Academic literature on the topic 'ENSEMBLE EMPIRIAL MODE DECOMPOSITION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ENSEMBLE EMPIRIAL MODE DECOMPOSITION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ENSEMBLE EMPIRIAL MODE DECOMPOSITION"
Lang, Xun, Naveed ur Rehman, Yufeng Zhang, Lei Xie, and Hongye Su. "Median ensemble empirical mode decomposition." Signal Processing 176 (November 2020): 107686. http://dx.doi.org/10.1016/j.sigpro.2020.107686.
Full textSHEN, ZHIYUAN, NAIZHANG FENG, and YI SHEN. "RIDGE REGRESSION MODEL-BASED ENSEMBLE EMPIRICAL MODE DECOMPOSITION FOR ULTRASOUND CLUTTER REJECTION." Advances in Adaptive Data Analysis 04, no. 01n02 (April 2012): 1250013. http://dx.doi.org/10.1142/s1793536912500136.
Full textCHANG, YU-MEI, ZHAOHUA WU, JULIUS CHANG, and NORDEN E. HUANG. "MODEL VALIDATION BASED ON ENSEMBLE EMPIRICAL MODE DECOMPOSITION." Advances in Adaptive Data Analysis 02, no. 04 (October 2010): 415–28. http://dx.doi.org/10.1142/s1793536910000550.
Full textZhou, Xiaohang, Deshan Shan, and Qiao Li. "Morphological Filter-Assisted Ensemble Empirical Mode Decomposition." Mathematical Problems in Engineering 2018 (September 17, 2018): 1–12. http://dx.doi.org/10.1155/2018/5976589.
Full textZhang, Jian, Ruqiang Yan, Robert X. Gao, and Zhihua Feng. "Performance enhancement of ensemble empirical mode decomposition." Mechanical Systems and Signal Processing 24, no. 7 (October 2010): 2104–23. http://dx.doi.org/10.1016/j.ymssp.2010.03.003.
Full textNIAZY, R. K., C. F. BECKMANN, J. M. BRADY, and S. M. SMITH. "PERFORMANCE EVALUATION OF ENSEMBLE EMPIRICAL MODE DECOMPOSITION." Advances in Adaptive Data Analysis 01, no. 02 (April 2009): 231–42. http://dx.doi.org/10.1142/s1793536909000102.
Full textZhu, Jia Xing, Wen Bin Zhang, Ya Song Pu, and Yan Jie Zhou. "Purification of Axis Trace by Ensemble Empirical Mode Decomposition." Advanced Materials Research 791-793 (September 2013): 1006–9. http://dx.doi.org/10.4028/www.scientific.net/amr.791-793.1006.
Full textJiang, Xiu Shan, Rui Feng Zhang, and Liang Pan. "Short-Time Fluctuation Characteristic and Combined Forecasting of High-Speed Railway Passenger Flow Based on EEMD." Applied Mechanics and Materials 409-410 (September 2013): 1071–74. http://dx.doi.org/10.4028/www.scientific.net/amm.409-410.1071.
Full textTSUI, PO-HSIANG, CHIEN-CHENG CHANG, and NORDEN E. HUANG. "NOISE-MODULATED EMPIRICAL MODE DECOMPOSITION." Advances in Adaptive Data Analysis 02, no. 01 (January 2010): 25–37. http://dx.doi.org/10.1142/s1793536910000410.
Full textNiu, Xiaoxu, Junwei Ma, Yankun Wang, Junrong Zhang, Hongjie Chen, and Huiming Tang. "A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction." Applied Sciences 11, no. 10 (May 20, 2021): 4684. http://dx.doi.org/10.3390/app11104684.
Full textDissertations / Theses on the topic "ENSEMBLE EMPIRIAL MODE DECOMPOSITION"
Furlaneto, Dennis Carnelossi. "An analysis of ensemble empirical mode decomposition applied to trend prediction on financial time series." reponame:Repositório Institucional da UFPR, 2017. http://hdl.handle.net/1884/49137.
Full textCoorientador : David Menotti
Dissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 20/07/2017
Inclui referências : f. 63-72
Resumo: As séries temporais financeiras são notoriamente difíceis de analisar e prever dada sua natureza não estacionária e altamente oscilatória. Nesta tese, a eficácia da técnica de decomposição não-paramétrica Ensemble Empirical Mode Decomposition (EEMD) é avaliada como uma técnica de extração de característica de séries temporais provenientes de índices de mercado e taxas de câmbio, características estas usadas na classificação, juntamente com diferentes modelos de aprendizado de máquina, de tendências de curto prazo. Os resultados obtidos em dois datasets de dados financeiros distintos sugerem que os resultados promissores relatados na literatura foram obtidos com a adição, inadvertida, de lookahead bias (viés) proveniente da aplicação desta técnica como parte do pré-processamento das séries temporais. Em contraste com as conclusões encontradas na literatura, nossos resultados indicam que a aplicação do EEMD com o objetivo de gerar uma melhor representação dos dados financeiração, por si só, não é suficiente para melhorar substancialmente a precisão e retorno cumulativo obtidos por modelos preditivos em comparação aos resultados obtidos com a utilização de series temporais de mudanças percentuais. Palavras-chave: Predição de Tendencias, Aprendizado de Máquina, Séries Temporais Financeiras.
Abstract: Financial time series are notoriously difficult to analyse and predict, given their nonstationary, highly oscillatory nature. In this thesis, the effectiveness of the Ensemble Empirical Mode Decomposition (EEMD) is evaluated at generating a representation for market indexes and exchange rates that improves short-term trend prediction for these financial instruments. The results obtained in two different financial datasets suggest that the promising results reported using EEMD on financial time series in other studies were obtained by inadvertently adding look-ahead bias to the testing protocol via pre-processing the entire series with EEMD, which do affect the predictive results. In contrast to conclusions found in the literature, our results indicate that the application of EEMD with the objective of generating a better representation for financial time series is not sufficient, by itself, to substantially improve the accuracy and cumulative return obtained by the same models using the raw data. Keywords: Trend Prediction, Machine Learning, Financial Time Series.
Li, Zhendan. "An Ensemble Empirical Mode Decomposition Approach to Wear Particle Detection in Lubricating Oil Subject to Particle Overlap." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20313.
Full textAlshahrani, Saeed Sultan. "Detection, classification and control of power quality disturbances based on complementary ensemble empirical mode decomposition and artificial neural networks." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15872.
Full textLozano, García Manuel. "Multichannel analysis of normal and continuous adventitious respiratory sounds for the assessment of pulmonary function in respiratory diseases." Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/397706.
Full textLos sonidos respiratorios (SR) se generan con el paso del flujo de aire a través de las vías respiratorias y se transmiten de forma no homogénea hasta la superficie torácica. Dada su naturaleza mecánica, los SR se ven afectados en gran medida por enfermedades que alteran las propiedades mecánicas del sistema respiratorio. Por lo tanto, los SR proporcionan información clínica relevante sobre la estructura y el funcionamiento del sistema respiratorio. La falta de una metodología estándar para el registro y procesado de los SR ha dado lugar a la aparición de diferentes estrategias de análisis de SR con ciertas limitaciones metodológicas que podrían haber restringido el potencial y el uso de esta técnica en la práctica clínica (medidas con pocos sensores, flujos no controlados o constantes y/o maniobras forzadas, análisis no combinado de distintos tipos de SR o uso de técnicas poco precisas para el procesado de los SR). En esta tesis proponemos un método innovador e integrado de análisis de SR que incluye el registro multicanal de SR mediante un máximo de cinco micrófonos colocados sobre la tráquea yla superficie torácica, los cuales permiten analizar los SR en las principales regiones pulmonares sin utilizar un número elevado de sensores . Nuestro método también incluye una maniobra respiratoria progresiva con flujo variable que permite analizar los SR en función del flujo respiratorio. También proponemos el análisis combinado de los SR normales y los sonidos adventicios continuos (SAC), mediante las curvas intensidad-flujo y un espectro de Hilbert (EH) adaptado a las características de los SR, respectivamente. El EH propuesto representa un avance importante en el análisis de los SAC, pues permite su completa caracterización en términos de duración, frecuencia media e intensidad. Además, la alta resolución temporal y frecuencial y la alta concentración de energía de esta versión mejorada del EH permiten caracterizar los SAC de forma más precisa que utilizando el espectrograma, el cual ha sido la técnica más utilizada para el análisis de SAC en estudios previos. Nuestro método de análisis de SR se trasladó a la práctica clínica a través de dos estudios que se iniciaron en el laboratorio de pruebas funcionales del hospital Germans Trias i Pujol, para la evaluación de la función pulmonar en pacientes con parálisis frénica unilateral (PFU) y la respuesta broncodilatadora (RBD) en pacientes con asma. Las señales de SR y flujo respiratorio se registraron en 10 pacientes con PFU, 50 pacientes con asma y 20 controles sanos. El análisis de las curvas intensidad-flujo resultó ser un método apropiado para detectar la PFU , pues encontramos diferencias significativas entre las curvas intensidad-flujo de las bases posteriores de los pulmones en todos los pacientes , mientras que en los controles sanos no encontramos diferencias significativas. Hasta donde sabemos, este es el primer estudio que utiliza el análisis cuantitativo de los SR para evaluar la PFU. En cuanto al asma, encontramos cambios relevantes en las curvas intensidad-flujo yen las características de los SAC tras la broncodilatación en pacientes con RBD negativa en la espirometría. Por lo tanto, sugerimos que el análisis combinado de las curvas intensidad-flujo y las características de los SAC, incluyendo número, duración, frecuencia media e intensidad, es una técnica prometedora para la evaluación de la RBD y la mejora en la estratificación de los distintos niveles de RBD, especialmente en pacientes con RBD negativa en la espirometría. El método innovador de análisis de SR que se propone en esta tesis proporciona una nueva herramienta con una alta sensibilidad para obtener información objetiva y complementaria sobre la función pulmonar de una forma sencilla y no invasiva. Junto con la espirometría, este método puede tener una aplicación clínica directa en la mejora de la evaluación de la función pulmonar en pacientes con enfermedades respiratorias
Quinlan, John Mathew. "Investigation of driving mechanisms of combustion instabilities in liquid rocket engines via the dynamic mode decomposition." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54343.
Full textWei, Shao-Kuan, and 魏韶寬. "Ensemble Empirical Mode Decomposition with Clustering Analysis." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/82011189687957252619.
Full text國立臺灣師範大學
數學系
100
Ensemble Empirical Mode Decomposition (EEMD) is an adaptive time-frequency data analysis method. Time series or signals can be decomposed into a collection of intrinsic mode functions (IMFs). Nevertheless, there appears a multi-mode problem where signals with a similar time scale are decomposed into different IMFs. A possible solution to this problem is to combine the multi-modes into a proper single mode, but there is no general rule on how to combine IMFs in the literature. In this paper, we propose to modify EEMD algorithm using the statistical clustering analysis and to provide a framework to combine the IMFs into a condensed set of clustered intrinsic mode functions (CIMFs). The method is applied to two artificially synthesized signals, wind turbine signal at Chunan Miaoli, and a seismic signal during the earthquake at Chi-Chi in 1999. Especially, this seismic signal contains not only the main seismic information but also the seismic motion from a landslide in Tsaoling area. The present method can separate the two signal from different sources correctly, and these applications of other examples demonstrate that, the present method offers great improvement over EEMD for extracting useful information.
Sheng-MaoWang and 王晟懋. "Automated program of Ensemble Empirical Mode Decomposition." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/2yg4c2.
Full text國立成功大學
航空太空工程學系
107
The ensemble empirical mode decomposition (EEMD) method is applied for wind data analysis in the current research. However, calculations could take a very long time. Therefore, an attempt is made to accelerate the calculations. MATLAB and Python are used to explore the characteristics of different programming language operations, and a user-friendly graphical interface is also developed, and the execution process will be operated automatically and continuously. The wind data analyzed were collected by the wind turbines located on campus of Case Western Reserve University in the United States. The wind data have been collecting since 2012 and the amount of data keeps growing. Thus, reducing the analyzing time is important. This study not only wants to use the graphics processor to try to shorten the time required for the operation process, but also finds the approximation trend in EEMD and refines the algorithm to shorten the operation time by about 65%.
Yang, Sheng-Ning, and 楊勝寧. "Using Complementary Ensemble Empirical Mode Decomposition Method To Analyze Images." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/38533054079787149646.
Full text國立陽明大學
醫學工程研究所
99
In this study, by Huang NE, who proposed the complementary empirical mode decomposition method based on the empirical mode decomposition method. The algorithm inherits the empirical mode decomposition some of the benefits. For example it can solve nonlinear and nonstationary signals. Another Empirical mode decomposition method and the traditional numerical methods, the base need to know prior to analysis, the original signals can be based on the characteristics and nature of the original signal automatically a number of nature apart from the function and the remaining functions for analysis. Complementary empirical mode decomposition method also improved the empirical mode decomposition shortcomings. For example the intermittent signals, noise and the edge of the original signal processing have problems in Empirical mode decomposition method, so Complementary empirical mode decomposition method can solve problems by white noise. Another joining the white noise may affect the analysis of the original signal, so the Complementary empirical mode decomposition method are more general and increase the number of complementary concepts to minimize the impact of white noise, the results of analysis tends to positive solutions. Complementary empirical mode decomposition method can decompose the image into several graphic signals without mode mixing, linear and stable intrinsic mode functions, computing the signal waveform after the intrinsic mode functions to comply with the conditions. Intrinsic mode functions to establish original signal can understand some of original signal information, the remaining factor is the combination of the characteristics of the original image graph. One-dimensional empirical mode decomposition method have a lot of literature to proof of adaptability and it can be used in the ability of nonlinear and nonstationary signals. In this study, the two-dimensional empirical mode decomposition method, the application in image process can be obtained from the original number of information. Local feature in the original image signal area, the edge structure and light shading. Finally, to get the information to do with Bilateral Filter processing, a new method to improve noise issues.
Chen-KuoChen and 陳振國. "The Study of Pile Integrity Test Using Ensemble Empirical Mode Decomposition." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/55168835560927508888.
Full text國立成功大學
土木工程學系
105
Non-destructive testing (NDT) has the advantages of economical, fast, and a wide range of applicability. Therefore it is a fairly effective testing method. The testing of piles without pile cap has been considered a well-developed technique. However, affected by complex boundaries conditions, testing of piles with pile cap is more difficult. This study use Impulse response (IR) method for the field test, then use ensemble empirical mode decomposition (EEMD) by Hilbert-Huang Transform to decompose the signals, finally use Fast Fourier Transform (FFT) to transform time domain data to frequency domain data. The purpose of this study is to separate the pile cap, pile bottom, and defect frequency and try to estimate the pile length and defect locations of piles with pile cap. The results show that the error of the estimation of pile length is less than 6%, and the errors of estimating top rectangular-defect were less than 3%. However, this method was less effective to detect circularity-defect and bottom rectangular-defect.
Tsai, Shu-Yun, and 蔡舒韻. "A Novel Energy Detection Method Based on Ensemble Empirical Mode Decomposition." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/mu66ak.
Full text國立東華大學
電機工程學系
100
Cognitive radio(CR) is a novel smart wireless communication technology. To improve spectrum utilization efficiency, CR can detect the communication environment features to automatically adjust the transmitting and receiving parameters of a system, such as power, frequency, and modulation mode etc. The spectrum sensing is a key technology in the CR. In this thesis, we use energy detection for spectrum sensing. Many researches on energy detection are performed on the basis of a precise knowledge of noise power environment to set threshold. In this thesis we use ensemble empirical mode decomposition(EEMD) to decompose signal into licensed users and noise in the noisy environment. The signal power of licensed users and noise power are estimated in the current channel environment. An adaptive threshold is set in an unknown noise environment to improve the performance of energy detector.
Book chapters on the topic "ENSEMBLE EMPIRIAL MODE DECOMPOSITION"
Shen, Yi, and Min Zhang. "Hyperspectral Image Classification Based on Ensemble Empirical Mode Decomposition." In Advances in Intelligent and Soft Computing, 529–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27329-2_72.
Full textLin, Jinshan. "Improved Ensemble Empirical Mode Decomposition Method and Its Simulation." In Advances in Intelligent Systems, 109–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27869-3_14.
Full textHenzel, Norbert. "QRS Complex Detection Based on Ensemble Empirical Mode Decomposition." In Innovations in Biomedical Engineering, 286–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47154-9_33.
Full textLin, Jinshan. "Fault Feature Extraction of Gearboxes Using Ensemble Empirical Mode Decomposition." In Communications in Computer and Information Science, 478–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23214-5_63.
