbers) are ideal due to its long coherence times and strong interactions. However, one of the pre-requisite for such applications is identical confinement of ground state atoms with Rydberg atoms. This is challenging for conventionally used alkali atoms. In this thesis, I discuss the potential of using alkaline-earth Rydberg atoms for many-body physics by implementing simultaneous trapping for the relevant internal states. In particular, I consider a scheme for generating multi-particle entanglement and explore charge transport in a one dimensional atomic lattice.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Entanglement Classification"

1

Zhang, Junwei, Zhao Li, Juan Wang, Yinghui Wang, Shichang Hu, Jie Xiao, and Zhaolin Li. "Quantum Entanglement Inspired Correlation Learning for Classification." In Advances in Knowledge Discovery and Data Mining, 58–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05936-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhatia, Amandeep Singh, and Renata Wong. "Recent Progress in Quantum Machine Learning." In Limitations and Future Applications of Quantum Cryptography, 232–56. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6677-0.ch012.

Full text
Abstract:
Quantum computing is a new exciting field which can be exploited to great speed and innovation in machine learning and artificial intelligence. Quantum machine learning at crossroads explores the interaction between quantum computing and machine learning, supplementing each other to create models and also to accelerate existing machine learning models predicting better and accurate classifications. The main purpose is to explore methods, concepts, theories, and algorithms that focus and utilize quantum computing features such as superposition and entanglement to enhance the abilities of machine learning computations enormously faster. It is a natural goal to study the present and future quantum technologies with machine learning that can enhance the existing classical algorithms. The objective of this chapter is to facilitate the reader to grasp the key components involved in the field to be able to understand the essentialities of the subject and thus can compare computations of quantum computing with its counterpart classical machine learning algorithms.
APA, Harvard, Vancouver, ISO, and other styles
3

Ballinger, Pamela. "Conclusion." In The World Refugees Made, 206–14. Cornell University Press, 2020. http://dx.doi.org/10.7591/cornell/9781501747588.003.0006.

Full text
Abstract:
This concluding chapter explains that despite Italy's spectacular postwar economic growth, Italian officials repeatedly invoked the twin specters of Italian surplus population and the pressing needs of its “own” refugees to argue for Italy's unsuitability as a country of permanent resettlement. In light of the complicated entanglements between the international and national regimes of refugee assistance, it is no coincidence that the Geneva Convention that laid out the definition of the international refugee came into being during the same period as major Italian legislation that consolidated the Italian state's responsibilities to its own displaced citizens. Nor is it coincidence that as a signatory to the Geneva Convention on Refugees, Italy was among those few states that adopted the geographic reservation exclusive to European refugees. Moreover, the arrival in the 1950s and 1960s of Italian refugees from the territories of other decolonizing powers merely reinforced the Italian government's stance that its priorities for assistance must lie with its own citizens. Even with the close of Italy's formal decolonization in 1960, the classifications for migrants coming from the lost territories—repatriates and refugees—possessed continuing salience.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Entanglement Classification"

1

MATSUOKA, T. "GENERALIZED ENTANGLEMENT AND ITS CLASSIFICATION." In Stochastic Analysis: Classical and Quantum - Perspectives of White Noise Theory. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701541_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shuhao, Wang, Lu Yao, Cui Jianlian, Li Junlin, and Long Gui-Lu. "Entanglement Classification of Arbitrary-Dimensional Multipartite Pure States under Stochastic Local Operations and Classical Communication via the Ranks of the Coefficient Matrices." In Proceedings of the 12th Asia Pacific Physics Conference (APPC12). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.1.012131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Han, Kai, Yunhe Wang, Han Shu, Chuanjian Liu, Chunjing Xu, and Chang Xu. "Attribute Aware Pooling for Pedestrian Attribute Recognition." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/341.

Full text
Abstract:
This paper expands the strength of deep convolutional neural networks (CNNs) to the pedestrian attribute recognition problem by devising a novel attribute aware pooling algorithm. Existing vanilla CNNs cannot be straightforwardly applied to handle multi-attribute data because of the larger label space as well as the attribute entanglement and correlations. We tackle these challenges that hampers the development of CNNs for multi-attribute classification by fully exploiting the correlation between different attributes. The multi-branch architecture is adopted for fucusing on attributes at different regions. Besides the prediction based on each branch itself, context information of each branch are employed for decision as well. The attribute aware pooling is developed to integrate both kinds of information. Therefore, attributes which are indistinct or tangled with others can be accurately recognized by exploiting the context information. Experiments on benchmark datasets demonstrate that the proposed pooling method appropriately explores and exploits the correlations between attributes for the pedestrian attribute recognition.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Wenting, Yuan Fang, Zhen Cui, Tong Zhang, and Jian Yang. "Graph Deformer Network." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/227.

Full text
Abstract:
Convolution learning on graphs draws increasing attention recently due to its potential applications to a large amount of irregular data. Most graph convolution methods leverage the plain summation/average aggregation to avoid the discrepancy of responses from isomorphic graphs. However, such an extreme collapsing way would result in a structural loss and signal entanglement of nodes, which further cause the degradation of the learning ability. In this paper, we propose a simple yet effective Graph Deformer Network (GDN) to fulfill anisotropic convolution filtering on graphs, analogous to the standard convolution operation on images. Local neighborhood subgraphs (acting like receptive fields) with different structures are deformed into a unified virtual space, coordinated by several anchor nodes. In the deformation process, we transfer components of nodes therein into affinitive anchors by learning their correlations, and build a multi-granularity feature space calibrated with anchors. Anisotropic convolutional kernels can be further performed over the anchor-coordinated space to well encode local variations of receptive fields. By parameterizing anchors and stacking coarsening layers, we build a graph deformer network in an end-to-end fashion. Theoretical analysis indicates its connection to previous work and shows the promising property of graph isomorphism testing. Extensive experiments on widely-used datasets validate the effectiveness of GDN in graph and node classifications.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography