Academic literature on the topic 'ENSO-index'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ENSO-index.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ENSO-index"

1

Lu, Bo, Fei-Fei Jin, and Hong-Li Ren. "A Coupled Dynamic Index for ENSO Periodicity." Journal of Climate 31, no. 6 (2018): 2361–76. http://dx.doi.org/10.1175/jcli-d-17-0466.1.

Full text
Abstract:
El Niño–Southern Oscillation (ENSO) is the most active interannual climatic mode, with great global impacts. The state-of-the-art climate models can simulate this dominant mode variability to a large extent. Nevertheless, some of ENSO’s fundamental time–space characteristics still have a large spread in the simulations across the array of recent climate models. For example, the large biases of ENSO periodicity still exist among model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Based on the recharge oscillator framework, a coupled dynamic index for ENSO period
APA, Harvard, Vancouver, ISO, and other styles
2

Lv, Aifeng, Lei Fan, and Wenxiang Zhang. "Impact of ENSO Events on Droughts in China." Atmosphere 13, no. 11 (2022): 1764. http://dx.doi.org/10.3390/atmos13111764.

Full text
Abstract:
The El Niño Southe58rn Oscillation (ENSO) is a typical oscillation affecting climate change, and its stable periodicity, long-lasting effect, and predictable characteristics have become important indicators for regional climate prediction. In this study, we analyze the Standardized Precipitation Evapotranspiration Index (SPEI), the Niño3.4 index, the Southern Oscillation Index (SOI), and the Multivariate ENSO Index (MEI). Additionally, we explore the spatial and temporal distribution of the correlation coefficients between ENSO and SPEI and the time lag between ENSO events of varying intensiti
APA, Harvard, Vancouver, ISO, and other styles
3

Evans, M. N., R. G. Fairbanks, and J. L. Rubenstone. "A proxy index of ENSO teleconnections." Nature 394, no. 6695 (1998): 732–33. http://dx.doi.org/10.1038/29424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aprilia, Bunga, Marzuki Marzuki, and Imam Taufiq. "Prediksi El Nino Southern Oscillation (ENSO) Menggunakan Jaringan Saraf Tiruan (JST)-Backpropagation." Jurnal Fisika Unand 9, no. 4 (2021): 421–27. http://dx.doi.org/10.25077/jfu.9.4.421-427.2020.

Full text
Abstract:
Penelitian ini bertujuan untuk memprediksi nilai indeks ENSO yaitu Sea Surface Temperature (Nino 1.2, Nino 3, Nino 3.4 dan Nino 4), Southern Oscillation Index (SOI) dan Multivariate ENSO Index versi 2 (MEI.v2) yang diambil dari tahun 1979-2018. Prediksi dilakukan dengan menggunakan metode JST-backpropagation dengan memvariasikan learning rate dan momentum. Semua indeks menghasilkan nilai akurasi prediksi ENSO yang tinggi, namun indeks Nino 4 merupakan indeks yang memiliki akurasi tertinggi karena nilai Mean Square Error (MSE) pelatihan dan pengujiannya yang relatif lebih kecil dibandingkan den
APA, Harvard, Vancouver, ISO, and other styles
5

Westra, Seth, Benjamin Renard, and Mark Thyer. "The ENSO–Precipitation Teleconnection and Its Modulation by the Interdecadal Pacific Oscillation." Journal of Climate 28, no. 12 (2015): 4753–73. http://dx.doi.org/10.1175/jcli-d-14-00722.1.

Full text
Abstract:
Abstract This study evaluates the role of the interdecadal Pacific oscillation (IPO) in modulating the El Niño–Southern Oscillation (ENSO)–precipitation relationship. The standard IPO index is described together with several alternatives that were derived using a low-frequency ENSO filter, demonstrating that an equivalent IPO index can be obtained as a low-frequency version of ENSO. Several statistical artifacts that arise from using a combination of raw and smoothed ENSO indices in modeling the ENSO–precipitation teleconnection are then described. These artifacts include the potentially spuri
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Chen-Chih, Yi-Jiun Liou, and Shih-Jen Huang. "Impacts of Two-Type ENSO on Rainfall over Taiwan." Advances in Meteorology 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/658347.