Full textBeltrán-Castro, Juan, Juliana Valencia-Aguirre, Mauricio Orozco-Alzate, Germán Castellanos-Domínguez, and Carlos M. Travieso-González. "Rainfall Forecasting Based on Ensemble Empirical Mode Decomposition and Neural Networks." In Advances in Computational Intelligence, 471–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38679-4_47.
Full textKwon, Sundeok, and Sangjin Cho. "Analysis of Acoustic Signal Based on Modified Ensemble Empirical Mode Decomposition." In Transactions on Engineering Technologies, 377–86. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9115-1_29.
Full textSrivastava, Ashita, Vikrant Bhateja, Deepak Kumar Tiwari, and Deeksha Anand. "AWGN Suppression Algorithm in EMG Signals Using Ensemble Empirical Mode Decomposition." In Intelligent Computing and Information and Communication, 515–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7245-1_50.
Full textTaralunga, Dragos Daniel, and G. Mihaela Neagu. "An Ensemble Empirical Mode Decomposition Based Method for Fetal Phonocardiogram Enhancement." In IFMBE Proceedings, 387–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9038-7_73.
Full textWang, Yuchen. "Real-Time Tsunami Detection Based on Ensemble Empirical Mode Decomposition (EEMD)." In Springer Theses, 63–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7339-0_4.
Full textZhu, Bangzhu, and Julien Chevallier. "A Multiscale Analysis for Carbon Price with Ensemble Empirical Mode Decomposition." In Pricing and Forecasting Carbon Markets, 47–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57618-3_4.
Full textConference papers on the topic "ENSEMBLE EMPIRIAL MODE DECOMPOSITION"
Jin-Long Chen, Ya-Chen Chen, and Tzu-Chien Hsiao. "Recognizing thoracic breathing by ensemble empirical mode decomposition." In 2013 9th International Conference on Information, Communications & Signal Processing (ICICS). IEEE, 2013. http://dx.doi.org/10.1109/icics.2013.6782956.
Full textRoy, Sujan Kumar, Md Khademul Islam Molla, and Keikichi Hirose. "Robust Pitch Estimation using Ensemble Empirical Mode Decomposition." In 7th International Conference on Speech Prosody 2014. ISCA: ISCA, 2014. http://dx.doi.org/10.21437/speechprosody.2014-94.
Full textLin, Xuze, Yanping Cai, Xinjun Wang, and Fang Wang. "Improved Ensemble Empirical Mode Decomposition and Its Application." In The 5th International Conference on Computer Engineering and Networks. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.259.0022.
Full textChang, Kang-Ming. "Ensemble empirical mode decomposition based ECG noise filtering method." In 2010 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2010. http://dx.doi.org/10.1109/icmlc.2010.5581064.
Full textChang, Li-Wen, Men-Tzung Lo, Nasser Anssari, Ke-Hsin Hsu, Norden E. Huang, and Wen-mei W. Hwu. "Parallel implementation of Multi-dimensional Ensemble Empirical Mode Decomposition." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5946808.
Full textTorres, Maria E., Marcelo A. Colominas, Gaston Schlotthauer, and Patrick Flandrin. "A complete ensemble empirical mode decomposition with adaptive noise." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947265.
Full textRezgui, Dhouha, and Zied Lachiri. "Detection of ECG beat using ensemble empirical mode decomposition." In 2015 7th International Conference on Modelling, Identification and Control (ICMIC). IEEE, 2015. http://dx.doi.org/10.1109/icmic.2015.7409389.
Full textSadrawi, Muammar, Jiann-Shing Shieh, Koichi Haraikawa, Jen Chien Chien, Chien Hung Lin, and Maysam F. Abbod. "Ensemble empirical mode decomposition applied for PPG motion artifact." In 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2016. http://dx.doi.org/10.1109/iecbes.2016.7843455.
Full textFontugne, Romain, Nicolas Tremblay, Pierre Borgnat, Patrick Flandrin, and Hiroshi Esaki. "Mining anomalous electricity consumption using Ensemble Empirical Mode Decomposition." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638662.
Full textWang, Ming-Shu, and Tee-Ann Teo. "Hyperspectral data discrimination based on Ensemble Empirical Mode Decomposition." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964294.
Full text