Full text
Abstract:
Impacts of two-type ENSO (El Niño/Southern Oscillation), canonical ENSO and ENSO Modoki, on rainfall over Taiwan are investigated by the monthly mean rainfall data accessed from Taiwan Central Weather Bureau. The periods of the two-type ENSO are distinguished by Niño 3.4 index and ENSO Modoki index (EMI). The rainfall data in variously geographical regions are analyzed with the values of Niño 3.4 and EMI by correlation method. Results show that the seasonal rainfalls over Taiwan are different depending on the effects of two-type ENSO. In canonical El Niño episode, the rainfall increases in win
APA, Harvard, Vancouver, ISO, and other styles
7

Koem, S., R. J. Lahay, and S. K. Nasib. "The sensitivity of meteorological drought index towards El Nino-Southern Oscillation." IOP Conference Series: Earth and Environmental Science 1089, no. 1 (2022): 012005. http://dx.doi.org/10.1088/1755-1315/1089/1/012005.

Full text
Abstract:
Abstract El Nino-Southern Oscillation (ENSO) contributes to the regional climates, such as precipitation and droughts. The objectives of the present work were to: (1) identify the severity index; (2) analyze the correlation of SPI and RDI, and; (3) identify the response of SPI and RDI towards ENSO. SPI and RDI were calculated for time scales (3, 6, and 12 months), and these represented the seasonal and annual drought. The identification of the responses of the drought severity index, based on ENSO, consisted of several thresholds, namely weak, moderate, and strong. The correlational value and
APA, Harvard, Vancouver, ISO, and other styles
8

Ziemke, J. R., S. Chandra, L. D. Oman, and P. K. Bhartia. "A new ENSO index derived from satellite measurements of column ozone." Atmospheric Chemistry and Physics Discussions 10, no. 2 (2010): 2859–87. http://dx.doi.org/10.5194/acpd-10-2859-2010.

Full text
Abstract:
Abstract. Column Ozone measured in tropical latitudes from Nimbus 7 TOMS, Earth Probe TOMS, NOAA SBUV, and Aura OMI satellite instruments are used to derive an El Niño-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. Using a data mining technique with existing ENSO indices of surface pressure and sea-surface temperature, the OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Zhen, and G. Cornelis van Kooten. "The El Niño Southern Oscillation index and wildfire prediction in British Columbia." Forestry Chronicle 90, no. 05 (2014): 592–98. http://dx.doi.org/10.5558/tfc2014-122.

Full text
Abstract:
This study investigates the potential to predict monthly wildfires and area burned in British Columbia's interior using El Niño Southern Oscillation (ENSO). The zero-inflated negative binomial (ZINB) and the generalized Pareto (GP) distributions are used, respectively, to account for uncertainty in wildfire frequency and area burned. Results indicate that a four-month lag of the ENSO index has a strong positive influence on monthly wildfire occurrence. Upon fitting the GP distribution with a logit model regressed on the ENSO index, we predict the probabilities that monthly area burned exceeds
APA, Harvard, Vancouver, ISO, and other styles
10

Beckers, Joost V. L., Albrecht H. Weerts, Erik Tijdeman, and Edwin Welles. "ENSO-conditioned weather resampling method for seasonal ensemble streamflow prediction." Hydrology and Earth System Sciences 20, no. 8 (2016): 3277–87. http://dx.doi.org/10.5194/hess-20-3277-2016.

Full text
Abstract:
Abstract. Oceanic–atmospheric climate modes, such as El Niño–Southern Oscillation (ENSO), are known to affect the local streamflow regime in many rivers around the world. A new method is proposed to incorporate climate mode information into the well-known ensemble streamflow prediction (ESP) method for seasonal forecasting. The ESP is conditioned on an ENSO index in two steps. First, a number of original historical ESP traces are selected based on similarity between the index value in the historical year and the index value at the time of forecast. In the second step, additional ensemble trace
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!